用户名: 密码: 验证码:
聚醚砜酮预氧化机理及其炭膜制备工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体膜分离技术作为一种绿色分离技术,近年来得到了迅速的发展。聚合物膜由于难以超越Robesen上限,制约了其在气体分离领域的广泛应用。发现于上世纪六十年代的新型功能膜材料—碳膜,因其具有发达的可区分气体分子尺寸大小的纳米级超细微孔结构,良好的热稳定性和化学稳定性,在气体分离领域显示出巨大的潜力。然而,造价高,渗透性小,脆性大等问题给炭膜的大规模商业化及应用带来很大的困难。因此开发高性价比的前驱体,优化制膜工艺,通过改性提高炭膜的渗透选择性以及制备综合性能良好的复合炭膜是解决当前炭膜存在问题并促进炭膜向工业化迈进的重要途径。
     本论文以价格相对低廉、具有我国独立知识产权的商用聚醚砜酮(PPESK)为前驱体进行气体分离炭膜制备工艺的优化,并采用廉价的煤基炭膜为支撑体进一步制备高性能的复合炭膜,以试图开辟一条低成本制备高性能气体分离炭膜的工艺技术路线,为解决当前制备炭膜工艺所存在的问题,早日实现炭膜的商业化应用提供有效途径。
     作为热塑性高分子聚合物,预氧化处理是确保PPESK在炭化过程中结构稳定、制备出高性能炭膜的关键。本论文借助热重分析、红外光谱、X射线衍射、元素分析以及固体核磁等多种表征手段,对PPESK在预氧化过程中的热解和交联行为及化学结构的演变过程进行了深入研究,揭示了PPESK预氧化机理,为确定最佳的预氧化和炭化工艺条件打下了良好的基础。研究表明,PPESK的预氧化过程是一个自由基反应过程,始终伴随着芳香环质子和砜基官能团的脱除引发的自由基交联反应,脱出H_2O与SO_2;当预氧化温度超过460℃后,随着反应的进行,由羰基官能团分解引发的自由基交联反应开始发生,脱出CO_2,并最终形成了含有大量聚芳醚和联苯结构的稳定的三维空间网状结构,进而完成PPESK由热塑性材料向热固性材料的转化。最佳的预氧化条件为:温度为460℃,恒温时间为30 min。
     以PPESK的预氧化处理为基础,确立了先预氧化再高温炭化制备PPESK基气体分离炭膜的工艺技术路线,并在最佳预氧化条件下研究探讨炭化工艺条件,考察了预氧化条件和炭化条件对炭膜孔结构、炭结构和气体分离性能的影响,优化了制备工艺,在一定程度上实现了炭膜渗透性和选择性的有效调控和高性能气体分离炭膜的可控制备。结果表明:PPESK前驱体经460℃,30 min预氧化处理,650℃炭化得到的炭膜气体渗透性最佳,H_2、CO_2、O_2、N_2的渗透系数分别达到了1016.4、710.3、187.8、14.0 Barrer(1 Barrer=10~(-10)cm~3(STP)·cm·cm~(-2)·s~(-1)·cmHg~(-1));经460℃,30 min预氧化处理,850℃炭化得到的炭膜气体选择性最佳,H_2/N_2、CO_2/N_2、O_2/N_2的分离系数分别达到了129.2、93.1、21.9。用制备得到的炭膜分离空气富集氧气,一次富集后氧气浓度最高可达86.4%。
     采用具有规则有序孔道的Beta沸石分子筛对PPESK基炭膜进行掺杂改性研究,进一步提高炭膜的气体渗透性,改善渗透性与选择性之间的矛盾,进而制备出高通量、高分离选择性的气体分离炭膜。结果表明:当Beta分子筛添加量较低时,制备的炭膜其渗透性和选择性同时得到提高;Beta分子筛添加量较高时,其渗透性显著提高,分离选择性有所下降。当Beta/PPESK质量比由0.1增至0.2,炭膜的H_2、CO_2、O_2、N_2渗透系数增加了2倍,分别达到了2313.3,1566.8,276.5,31.9 Barrer。
     提出了制备高性能复合炭膜的工艺技术路线。以廉价的煤基炭管为支撑体,采用高分子表面活性剂聚乙二醇(PEG)作为改性剂,制备了高性能的PEG/PPESK基支撑复合炭膜。研究表明:PEG在复合炭膜制备过程中发挥着改善前驱体PPESK与支撑体之间的复合效果和“造孔剂”双重作用,添加PEG后仅需一次涂覆即可制得具有分子筛功能的复合炭膜,简化了制备工艺。此外,与纯PPESK基复合炭膜相比,PEG/PPESK基复合炭膜不仅明显提高炭膜的气体渗透性,同时也使炭膜的分离选择性有一定的增加,特别是对H_2/N_2、O_2/N_2表现出良好的分离性能。其中H_2/N_2分离系数为40~105,O_2/N_2分离系数为4~14;H_2渗透率为0.075~0.75 MPU,O_2渗透率为0.01~0.08 MPU(1 MPU=1×10~(-8)mol·m~(-2)·s~(-1)·Pa~(-1))。
     同文献报道的其他前驱体制备的复合炭膜相比,采用本论文提出的制备复合炭膜的工艺技术路线得到的PEG/PPESK基复合炭膜制造成本低,气体分离性能高,具有良好的工业化应用前景。
Gas separation membrane technology,as a green technology,has been developed rapidly in recent years.Polymeric membranes are limited widely application in the area of gas separation because they can't exceed the Robesen upper bound.Novel functional membrane materials—carbon membranes were found in the 1960s,which showed great potential in the area of gas separation for their super microporous distinguishing size of gas molecules,good thermal and chemical resistance.However,they are still commercially unavailable because of some problems,i.e.high-cost,low gas permeance and poor mechanism.Therefore,it is urgent to develop cheap precursors with good performance,optimize preparation technology, improve gas permeate and prepare supported carbon composite membranes and solve the problem in the field of carbon membranes.
     In this paper,novel cheaper poly(phthalazinone ether sulfone ketone)(PPESK),with China's independently intellectual property rights,has been developed to prepare carbon membranes for gas separation.Coal-based carbon tube with low cost was used as the support to prepare carbon composite membranes.It is an important approach to design the technology route to prepare the carbon membranes with high performance.
     As a kind of thermoplastic polymer,preoxidation is an effective method to ensure the structure stabilization of PPESK.The behaviors of thermal decomposition and cross-linking of PPESK during preoxidation were characterized by TG,FTIR,XRD,EA and NMR,and the preoxidation mechanism was concluded.The results showed that the preoxidation of PPESK was a free radicals reaction,which was initiated by the decomposition of proton in aromatic ring and sulfone functional group and the removal of H_2O and SO_2.When the preoxidation temperature was above 460℃,the radical reaction was initiated by the decomposition of ketone functional group and the removal of CO_2.At last,the three-demensional cross-linking structure containing polyaromatic ether and biphenyl was formed.PPESK was transformed from thermoplasticity to thermoset.The optimum preoxidation conditions are the temperature at 460℃and the duration time at 30min.
     The PPESK-based carbon membranes were prepared by preoxidation of the polymeric membranes in air and then carbonization the oxidized membranes in argon.The effect of preoxidation and carbonization conditions on the microstructure and gas separation was investigated.It was found that gas permeability and ideal separation factor of the carbon membranes can be controlled by optimizing the experimental conditions.The results showed that the carbon membranes preoxidized at 460℃,30min,and carbonized at 650℃reached the highest permeability.The permeabilities of H_2,CO_2,O_2,N_2 were 1016.4、710.3、187.8、14.0 Barrer(1 Barrer=10~(-10)cm~3(STP)·cm·cm~2·s~(-1)·cmHg~(-1)),respectively.The carbon membranes preoxidized at 460℃,30 min,and carbonized at 850℃reached the highest selectivity.The ideal separation factors of H_2/N_2、CO_2/N_2,O_2/N_2 were 129.2、93.1、21.9、respectively.The derived carbon membranes were used to enrich the O_2 in air,and the O_2 concentration can reach 86.4%.
     The carbon membranes were modified by blending Zeolite Beta in PPESK to improve the gas permeate and the trade-off of selectivity and permeability.When the weight ratio of Beta/PPESK was lower,the selectivity and permeability of the carbon membranes were increased at the same time.However,when the weight ratio of Beta/PPESK was higher,the permeability of the carbon membranes was increased and the selectivity was decreased obviously.With the increase of the weight ratio of Beta/PPESK from 0.1 to 0.2,the permeabilities of H_2,CO_2,O_2 and N_2 reached 2313.3、1566.8、276.5、31.9 barrer,respectively.
     The technology route to prepare the carbon composite membranes with high performance was designed.The supported carbon composite membranes were prepared by coating the solution of PPESK blended with poly(ethylene glycol)(PEG)on the cheaper coal-based carbon tubular supports.The results showed that PEG had the functions of improving the composite performance between PPESK and carbon tube and increasing porosity of the carbon composite membranes.The PEG/PPESK based carbon composite membranes with molecular sieving needed dip-coating only one time.Compared with the PPESK-based carbon composite membranes,the PEG/PPESK based carbon composite membranes had good permeation and selectivity.The ideal separation factors of H_2/N_2 and O_2/N_2 reached 40~105 and 4~14,respectively.The permeation rates of H_2 and O_2 were 0.075~0.75 MPU and 0.01~0.08 MPU(1 MPU=1×10~(-8)mol·m~(-2)·s~(-1)·Pa~(-1)),respectively.
     Compared with the carbon composite membranes derived from other precursors,the PEG/PPESK based carbon composite membranes reduced preparation costs and increased gas separation performance,which would have good prospects in industrial applications.
引文
[1]王湛.膜分离技术基础.北京:化学工业出版社,2000.
    [2]王学松.现代膜技术及其应用指南.北京:化学工业出版社,2005.
    [3]时钧,袁权,高从增.膜技术手册.北京:化学工业出版社,2001.
    [4]刘茉娥.膜分离技术应用手册.北京:化学工业出版社,2001.
    [5]Koros W J,Mahajan R.Pushing the limits on possibilities for large scale gas separation:which strategies.J.Membr.Sci.,2000,175(2):181-196.
    [6]黄仲涛,曾昭槐,钟邦克等.无机膜技术及其应用.北京:中国石化出版社,1998.
    [7]陈勇,王从厚,吴鸣编著.气体膜分离技术与应用.北京:化学工业出版社,2004.
    [8]Baker R W,Future direction of membranes separation technology.Membrane Technology,2001,(138):5-10.
    [9]Atkinson S.US membrane separation technology markets analyzed.Membrane Technology,2003,(149):10-12.
    [10]刘丽,邓麦村,袁权.气体分离膜研究和应用新进展.现代化工,2000,20(1):17-21
    [11]Robeson L M.Polymer membranes for gas separation.Current opinion in solid state and materials science,1999,4(6):549-552.
    [12]Koros W J.Molecular sieve carbon hollow fiber membranes.Proc.7th Ann.Mtg.of.the N.Amer.Memb.Soc.,Portland,1995.
    [13]Singh A.Membrane materials with enhanced selectivity:An entropic interpretation,PhD Dissertation,The University of Texas at Austin,1997.
    [14]Itoh N,Sathe A M.Hydrogen transport from gas to liquid phase through a palladium membrane.J.Membr.Sci.,1997,137:251-259.
    [15]Yang L,Tan L,Gu X H,et al.A new series of Sr(Co,Fe,Zr)O_(3-6)perovshite-type membrane materials for oxygen permeation.Ind.Eng.Chem.Res.,2003,42:2299-2305.
    [16]Soria R.Overview on industrial membranes.Catalysis Today,1995,25(3-4):285-290.
    [17]邹静,董维阳,龙英才.MFI型沸石膜的渗透分离性能及应用.上海化工,1999,24(9):4-6.
    [18]王金渠,李铮.A型沸石膜的制备及其在气体脱湿中的应用.膜科学与技术。1998,18(2):54-58.
    [19]Casanave D,Ciavarella P,Fiaty K,et al.Zeolite membrane reactor for isobutane dehydrogenation:Experimental results and theoretical modeling.Chemical Engineering Science,1999,54(13-14):2807-2815.
    [20]Tanaka K,Yoshikawa R,Ying C,et al.Application of zeolite membranes to esterification reactions.Catalysis Today,2001,67(1-3):121-125.
    [21]Ismail A F,David L I B.A review on the latest development of carbon membranes for gas separation.J.Membr.Sci.,2001,193(1):1-18.
    [22]Sedigh M G,Onstot W J,Xu L,et al.Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes.J.Phys Chem.A,1998,102(44):8580-8589.
    [23]Saufi S M,Ismail A F.Fabrication of carbon membranes for gas separation -a review.Carbon,2004,42(2):241-259.
    [24]Steel K M,Koros W J.Investigation of porosity of carbon materials and related effects on gas separation properties.Carbon,2003,41(2):253-266.
    [25]宋成文,王同华,邱介山等.炭膜制备技术的研究进展.化工进展,2003,22:961-964.
    [26]Ash R,Baker R W,Barrer R W.Sorptionand surface flow in graphitized carbon membranes Ⅰ.The steady state.Proc.Roy.Soc.,1967,299:434-454.
    [27]Ash R,Baker R W,Barter R W.Sorption and surface flow in graphitized carbon membranes Ⅱ.Time-lag and blind pore character.Proc.Roy.Soc.,1968,304:407-425.
    [28]Koresh J E,Soffer A.The carbon molecular sieve membranes.General properties and the permeability of CH_4/H_2 mixture.Sep.Sci.& Tech.,1987,22(2-3):973-982.
    [29]Hatori H,Yamada Y,Shiraishi M,et al.Carbon molecular sieve films from polyimide.Carbon,1992,30(4):719-720.
    [30]Tanihara N,Shimazaki H,Hirayama Y,et al.Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber.J.Membr.Sci.,1999,160(2):179-186.
    [31]Ogawa M,Nakano Y.Gas permeation through carbonized hollow fiber membranes prepared by gel modification of polyamic acid.J.Membr.Sci.,1999,162(1-2):189-198.
    [32]Petersen J,Matsuda M,Haraya K.Capillary carbon molecular sieve membranes derived from Kaptom for high temperature gas separation.J.Membr.Sci.,1997,131(1-2):85-94.
    [33]Haraya K,Suda H,Yanagishita H,et al.Asymmetric capillary membrane of a carbon molecular sieve.J.Chem.Soc.Chem.Commun.,1995,17(2):1781-1782.
    [34]Fuertes A B,NevokaiD M,Centeno T A.Carbon composite membranes from Matrimid and Kapton polyimides for gas separation.Micro.Mesopor.Mater.,1999,33(1-3):115-125.
    [35]王同华,刘淑琴,尤隆渤.煤基管状炭膜支撑体的研究(Ⅰ)原料性质对支撑体孔结构性能的影响.煤炭转化,1998,21:73-76.
    [36]魏微,胡浩权,尤隆渤.酚醛树脂基气体分离炭膜制备.大连理工大学学报,2000,40:692-695.
    [37]Shifleet M B,Pedrick J F,Mclean S R.Characterization of supported nanoporous carbon membranes.Advanced materials,2002,12:21-25.
    [38]Chen Y D,Yang R T.Preparation of carbon molecular sieve membrane and diffusion of binary mixtures in the membrane.Ind.Eng.Chem.Res.,1994,33:3146-3153.
    [39]Fuertes A B,Menendez I.Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes.Separation and Purification Technology,2002,28:29-41.
    [40] Kools W F C. Membrane formation by phase inversion in multicomponent polymer systems. Mechanisms and morphologies: [Doctoral dissertation]. University of Twente, USA, 1998.
    [41] Hayashi J, Yamamoto M, Kusakabe K, et al. Simultaneous improvement of permeance and permselectivity of 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride-4, 4'-oxydianiline polyimide membrane by carbonization. Ind. Eng. Chem. Res., 1995, 34 (12) :4364-4370.
    [42] Acharya M, Raich B A, Foley H C, et al. Metal-supported carbogenic molecular sieve membranes: synthesis and applications. Ind. Eng. Chem. Res., 1997, 36 (8) :2924-2930.
    [43] Acharya M. Engineering design and theoretical analysis of nanoporous carbon membranes for gas separation, University of Delaware, PhD thesis, 1999.
    [44] Acharya M, Foley H C. Spray-coating of nanoporous carbon membranes for air separation. J. Membr. Sci., 1999, 161 (1): 1 - 5.
    [45] Hayashi J, Mizuta H, Yamamoto M, et al. Pore size control of carbonized BPDA-pp' ODA polyimide membrane by chemical vapor deposition of carbon. J. Membr. Sci., 1997, 124 (1):243-251.
    [46] Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes. J. Membr. Sci., 2000, 179 (1-2) :275 - 82.
    [47] Shiflett M B, Foley H C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes. Science, 1999, 285:1902-1905.
    [48] Wang H, Zhang L, Gavalas G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J. Membr. Sci., 2000, 177 (1—2) :25—31.
    [49] Rao M B, Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separation. J. Membr. Sci., 1996, 110 (0:109-118.
    [50] Baker R W. Membrane Technology. Kirk Othmer Encyclopedia of Chemical Technology. Singapore: John Wiley & Sons, Vol. 16, 1995, pl78.
    
    [51] 王金渠. 无机分离膜,化工进展,1993, (3): 4-10.
    
    [52] Fuertes A B. Adsorption-selective carbon membrane for gas separation. J. Membr. Sci., 2000, 177 (1-2) :9 - 16.
    [53] Rao M B, Sircar S, Golden T C. Gas separation by adsorbent membranes. US Patent 5,104, 425, 14 April 1992.
    [54] Furukawa S -i, Nitta T. Non-equilibrium molecular dynamics simulation studies on gas permeation across carbon membranes with different pore shape composed of micro-graphite crystallites. J. Membr. Sci., 2000, 178(1-2):107 - 119.
    [55] 赵根祥,炭膜. 新型炭材料, 2003, 18(3):237-238.
    [56] Hatori H, Yamada Y, Shraishi M. Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon, 1992, 30 (2): 303-304.
    [57]Hatori H,Yamada Y,Shraishi M.Preparation of macroporous carbons from phase-inversion membranes.J.Appl.Polym.Sci.,1995,57(7):871-876.
    [58]Burge A,Fitzer E,Heym M,et al.Polyimides as precursors for artificial carbon.Carbon,1975,13(3):149-157.
    [59]Bird A J,Trimm D L.Carbon molecular sieves used in gas separation membranes,Carbon,1983,21(3):177-180.
    [60]Strano M S,Foley H C.Synthesis and characterization of catalytic nanoporous carbon membranes.AIChE J 2001;47(1):66-78.
    [61]Song C W,Wang T H,Pan Y Q,et al.Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment.Sep.Purif.Technol.2006,51(1):80-84.
    [62]Fitzer E,Schaefer W,Yamada S.Formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin.Carbon,1969,7(6):643-648.
    [63]Fitzer E,Schafer W.The effect of crosslinking on the formation of glasslike carbons from thermosetting resins.Carbon,1970,8(3):353-364.
    [64]Centeno T A,Vilas J L,Fuertes A B.Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation.J.Membr.Sci.,2004,228(1):45-54.
    [65]Gupta A,Harrison I R.Small-angle X-ray scattering(SAXS)in carbonized phenolic resins.Carbon,1994,32(5):953-960.
    [66]Ko T H,Iuo W S,Chang Y H.Raman Study of the microstructure changes of phenolic resin during pyrolysis.Polym.Compos.2000,21(5):745-750.
    [67]王树森,曾美云,王志忠。气体分离用炭膜—膜孔径对膜分离特性的影响,北京工业大学学报,1994,20,(2):15-19.
    [68]王树森,曾美云,王志忠,分子筛炭膜的孔径分布和气体的临界尺寸,北京工业大学学报,1995,21,(4):56-62.
    [69]王树森,曾美云,王志忠,分子筛炭膜的形态结构研究,北京工业大学学报,1995,21,(4):90-96.
    [70]梁长海,气体分离用炭膜的研究,(硕士学位论文),大连:大连理工大学,1997.
    [71]魏微,酚醛树脂基微滤炭膜及分子筛炭膜的制备,(博士学位论文),大连:大连理工大学,2000.
    [72]Wang S,Zeng M,Wang Z.Asymmetric molecular sieve carbon membranes.J.Membr.Sci.,1996,109(2):267-270.
    [73]Kita H,Maeda H,Tanaka K,et al.Carbon molecular sieve membrane prepared from phenolic resin.Chem.Lett.,1997,(2):178-180.
    [74]Hamamoto Y,Alam K C A,Saha B B,et al.Study on adsorption refrigeration cycle utilizing activated carbon fibers.Part 1.Adsorption characteristics.International Journal of Refrigeration,2006,29(2):305-314.
    [75]Yoneyama H,Nishihara Y.Porous hollow carbon fiber film and method of manufacturing the same.EP patent 0394449,1990.
    [76]Linkov V M,Sanderson R D,Jacobs E P.Carbon membranes from precursors containing low-carbon residual polymers.Polym.Inter.,1994,35(3):239-245.
    [77]Geiszler V C.Polyimide precursors for carbon membranes.University of Texas,PhD thesis,1997.
    [78]Smith S P J,Linkov V M,Sanderson R D et al.Preparation of hollow-fiber composite carbon-zeolite membranes.Micro.Mat.,1995,4(5):385-391.
    [79]Linkov V M,Sanderson R D,Rychkov B A.Composite carbon -polyimide membranes.Mater.Lett.,1994,20(1-2):43-48.
    [80]David L I B,Ismail A F.Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O_2/N_2 separation,J.Membr.Sci.,2003,213(1-2):285-291.
    [81]邱英华,王同华,宋成文.聚丙烯腈炭-炭气体分离复合炭膜的制备.膜科学与技术,2006,26(3):12-16.
    [82]Tanaka K,Kita H,Okano M,et al.Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides.Polymer,1992,33(3):585-592.
    [83]Suda H,Haraya K.Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide.J.Phys.Chem.B,1997,101(20):3988-3994.
    [84]Geiszler V C,Koros W J.Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties.Ind.Eng.Chem.Res.,1996,35(9),2999-3003.
    [85]Hatori H,Yamada Y,Shiraishi M.Preparation of macroporous carbon films polyimide by phase inversion method.Carbon,1992,30:303-306.
    [86]Park H B,Kim Y K,Lee J M,Lee S Y,Lee Y M.Relationship between chemical structure of aromatic polyimides and permeation properties of their carbon molecular sieve membranes.J.Membr.Sci.,2004,229(1):117-127.
    [87]Xiao Y,Chung T S,Chng M L,et al.Structure and properties relationships for aromatic polyimides and their derived carbon membranes:experimental and simulation approaches.J.Phys.Chem.B.,2005,109(40):18741-18748.
    [88]Tin P S,Chung T.S,Hill A J.Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers.Ind.Eng.Chem.Res.,2004,43:6476-6483.
    [89]Rao M B,Sircar S.Performance and pore characterization of nanoporous carbon membranes for gas separation.J.Membr.Sci.,1996,110(1):109-118.
    [90]Centeno T A,Fuertes A B.Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride).Carbon,2000,38(7):1067-1073.
    [91] Kita H, Nanbu K, Hamano T, et al. Carbon molecular sieving membranes derived from Lignin-based materials. J. Polym. Environ., 2002, 10(3):69-75.
    [92] Liang C, Sha G, Guo S. Carbon membrane for gas separation derived from coal tar pitch. Carbon, 1999, 37(9): 1391-1397.
    [93] Kita H, Yoshino M, Tanaka K, et al. Gas permselectivity of carbonized polypyrrolone membrane. Chem. Comm., 1997, (11), 1051-1052.
    [94] Yoshimune M, Fujiwara I, Suda H, et al. Novel carbon molecular sieve membranes derived from poly(phenylene oxide) and its derivatives for gas separation. J. Chem. Lett.. 2005, 34(7):958-959.
    [95] Li Y-Y, Nomura T, Sakoda A, et al. Fabrication of carbon coated ceramic membranes by pyrolysis of methane using a modified chemical vapor deposition apparatus. J. Membr. Sci. 2002, 197(1-2) :23 - 35.
    [96] Lee L-L, Tsai D-S. Synthesis and permeation properties of silicon-carbon-based inorganic membrane for gas separation. Ind. Eng. Chem. Res. 2001, 40(2): 612-616.
    [97] Strano M S. Foley H C. Synthesis and characterization of heteropolyacid nanoporous carbon membranes. Catalysis Letters, 2001, 74(3 - 4):177-184.
    
    [98] Kim Y K, Park H B, Lee Y M. Carbon molecular sieve membranes derived from metal- substituted sulfonated polyimide and their gas separation properties. J. Membr. Sci., 2003, 226(1-2):145-158.
    
    [99] Kim Y K, Lee J M, Park H B, et al. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. J. Membr. Sci., 2004, 235 (1-2): 139-146.
    
    [100] Park H B, Jung C H, Kim Y K, et al. Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases. J. Membr. Sci., 2004, 235(1-2) :87 -98.
    
    [101] Singh-Ghosal A, Koros W J. Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J. Membr. Sci., 2000, 174(2):177-188.
    
    [102] Jones C W, Koros W J. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 1994, 32 (8): 1419-1425.
    
    [103] Islam M N, Zhou W, Honda T, et al. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides. J. Membr. Sci., 2005, 261(1-2): 17 - 26.
    
    [104] Islam M N, Tanaka K, Kita H, et al. Preparation and gas permeation properties of composite carbon molecular sieve membranes derived from polyimides with thermally decomposable sulfonic acid salt and or hexafluoroisopropylidene group. J. Chem. Eng. Jpn., 2006, 39(2): 131-136.
    [105]Zhou W,Yoshino M,Kita H,et al.Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group.Ind.Eng.Chem.Res.,2001,40(22):4801-4807.
    [106]Zhou W,Yoshino M,Kita H,et al.Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin.J.Membr.Sci.,2003,217(1-2):55-67.
    [107]Tin P S,Xiao Y C,Chung T S.Polyimide-carbonized membranes for gas separation:Structural,composition,and morphological control of precursors.Separation &Purification Reviews,2007,35:285-318.
    [108]Bos A.,Punt I G M,Wessling M,et al.Suppression of CO2-plasticization by semiinterpenetrating polymer network formation.J.Polym.Sci.B Polym.Phys.,1998,36(9):1547-1556.
    [109]Barsema J N,Klijnstra S D,Balster J H,et al.Intermediate polymer to carbon gas separation membranes based on Matrimid PI.J.Mambr.Sci.,2004,238(1-2):93-102.
    [110]Shao L,Chung T S,Pramoda K P.The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes;from polymer,intermediate to carbon.Micro.Mesopor.Mater.,2005,84(1-3):59-68.
    [111]Fuertes A B.Preparation and characterization of adsorption-selective carbon membranes for gas separation.Adsorption,2001,7(2):117-129.
    [112]Tin P S,Chung T-S.Novel approach to fabricate carbon molecular-sieve membranes based on consideration of interpenetrating networks.Macromol.Rapid Commun.,2004,25(13):1247-1250.
    [113]Kusuki Y,Shimazaki H,Tanihara N,et al.Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane.J.Membr.Sci.,1997,134(2):245-253.
    [114]Centeno T A,Fuertes A B.Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes.Sep.Pur.Tech.2001,25(1-3):379-384.
    [115]Choe C R,Lee H K.Effect of processing parameters on the mechanical properties of carbonized phenolic resin.Carbon,1992,30:247-249.
    [116]李德伏,郭树才.炭化条件对多孔炭膜性能的影响.煤炭转化,1998,21:82-84.
    [117]Kusakabe K,Li Z Y,Maeda H.Preparation of supported composite membrane by pyrolysis of polycarbosilane for gas separation at high temperature.J.Membr.Sci.,1995,103:175-180.
    [118]Tin P S,Chung T S,Kawi S,et al.Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides.Micro.Mesopor.Mater.,2004,73(3):151-160.
    [119] Soffer A, Gilron J, Saguee S et al. Process for the production of hollow carbon fiber membranes. European patent 0671202, 1995.
    [120] Fuertes A B. Effect of air oxidation on gas separation properties of adsorption - selective carbon membranes. Carbon, 2001, 39(5):697 - 706.
    
    [121] Hayashi J, Yamamoto M, Kusakabe K, et al. Effect of oxidation on gas permeation of carbon molecular sieving membranes based on BPDA-pp' ODA Polyimide. Ind. Eng. Chem. Res., 1997, 36(6):2134-2140.
    [122] Kusakabe K, Yamamoto M, Morooka S. Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J. Membr. Sci., 1998, 149(1): 59-67.
    [123] Asaeda M, Yamasaki S, Separation of inorganic/organic gas mixtures by porous silica membranes, Separation and purification Technology, 2001, 25, (1-3): 151-159.
    [124] Ozaki J, Endo N, Ohizumi W et al., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 1997, 35 (7): 1031-1033.
    [125] Takashi K, Control of pore structure in carbon, Carbon, 2000, 38, (2) : 269-286.
    [126] Kim Y K, Park H B, Lee Y M, Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties, Journal of Membrane Science, 2004, 243, (1-2): 9-17.
    [127] Kim Y K, Park H B, Lee Y M, Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone, Journal of Membrane Science, 2005, 251 (1-2): 159-167.
    [128] Hatori H, Kobayashi T, Hanzawa Y et al., Mesoporous carbon membranes from polyimide blended with poly (ethylene glycol), Journal of Applied Polymer Science, 2001, 79, (5): 836-841.
    
    [129] Patel N P, Miller A C, Spontak R J, Highly CO_2-permeable and -selective membranes derived from crosslinked poly(ethylene glycol) and its nanocomposites, Advanced Functional Materials, 2004, 14, (7): 699-707.
    [130] Hacarlioglu P, Toppare L, Yilmaz L, Polycarbonate - polypyrrole mixed matrix gas separation membranes, Journal of Membrane Science, 2003, 225, (1-2): 51-62.
    [131] Park H B, Lee Y M. Pyrolytic carbon - silica membrane: a promising membrane material for improved gas separation. J. Membr. Sci., 2003, 213(1-2):263 -272
    [132] Park H B, Lee Y M. Fabrication and characterization of nanoporous carbon/silica membranes. Adv. Mater., 2005, 17(4):477-483.
    [133] Barsema J N, Balster J, Jordan V, et al. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters. J. Membr. Sci., 2003, 219 (1—2):47 - 57.
    [134] Barsema J N, Nico F A, Koops G H, et al. Ag - functionalized carbon molecular-sieve membranes based on polyelectrolyte/polyimide blend precursors. Adv. Funct. Mater., 2005,15 (1):69-75.
    [135]Lie J A,Hagg M-B.Carbon membranes from cellulose and metal loaded cellulose.Carbon,2005,43(12):2600-2607.
    [136]Yoda S,Hasegawa A,Suda H,et al.Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation.Chem.Mater.,2004,16(12):2363-2368.
    [137]Liu Q,Wang T,Qiu J,et al.A novel carbon/ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation.Chem.Commun.,2006,11:1230-1232.
    [138]Liu Q,Wang T,Qiu J,et al.Zeolite married to carbon:a new family of membrane materials with excellent gas separation performance.Chem.Mater.,2006,18:6283-6288.
    [139]Tin P S,Chung T S,Jiang L,et al.Carbon-zeolite composite membranes for gas separation.Carbon,2005,43(9):2013-2032.
    [140]Zhang X Y,Hu H Q,Zhu Y D,et al.Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes.Separation and Purification Technology,2006,52:261-265.
    [141]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    [142]夏笃伟.高聚物结构分析.北京:化学工业出版社,1990.
    [143]韩冬冰.高分子材料概论.北京:中石化出版社,2003.
    [144]陶铸,煤化学.北京:冶金工业出版社,1984.
    [145]大谷杉朗,真田雄三,中科院沈阳金属所和兰州炭素厂研究所合译.炭化工学基础.1985.
    [146]许并社.纳米材料及应用技术.北京:化学工业出版社,2004.
    [147]Short M A,Walker P L J.Measurement of interlayer spacings and crystal sizes in turbostratic carbons.Carbon,1963,I(1):3-9.
    [148]Edwards I A S.Structure in carbons and carbon forms.In Introduction to Carbon Science.London:Editor Marsh H.Butterworths,1989,1-32.
    [149]Wang S B,Lu G Q.Effects of acidic treatments on the pore and surface properties of Ni-catalyst supported on activated carbon.Carbon,1998,36(3):283-292.
    [150]Wang S,Lu G Q.Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon.Carbon,1998,36(3):283-292.
    [151]Stetnescu R,Jipa S,Setnescu T,et al.IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile.Carbon,1999,37(1):1-6.
    [152]Gurudatt K,Tripathi V S.Studies on changes in morphology during carbonization and activation of pretreated viscose rayon fabrics.Carbon,1998,36(9):1371-1377.
    [153]Braun A,Bartsh M,Schnyder B,et al.X-ray scattering and adsorption studies of thermally oxidized glassy carbon.J.Non-Crystalline Solids,1999,260(1-2):1-4.
    [154]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl.Chem.,1985,57(4):603-619.
    [155]Dubinin M M.Adsorption properties and microporous structures of carbonaceous adsorbents.Carbon,1987,25(5):593-598.
    [156]Gregg S J,Sing K S W.Adsorption,Suface Area and Porosity,2nd.London:Academic Press,1982.
    [157]Sing K S W.Surface Area Determination(Everett DH,Ottewill RH Edited),London:Butterworths,1970.
    [158]Carrott P J,Roberts R A,Sing K S W.Standard nitrogen adsorption data for nonporous carbons.Carbon,1987,25(6):769-770.
    [159]Horvath G,Kawazoe K.Method for the calculation of effective pore size distribution in molecular sieve carbon.J.Chem.Eng.Japan,1983,16(5):470-475.
    [160]Seaton N A,Walton J P R,Quirke N.A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements.Carbon,1989,27(6):853-861.
    [161]董炎明.高分子分析手册.北京:中国石化出版社,2004.
    [162]D布里格斯著,曹立礼,邓宗武译.聚合物表面分析—X射线光电子谱(XPS)和静态次级离子质谱(SSIMS).北京:化学工业出版社,2001.
    [163]Gomez-Serrano V,Piriz-Atmeida F,Puran-valle C J.Formation of oxygen structures by air activation.A study by FT-IR spectroscopy.Carbon,1999,37(10):1517-1528
    [164]Tonlinson J B,Freeman J J,Theocharis C R.The preparation and adsorptive properties of ammonia-activated viscose rayon chars.Carbon,1993,31(1):13-20.
    [165]Rao M B,Sircar S,Nanaporous carbon membranes for separation of gas mixtures by selective surface flow,J.Membr.Sci,1993,85:253-264
    [166]Suda H,Haraya K.Alkene/alkane permselectivities of a carbon molecular sieve membrane.Chem.Commun.,1997,1:93-94.
    [167]Hayashi J,Mizuta H,Yamamoto M,et al.Separation of ethane/ethylene and propane /propylene systems with a carbonized BPDA-pp' ODA polyimide membrane.Ind.Eng.Chem.Res.,1996,35(11):4176-4181.
    [168]Fuertes A B,Centeno T A.Carbon molecular sieve membranes from polyetherimide.Microporous Mesoporous Mater.,1998,26(1-3):23-26.
    [169]Itoh N,Haray K.A carbon membrane reactor.Catalysis Today,2000,56:103-111.
    [170]Jian X G,Dai Y et al.Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation.J.App.Polym.Sci,1999,Vol.71,2385-2330.
    [171] Pye D G, Hoehn H H, Panar M. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. J. Appl. Polym. Sci. 1976, 20(7):1921-1931.
    
    [172] O' Brien K C, Koros W J, Barbari T A, et al. A new technique for the measurement of multicomponent gas transport through polymeric films. J. Membr. Sci. 1986, 29 (3):229-238.
    [173] Bop M I, Youde M D. Differential Thermal Analysis. Beijing: Beijing Normal University Press, 1982: 138-140.
    [174] D. W. Wallace, J. Williams, C. S-Bickel, W. J. Koros, Characterization of crosslinked hollow fiber membranes, Polymer 47(2006) 1207-1216.
    [175] Warren B E. X-ray diffraction in random layer lattices. Phys. Rev., 1941, 59 (9-1) : 693-698.
    
    [176] Xie Y, Sherwood P M A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. Part 10. Valence-band studies interpreted by X-. alpha. calculations and the differences between PAN- and pitch-based fibers. Chem. Mater., 1989, 1(4):427-432.
    [177] Drbohlav J, Stevenson W T K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, Part II: The carbonization process. Carbon, 1995, 33(5):713-731.
    
    [178] B. Zhang, T. Wang, S. Zhang, J. Qiu, X. Jian. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 2006,44(13): 2764-2769.
    
    [179] B. Zhang, T. Wang, S. Liu, S. Zhang, J. Qiu. Structure and morphology of microporous carbon materials derived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Material, 2006, 96(1-3):79-83.
    
    [180] Kim Y K, Park H B, Lee Y M. Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties. J. Membr. Sci., 2005, 255:265-273.
    [181] Shsrma A, Kyotani T, Tomita A. Comparision of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon, 2000, 38:1977-1984.
    
    [182] Manocha L M, Bhatt H, Manocha S M. Development of carbon/carbon composites by co-carbonization of phenolic resin and oxidised PAN fibers. Carbon, 1996, 34(7): 841-849.
    
    [183] Ci L, Zhu H, Wei B, Xu C, Liang J, Wu D. Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Materials Letters, 2000, 43(5-6): 291-294.
    [184] Huang Z-H, Rang F, Huang W L et al. Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. J. Colloid and Interface Science, 2002, 249(2): 453-457.
    [185]Endo M,Furuta T,Minoura F,Kim C.Visualized observation of pores in activated carbon fibers by HRTEM and combined image processor.Supramolecular science,1998,5(3-4):261-266.
    [186]Sharma A,Kyotani T,Tomita A.Comparison of structural parameters of PF carbon from XRD and HRTEM techniques.Carbon,2000,38(14):1977-1984.
    [187]Kusuki Y,Shimazaki H,et al.Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane.J.Membr.Sci.,1997,134(2):245-253.
    [188]Okamoto K,Kawamura S,Yoshino M et al.Olefin/paraffin separation through carbonized membranes derived from anasymmetric polyimide hollow fiber membrane.Ind.Eng.Chem.Res.,1999,38(11):4424-4432.
    [189]Yeom C K,Lee S H,Lee J M,Study of transport of pure and mixed CO_2/N_2 gases through polymeric membranes,Journal of Applied Polymer Science,2000,78,(1):179-189.
    [190]Ghosal A S,Koros W J.Air separation properties of flat homogeneous pyrolytic carbon membranes,Journal of Membrane Science,2000,174:177-188.
    [191]Robeson L M.Correlation of ideal separation factorversus permeability for polymeric membranes.J.Membr.Sci.,1991,62(2):165-185.
    [192]Zimmerman C M,Singh A,Koros W J.Mixed matrix composite membranes for gas separations.J.Membr.Sci,1997,137:145-154.
    [193]Suer M G,Bac N,Yilmaz L.Gas permeation characteristics of polymer-zeolite mixed matrix membranes.J.Membr.Sci,1994,91:77-86.
    [194]Tavolaro A,Drioli E.Zeolite membranes.Adv.Mater.,1999,1102):975-996.
    [195]周志辉,邵国林,杨建华等.Beta/碳纳米复合分子筛膜的制备.过程工程学报,2007,7(2):404-408.
    [196]Parag K,Rangaramanuiam K K.Improvement in ductility of chitosan through blending and copolymerization with PEG:FTIR investigation of molecular interactions.Biomacromolecules,2003,4(1):173-180.
    [197]王同华.宋成文.一种煤基炭膜的制备方法。ZL03134197.7.
    [198]Venkataraman K,Choate W T,Torre E R et al.Characterization studies of ceramic membranes:a novel technique using a coulter porometer.J.Membr.Sci.1988,39:259-265.
    [199]Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl.Chem.,1985,57(4):603-619.
    [200]Kolarz B N,Wojaczynska M,Kaczmarczyk J et al.Influence of heat treatment conditions on the prosity changes of sulfonated styrene/divinylbenzene copolymers.J.Poly.Sci.1994,32:1977-1990.
    [201]Wan M,Wan S,Mohd Z S,Effect of carbonization temperature on the yield and porosity of char produced from palm shell.J.Chem.Tech.Biotech.2001,76:1218-1258.
    [202]赵国玺,朱瑶.表面活性剂作用原理.中国轻工业出版社,2003.
    [203]徐明霞.郭瑞松.高分子型表面活性剂在氧化锆粉末制备过程中的作用(一),无机材料学报,1990,5(1):49-54.
    [204]Liang C H,Sha G Y,Guo S C.Carbon membranes for gas separation derived from coal tar pitch.Carbon,1999,37:1391-1397.
    [205]Wei W,Hu H,You L et al.Preparation of carbon molecular sieve membrane from phenol-formaldehyde novolac resin.Carbon,2002,40(3):465-467.
    [206]Song C W,Wang T H,Wang X Y,Qiu J S,Cao Y M.Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes.Separation and Purification Technology,2007,37:679-684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700