用户名: 密码: 验证码:
地表水源热泵源水侧换热器腐蚀成因分析及控制方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国正处于经济快速发展时期,对能源的需求及消耗更是逐年递增。地表水源热泵作为一种回收和利用低位热能的有效手段之一,可以在夏季制冷冬季制热,具有明显的环保效益、社会效益和经济效益。重庆地区水资源丰富,流经重庆主要河流有长江和嘉陵江。利用江水做水源热泵水源必须解决江水水质会腐蚀、磨损和堵塞热泵机组的换热器,同时降低换热效率的问题。其次江水在换热器内流动换热过程中泥沙会沉淀和附着,形成垢层。铜材因其优异的导电导热性能在换热器中得到广泛应用,通常情况下铜耐蚀性好,但在含氧的水及含有腐蚀性离子的溶液中可形成配位离子,产生较严重的腐蚀。为解决铜的腐蚀问题,采用钝化方式抑制铜及合金的腐蚀是十分经济有效的办法。
     本文在分析地表水源热泵换热器铜管表面垢层成分、水质质量基础上,以换热器铜材(紫铜)为对象,研究了在江水水质环境下,腐蚀性因素对铜材的腐蚀机理。提出了向常规缓蚀剂BTA中加入硫酸铜、硫酸羟铵和离子液体在铜材表面形成钝化膜的钝化方法,并研究了钝化膜防腐蚀的特性。
     本文的主要结论是:
     1.通过近两年的江水水质监测,分析其中pH值、氯离子、硫酸根离子、钙镁离子、氨氮、亚铁离子的含量。发现不同地段、不同月份的江水水质都比较稳定,江水水质年平均pH为7~8,氯离子含量小于20 mg/L,硫酸根离子含量小于100 mg/L,二价铁离子小于0.5 mg/L,氨氮小于3 mg/L,电导率小于0.5μs/cm。除钙镁总硬度有超出允许值200mg/L的情况外,各项指标均能达到水源热泵源水的水质要求。
     2.通过XRD对换热器上垢层物相分析得知,主要成分是硅酸盐、钙盐、镁盐。江水的流动性大,泥沙在取水过程中易进入系统循环沉积,因此实际运行中需注意取水位置及泥沙的去除。
     3.电化学测试表明水质中pH值、腐蚀性离子、水温等对无钝化膜铜材料的腐蚀速率均产生影响。江水中铜电极的在酸性(pH6.5)和高温(40℃)下,自腐蚀电位负移,腐蚀电流密度增大,腐蚀速率增大。各地段水质对电极产生腐蚀作用,但没有明显的区域差异。
     4.电化学方法分析钝化膜的性能, BTA在硫酸铜和硫酸羟铵的协同作用下,能够在铜电极表面形成较完整的钝化膜,使得自腐蚀电位正移,腐蚀电流密度降低,有效地减缓腐蚀速度;而离子液体([Bmim]BF_4)的加入,使得复配物稳定性差,抑制腐蚀的效果不明显。
China is in a period of rapid economic development, energy demand and consumption is increasing year by year. As an effective means of recovery and utilization of low-grade heat energy, surface water source heat pump can provide heating and cooling service for summer and winter. There is a significant environmental, social and economic benefit. Several rivers flows through Chongqing, the main rivers are the Yangtze River and Jialing River. Making use of river water as water source, the corrosion, wear and clogging of the heat exchanger heat pump units which are caused by water quality are needed to be done, because of reducing heat transfer efficiency. Secondly, sediment of water will precipitate and adhere to form a scale layer while flowing. Copper is widely used for its electrical and thermal conductivities in heat exchangers. But it exhibits corrosion by ion coordination in the water with oxygen and corrosive ions. Thus, passivation action was used to inhibit corrosion of copper is a very cost-effective approach.
     Based on the analysis of composition of fouling layer in heat exchanger and water quality, corrosive factors was studied using red copper for the object in the condition of water quality. Added copper sulfate, hydroxyl ammonium sulfate and ionic liquids to the conventional corrosion inhibitor of BTA,to form the passive film on the surface of copper. Then the characteristics of the layer were studied.
     Solutions presented in this thesis can be summarized as follows:
     1. After monitored and analyzed pH, chloride, sulfate, calcium and magnesium ions, ammonia, and ferrous iron content the river water quality about two years. The river water quality was found that, the average content of pH 7~8,chloride ion is less than20 mg/L,sulfate ion is less than 100 mg/L,ferrous ion is less than 0.5 mg/L,ammonia-N is less than 3 mg/L,electrical conductivity is less than 0.5μs/cm. In addition to calcium and magnesium hardness had exceeded the total allowable value sometimes; the other indexes could reach the quality requirements of water source heat pump in each section and every month relative stably.
     2. Analyzed phase of fouling layer on the heat exchanger by XRD showed that the main ingredient was silicate, calcium, and magnesium. The sediment is easily deposited on the copper while water circulated in exchanger. To avoid this, it should be pay attention to location of fetching water and sediment removal in the operation.
     3. Electrochemical tests showed that the pH value in water, corrosive ions, water temperature had an impact on the corrosion rate of copper without passive film. The corrosion potential of copper electrode shifted negatively and corrosion current density increased in acidic (pH6.5) and high temperature (40℃). Water quality of each section did not differ significantly throughout the corrosion of the electrodes.
     4. Electrochemical analysis of the performance of passive film investigated, BTA in the synergistic effect of copper sulfate and hydroxyl ammonium sulfate could form a passive film completely on the surface of copper electrode. The corrosion potential shifted more positive and corrosion current density reduced, it effectively slowed down the corrosion rate. Adding ionic liquids ([Bmim] BF_4) made the stability of mixture poorly and reflected on inhibition not obvious effective.
引文
[1]王子云,付祥钊,仝庆贵.长江水源热泵换热器传热流动特性研究[J].煤气与热力,2008,28(2):7-10.
    [2]薛玉伟,李新国,赵军.地下水水源热泵的水源问题研究[J].能源工程,2003,2:10-13.
    [3]郑萍,康侍民.关于水源热泵技术的应用探讨[J].制冷与空调,2006,3:90-92 .
    [4]吴浩,王勇,李文.地表水源热泵以长江水作为低位冷热源的可行性分析[J].制冷与空调,2009,23(1):12-15.
    [5]张军.地表水源热泵的发展现状以及面临问题[J].制冷空调与电力机械,2007,118(28):73-77.
    [6]狄彦强,王清勤,袁东立.水源热泵的应用与发展[J].制冷与空调,2006,6(5):1-4 .
    [7] JARN Ltd. A new river water source heat pump project [M]. Japan Air-Conditioning, Heating& Refrigeration News, 1996, 08, 25.
    [8]潘登.地表水源热泵技术在重庆的应用研究[D].重庆:重庆大学,2008:1-10.
    [9]孙亚罡.松花江水源热泵系统在吉林市应用的可行性分析[D].哈尔滨:哈尔滨工业大学, 2006:4-9.
    [10]赵峰,邵林广,文远高.水源热泵空调系统的水质处理技术[J].工业安全与环保,2005,31(12):15-17.
    [11]朱金鸣,项中.江水源热泵在上海十六铺工程中的应用[J].暖通空调,2007,37(2):88293.
    [12]陈晓.地表水源热泵系统的运行特性与运行优化研究[D].湖南:湖南大学,2006:17-31.
    [13]王子云,付祥钊,王勇等.重庆市发展长江水源热泵的水源概况分析[J].重庆建筑大学学报,2008, 3(11):92-94,104.
    [14]王子云.长江水源热泵换热器研究[D].重庆:重庆大学大学,2006:13 - 39.
    [15]余世杰.耐腐蚀材料数据库选材评价系统的研究[D].兰州:兰州理工大学, 2007:3-5.
    [16]曾初升.316L不锈钢腐蚀性能电化学研究[D].昆明:昆明理工大学,2005:2-47.
    [17]李淑英,陈玮.碳钢/紫铜在NaCl介质中的电偶行为[J].忽视科学与防护技术,2000,12(5):300-302.
    [18]钱聪.纳米晶铜块体材料的腐蚀性能[D].浙江:浙江大学,2004:30-110.
    [19]吕怡兵,宫正宇,连军.长江三峡库区蓄水后水质状况分析[J].环境科学研究,2007,20(1):1-6.
    [20]杨正武,闵晓丹,高庆龙.长江上游地区江水源热泵系统节能量对比分析[J].制冷与空调, 2010, 24(2):91-94.
    [21]曹楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社,2005,69.
    [22]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988.
    [23]中国腐蚀与防护学.腐蚀与防护全书,自然环境的腐蚀防护——大气·海水·土壤[M].北京:化学工业出版社,1997.
    [24]吴荫顺,曹备.阴极保护和阳极保护-原理、技术及工程应用[M].北京:中国石化出版社,2007.
    [25]赵峰.地下水源热泵的水源水问题研究及能耗模拟[D].武汉:武汉科技大学,2005:8-17.
    [26]谢学军,吕珂,晏敏等.铜水体系电位- pH图与发电机内冷水pH调节防腐[J].腐蚀科学与防护技术,2007,19(3):162-163.
    [27]罗伟.纳米晶铜块体材料的制备和腐蚀行为研究[D].浙江:浙江大学,2006:5-6.
    [28] Khalied Z. AL-Subaie,T. Hodgkiess. Corrosion of copper-nickel alloys in simulated vapourside environments[J]. Desalination, 2003, 158:43-50.
    [29]徐海波,付洪田.铜阳极活性区溶解机制的电化学研究[J].金属表面处理,1999,19(1):27-32.
    [30]李凌杰,于生海,雷惊雷等.AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为[J].电化学,2008,14(1):95-98.
    [31]周俊波,王奎升,宋在卿.腐蚀科学与防腐技术[J].不锈钢换热器失效分析,2003,15 (2) :51.
    [32]詹柏林,朱有兰,陈颖等.金属换热器防腐技术研究进展[J].材料导报,2006,20(12):79-82.
    [33]陆原.碳钢在二氧化碳溶液中的腐蚀规律及防护措施研究[D].北京:北京化工大学,2007:5-14.
    [34]赵楠,罗兵辉.铜合金在海水中的腐蚀行为研究[J].材料保护,2003,36(3):21-23.
    [35]周志辉.纯水中铜的腐蚀规律及其缓蚀剂的应用[J].华北电力技术,2004,4:22-25.
    [36]张学元,安百刚,韩恩厚.铜在雨水中的腐蚀行为电化学研究[J].腐蚀科学与防护技术,2002,14(5):257-259.
    [37]卢燕平.金属表面防蚀处[M].北京:冶金工业出版社,1995:176-18.
    [38]刘永辉.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [39]李异.金属表面转化膜技术[M].北京:化学工业,2009.
    [40]张大全,高立新.苯并三氮唑和8-羟基喹啉对铜缓蚀作用的研究[J].材料保护,2002,35 (4):10-11.
    [41]祝鸿范.BTA缓蚀剂在文物保护中的应用[J].腐蚀科学与防护技术,1999,11(4):255-256.
    [42]张晓峰,韩雪峰.苯骈三氮唑(BTA)在铜器文物缓蚀剂中的应用[J].北方文物,2001,(2):98-100.
    [43]胡刚,吕国诚,许淳淳等.BTA和钼酸钠对青铜的协同缓蚀作用的研究[J].腐蚀科学与防护技术,2008,1(20):25-28.
    [44]张传飞,旷富贵,徐知三等.Cu电极上咪唑与苯并三唑共吸附的SERS研究[J].光散射学报, 1995, 7(2, 3):212-213.
    [45]杨海燕,郭兴伍,吴国华等.离子液体中电沉积的研究进展[J].材料导报,2009, 23 (3):17-21.
    [46] Wilkes J S,Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. J Chem Soc Chem Commun,1992,13:965-967.
    [47] Hurley F H,Wire T P. The eleetrodeposition of aluminium from nonaqueous solutions at room temperature [J]. Journal of the Electrochemical Society. 1951, 98(2):203-208.
    [48] Robinson J,Osteryoung R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride [J]. JAm Chem SOC, 1979, 101(2):323-327.
    [49] Wilkes J S,Levisky J A,Wilson R A,et al. Althylimidazolium chloroaluminatemelts:a new class of room temperature ionic liquids for electrochemistry spectroscopy and synthesis[J]. Inorg Chem, 1982, 21:1263-1268.
    [50]王风彦,邵光杰.离子液体应用研究进展[J].化学试剂,2009,31(1):25~30.
    [51]陈敏敏,方岩雄,顾浩.离子液体在化学反应中应用[J].精细石油化工进展,2004,5(10):46-50.
    [52]王晓丹,吴文远,涂赣峰等.离子液体中电沉积金属的研究现状[J].材料导报,2008,22 (10):70-75.
    [53]翟秀静,符岩,张跃宏等.ZnCl2/TMAC离子液体中电沉积锌的研究[J].中国有色冶金, 2010, 8(4):65-67.
    [54]徐存英,严磊,刘亚伟等.离子液体存在下铜的电沉积及其表面增强拉曼散射效应研究[J].光谱学与光谱分析,2010, 30(10):2658-2662.
    [55]杨坤,华一新.离子液体电沉积铜及其合金的研究现状[J].冶金丛刊, 2007, 4(170):40-45.
    [54]工业循环冷却水处理设计规范[S].中国:中国工程化建设标准化协会化工分会,2008.
    [55]地源热泵系统工程技术规范[S].中国:中华人民共和国建设部,2006.
    [56]水和废水监测分析方法[M].中国环境科学出版社:2002,第四版.
    [57]刘粤惠. X射线衍射分析原理与应用[M].北京:化学工业出版社:2003.
    [58]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,20- 24;45 - 75;79-82,150– 185.
    [59] Bard A.J.,Faulkner L. R.电化学方法——原理和应用[M].北京:化学工业出版社,2005.3.
    [60]张鉴清.电化学测试技术[M].北京:化学工业出版社,2010.
    [61]李荻.电化学原理[M].北京:北京航空航天大学出版社,2008.
    [62] Helo(?)′sa A. Acciari,Antonio C. Guastaldi,Christopher M.A.Brett.Corrosion of the component phases presents in high copper dental amalgams. Application of electrochemical impedance spectroscopy and electrochemical noise analysis [J]. Corrosion Science, 2005, 47:635–647.
    [63]刘婷婷.冬冷夏热地区应用地表水源热泵系统供暖的优化方法[D].湖南:湖南大学,2005:1-14.
    [64]王勤娜,施宝昌,王浩等.工业循环冷却水缓蚀阻垢剂的发展状况[J].化工进展,2001,5:26-27.
    [65]郭庆云.工业冷却水腐蚀结垢在线监测系统的开发与利用[D].天津:天津大学,2006:3-5.
    [66]蒋皎梅.循环冷却水中碳酸钙结垢介稳区的初步研究[D].南京:南京工业大学,2004:1-7.
    [67]曹晓庆,郑洁,李菊.江水源热泵在上海地区应用的可行性分析[J].制冷与空调,2009,9(1):32-35 .
    [68]曹楚南,腐蚀电化学原理[M].北京:化学工业出版社.2004,第二版.
    [69] El-Sayed M. Sherif·Abdulhakim A. Almajid. Surface protection of copper in aerated 3.5% sodium chloride solutions by 3-amino-5-mercapto-1, 2, 4-triazole as a copper corrosion inhibitor [J], Jounal of Applied Electrochem, 2010, 40:1555–1562.
    [70] M. Metiko(?)-Hukovic′,R. Babic′,I. (?)kugor,etc.Copper–nickel alloys modified with thin surface films:Corrosion behaviour in the presence of chloride ions[J]. Corrosion Science, 2011,53:347–352.
    [71] Ece Altunbas,Ramazan Solmazb,Gülfeza Kardas.Corrosion behaviour of polyrhodanine coated copper electrode in 0.1M H2SO4 solution[J]. Materials Chemistry and Physics, 2010,121:354–358.
    [72]刘永辉.电化学测试技术[M].北京:北京航空学院出版社,1987,28-29.
    [73]查全性.电极过和动力学导论[M].北京:科学出版社:2000,第三版.
    [74]张天胜.缓蚀剂[M].北京:化学工业出版社,2002.
    [75] Y. Feng,W.-K. Teo,K.-S. Siow.The corrosion behaviour of copper in neutral tap water. PartI:Corrosion mechanisms [J]. Corrosion Science,1996,38(3):369-385.
    [76]张世超,石伟玉,白致铭.铜合金无铬钝化的研究[J].腐蚀与防护,2005,26(3):96-99.
    [77] H. Hassairi,L. Bousselmi,S. Khosrof,etc.Characterization of archaeological bronze and evaluation of the benzotriazole efficiency in alkali medium[J]. Materials and Corrosion 2008,59(1):32-40.
    [78] Esta Abelev,David Starosvetsky,Yair Ein-Eli. Potassium sorbate—A new aqueous copper corrosion inhibitor Electrochemical and spectroscopic studies [J]. Electrochimica Acta, 2007, 52:1975–1982.
    [79] K.F. Khaleda. Studies of the corrosion inhibition of copper in sodium chloride solutions usingchemical and electrochemical measurements [J].Materials Chemistry and Physics, 2011,125:427–433.
    [80] Guoding Zhou a,Shengmin Cai b,Liqun Song,etc.A comparative study of the inhibition effects of benzotriazole and 6-aniline-1,3,5-triazine-2,4-dithiol monosodium salt on the corrosion of copper by potentiodynamic polarization,AC impedance and surface-enhanced Raman spectroscopic techniques[J].Applied Surface Science,1991,52:227-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700