用户名: 密码: 验证码:
微循环及心肌细胞显微图像特征参数动态测量技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管系统是维持基本生命活动的动力系统,无论心脏还是血管系统均存在节律性舒缩功能。大量研究还证明,微血管和微淋巴管也普遍存在着自主节律性的收缩/舒张运动(自律运动),这种自律运动是除心脏驱动之外,微循环系统对组织和器官灌注的能量来源之一。有关生命的节律性问题,特别是循环系统的节律性特征正在成为医学相关研究的热点问题。
     心肌细胞是心脏泵血功能的基本收缩单元,因此以离体培养的心肌细胞为模型,对其搏动和收缩特性进行动态分析,有助于研究心肌细胞功能,探索心血管疾病的发病机理。微血管、微淋巴管以及流动于其管腔中的体液所共同组成的微循环系统是循环系统的重要组成部分,是氧、营养物质和信号分子最主要的交换场所。微血管与微淋巴管的自律运动不但具有调节体液流动的作用,而且是“海涛式组织灌注”的重要能量来源之一。
     无论是微血管、微淋巴管还是心肌细胞的节律性运动都是一种具有时相变化的动态过程,目前基于数字图像研究其特征指标,均需要从一系列连续分析图像序列中的前后变化提取其特征参数。因此,快速、准确的自动化特征指标动态测量是研究上述节律性问题的技术基础。由于技术手段的限制,目前在对心肌细胞搏动、微血管和微淋巴管自律运动的研究中,尚缺乏有效的定量特征参数,或缺乏动态自跟踪检测特征参数的技术手段。本研究正是为解决本研究所在心肌细胞搏动和收缩特性以及微血管和微淋巴管自律运动特性研究中所遇到的技术瓶颈问题,通过创新提出显微数字图像处理的解决方案和软件编程,实现了特征参数基于静态图像的自动提取和基于动态视频图像的自跟踪检测,为相关研究提供有力的创新性技术支持。
     本研究从静态图像和动态视频两个方面,分别对微循环图像、心肌细胞搏动视频以及微血管自律运动视频中特征参数的测量方法进行了研究。在以下三个方面取得了一定的技术改进、提升或创新:(1)对部分静态微循环图像网络特征参数借助人机交互手段初步实现了自动化提取、测量以及分析计算。(2)对心肌细胞自主搏动行为,在搏动位移和频率自动检测的基础上,提出描述其收缩特性的新指标,并创新设计了线性动态模板自跟踪检测的解决方案,即“位移模板自跟踪算法”,开发出了多参数同步化动态测量的程序软件。应用最新设计的检测系统,本研究初步分析了不同心脏部位来源的心肌细胞搏动和收缩行为的力学特性参数,如搏动幅度、收缩速度、收缩加速度等,发现了不同部位来源的心肌细胞除以往描述的搏动频率的不同外,其收缩的力学特性也存在较大差异,这些差异与其所在部位的功能特性相关。(3)针对微血管和微淋巴管自律运动视频,创新设计了基于动态模板的解决方案,即“区域特征偏移匹配”图像偏移矫正技术和“边缘特征纹理动态自跟踪”的管径自跟踪监测技术,达到了既保证测量具有较高准确度,又提高了测量效率的目标。
     除上述检测技术外,本研究在数字图像处理的部分关键环节针对微循环图像的特征进行了有效改进。例如,(1)针对微血管与背景灰度特征的差异分析,提出了具有较高对比度的G通道首选方案,用于图像的分割处理。(2)针对单一传统图像分割技术在对背景复杂的肌肉组织来源的微血管图像进行血管提取时,易于连带提取组织背景,造成结果偏大的问题,提出多技术组合联用的"TPSP分割法”。(3)应用"TPSP分割法”,实现了微血管面积密度的自动测量,显著提高了测量效率。(4)基于人机交互方式,实现了微血管迂曲度和面积密度的计算机辅助自动检测,作为半自动化的检测手段,提高了测量速度。
     本研究主要创新点如下:
     1.本研究提出了一种专门针对肌肉组织来源图像的微血管网络进行自动分割的新组合方案—"TPSP分割法”,并在此基础上实现了微血管面积密度的自动化测量,显著提高了测量效率。该解决方案内容包括:以阂值法进行初次分割,以形态学滤波截断背景与微血管间连接区,以种子填充法对微血管区域进行二次识别与分割,再以形态学滤波填充分割区域中的孔洞和缺刻,实现了对肌肉组织来源图像复杂背景下的微血管网络的准确自动分割提取及血管面积密度测量。
     2.实现了部分微血管网络参数的人机交互式半自动检测。内容包括:计算机辅助自动读取标记点,自动长度测量、存储和换算,将原来完全手工测量迂曲度和面积密度的方式实现了半自动化,提高了测量速度。
     3.本研究提出了“位移模板自跟踪算法”,实现了对离体培养心肌细胞自主收缩运动的跟踪测量。能够同步检测心肌细胞的搏动频率、收缩幅度、收缩振幅、收缩速度和加速度多项收缩力度特征相关指标。
     4.建立了离体培养心肌细胞的收缩速度和收缩加速度定量指标,相对于搏动频率和收缩振幅该指标能够更好地表征收缩力学特性,与临床评价心脏收缩功能的方法更加贴近。
     5.应用本研究创建的心肌细胞搏动行为动态监测程序,对新生SD乳鼠心脏的心尖、心室和心房三个部位来源的离体培养心肌细胞的自主搏动进行自动化跟踪测量。结果表明:心尖来源的心肌细胞搏动频率显著高于心室和心房来源的心肌细胞,表现为高频低幅的收缩特性;而心室来源的心肌细胞的收缩振幅、收缩速度和收缩加速度显著高于心尖和心房部位来源的心肌细胞,表现为高幅中频的收缩特征,与其收缩做功的特性相符。这些差异是与心脏不同结构单元在心脏泵血功能的作用相适应的。
     6.本研究提出了一种消除微血管和微淋巴循环视频图像运动偏移的新技术方案—“区域特征偏移匹配”。该方案通过选定背景小区域局部特征模板作为图像偏移运动的跟踪目标,通过卷积相关算法连续动态提取图像序列各帧间的相对偏移矢量,以偏移矢量动态调整线形采样窗的位置,有效实现了对视频图像运动偏移所造成的采样位置偏差的矫正。
     7.本研究提出了微淋巴管、微血管自律运动边缘动态自跟踪及管径变化动态测量的新技术方案—“边缘特征纹理动态自跟踪”。在微循环视频图像运动偏移矫正的基础上,由人工指导确立首帧起始边界点和计算机程序自动生成边界特征模板,随后计算机程序自动进行边界特征相关匹配搜索,动态跟踪微淋巴管(或微血管)管壁边界位置的动态变化,有效克服了边界模糊给边缘识别及自动跟踪带来的困难,很好地实现了微血管和微淋巴管管径的动态自跟踪测量,极大地提高了微循环管径测量效率,为自律运动研究提供了有效的技术手段。
Cardiovascular system is the motor system of maintaining basic vital movement. Autorhythmic systole/diastole changes (Vasomotion) are ubiquitous in the movements of heart, microvasculars and microlymphtics. Vasomotion is the energy source of tissue and organ perfusion. The autorhythm of circulation system is becoming one of the most hot spots of medical research.
     Cardiomyocyte is basic cardiac contractive functional unit on pumping blood. Dynamically analyzing the pulsation property of cultured cardiomyocyte possesses important significance on detecting the rule of autorhythmic movement and probing the pathogenesis of cardiovascular disease. The system of microcirculation which combined from microvasculars, microlymphtics and humour is critical part of circulatory system, and the main place of oxygen, nutrients, signaling molecules exchanging. Vasomotion of microvasculars and microlymphtics can not only adjust humoural stream but also afford energy to wavelike tissue perfusion.
     Vasomotion is a dynamic process versus time changes. A series of image sequence need to be analyzed to extract the characteristic parameters. High-speed, accurate automated dynamic measuring technology of characteristic parameters is the research foundation of biothythm. Because of limitations on the research techniques, some valuable indexes are difficult to extract, even can not be extracted at present. The objective of this research is proposing creative technical supports for autorhythmic activitiy studies.
     This study focused on measuring methods of characteristic parameters of static images and dynamic cardiomyocyte beating videos, autorhythmic microcirculation videos. Automated method was developed for extracting and measuring characteristic parameters of microvasculature. We also developed a dynamic, multi-parameter synchronous measuring method to study cardiomycyte autorhythmic activities in videos. This novel method has been used in the studies of mechanical parameters of cardiomycyte pulsation, and discovered some new phenomenon. In order to study on microcirculation vasomotion videos, we proposed a novel automated method to dynamically tracking and determining microlymphtic and microvascular diameters.
     Measurement of characteristic parameters in static images is the foundation of that in dynamic videos. At first, we analyzed the difference of gray degree between microvasculature and background of each color channel of colorful static microvascular images. The result shows that the channel G possessed the highest contrast, suggesting that channel G is the most adaptive arm for image processing. Single traditional algorithm of image segmentation cannot precisely extract vessel region from muscle tissue images with complex background. The result often bigger than true value, because of much background was misrecognized as vessel. We proposed a novel method called "TPSP segmentation algorithm" to overcome this obstacle. Channel G was choose to as processing arm. After noise filtering and image enhancing, image matrix was firstly segmented by threshold algorithm, morphological filtered to split vessel and remained background. Seed fill algorithm was employed to recognize the arm vessel region. Morphological filtered employed again to fill the lacunas caused by leukocytes and transparent plasma layer. And edges were smoothed by median filter. Finally, we realized the precise vasculature segmentation from muscle tissue images with complex background. Vascular density was calculated based on foregoing segmentation. Further more, we improved the burdensome manual measuring method of tortuosity and vascular density to be semi-automated, which can advance the speed of measurement.
     Autorhythmic cardiomyocytes are basic functional units. Because of the obstacle of lack of appropriate technology, studies of cardiomyocyte pulsatile activity mainly focus on frequency and intracellular electronic signal changes. In this study,"vector template auto-tracking algorithm " was employed to tracking the movement of arm point on cell surface. Not only can dynamically measure the frequency which can be determined by eyes, but also can measure mechanical parameters such as displacement, amplitude, velocity and acceleration which cannot be determined by eyes. Further more, we used this novel method to track the autorhythmic pulsation of48h cultured cardiomyocytes extracted from different part of neonatal SD rats. Result shows that there are significant statistic differences not only in constriction frequency but also in constriction amplitude, velocity and acceleration.
     Dynamic diameter changes of microvascular and microlymphtic is foundation of vasomotion research. Image sequence of microcirculation videos having the properties of image shifting and blur edges. In order to correct the error caused by image shifting, we employed feature tracking algorithm of moving objective to get the shift vector first. And then, adjust the position sample line according to the shift vector. We marked the initial edges and edge templates in the first image frame, and employed automated matching searches of edge features to track edge position changes dynamically. This a series of image processing makes we overcame obstacles in edge recognizing、edge tracking, and implemented the dynamic diameter tracking and measuring of microvasculars and microlymphtics.
     1. A novel image segmentation method-"TPSP segmentation algorithm" was proposed to extract vasculature from images which taken from muscle tissues. Vascular density was calculated based on segmentation. This method can significantly advance the speed of measurement. Image matrix was firstly segmented by threshold algorithm, morphological filtered to split vessel and remained background. Seed fill algorithm was employed to recognized the arm vessel region. Morphological filtered employed again to fill the lacunas caused by leukocytes and transparent plasma layer. And edges were smoothed by median filter. Finally, we realized the precise vasculature segmentation from muscle tissue images with complex background.
     2. We improved the burdensome manual measuring method of tortuosity and vascular density to be semi-automated, which can advance the speed of measurement.
     3."Vector Template Auto-tracking Algorithm" was employed to tracking the movement of arm point on cell surface. This method can measure mechanical parameters such as displacement, amplitude, velocity and acceleration which cannot be determined by eyes.
     4. Constriction velocity and acceleration were proposed as new indexs to evaluate constriction function of cultured cardiomyocytes. These indexs possess more coherence with clinical diagnosis on cardiac constriction function.
     5. We used the novel method to track the autorhythmic pulsation of48h cultured cardiomyocytes extracted from different part of neonatal SD rats. Result shows that there are significant statistic differences not only in constriction frequency but also in constriction amplitude, velocity and acceleration.
     6. In order to correct the error caused by image shifting, we employed feature tracking algorithm of moving objective to get the shift vector first. And then, adjust the position sample line according to the shift vector.
     7. We marked the initial edges and edge templates in the first image frame, and employed automated matching searches of edge features to track edge position changes dynamically. This a series of image processing makes we overcame obstacles in edge recognizing、edge tracking, and implemented the dynamic diameter tracking and measuring of microvasculars and microlymphtics.
引文
[1]Cicco G, Cicco S. The influence of oxygen supply, hemorheology and microcirculation in the heart and vascular systems[J]. Adv Exp Med Biol.2010,662:33-39.
    [2]修瑞娟,徐鸿道.当代中国的微循环研究[M].北京:国际文化出版社,1987:162-163.
    [3]Xiu RJ. Vasomotion:The Diagnostic Use of the Patterns of the Microvascular Activity[J]. J Progress in Applied Microcirculation.1983,3:131-140.
    [4]Xiu RJ, Hammerschmidt DE, Coppe PA, et al. The Chinese Drug, Anisodamine, Inhibits Thromboxane Synthesis, Granulocyte Aggregation and Platelet Aggregation:A Possible Mechanism for its Efficacy in Bacteremic Shoc[J]. Journal of American Medical Association. 1982,247(10):1458-1461.
    [5]Xiu RJ. The Correlation of Microcirculatory Dynamics and Clinical Symptoms of Diseases[J]. Prog Appli Microcirc.1984,6:141-149.
    [6]De BD, Creteur J, Preiser JC, etal. Microvascular blood flow is altered in patients with sepsis[J]. Am J Respir Crit Care Med,2002,166(1):98-104.
    [7]Trzeciak S, Dellinger RP, Parrillo JE, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock:relationship to hemodynamics, oxygen transport and survival[J]. Ann Emerg Med,2007,49(1):88-98.
    [8]De BD, Creteur J, Dubois MJ, et al. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock[J]. Am Heart J,2004,147:91-99.
    [9]Le DM, Legrand M, Payen D, et al. The role of the microcirculation in acute kidney injury[J]. Curr Opin Crit Care,2009;15(6):503-508.
    [10]Wayland H, Johnson PC. Erythrocyte velocity measurement in microvessels by a two-slit photometric method[J]. J Appl Physiol,1967,22:333-337.
    [11]Intaglietta M, Tompkins WR. Microvascular measurements by video image shearing and splitting[J]. Microvasc Res,1973,5(3):309-312.
    [12]Intaglietta M, Silverman NR, Tompkins WR. Capillary flow velocity measurements in vivo and in situ by television methods[J]. Microvasc Res,1975,10(2):165-179.
    [13]Devaney MJ, Rathke JE, Bartel RW, Mcdonald JE, Wiegman DL, Miller FN, Harris PD. Continuous measurement of vascular diameters via television microscopy [J]. ISA Trans, 1976,15(1):73-78.
    [14]Cardinal DC, Higgs GA. A photometric device for measuring blood vessel diameter in the microcirculation[J]. J Pharmacol Methods,1980,4(2):109-114.
    [15]Ying XY, Xiu RJ. A novel electronic method for dynamic measurement of microvascular diameter[J]. Proc. Chinese Academy of Medical Science and PUMC,1986,1:196-202.
    [16]Ying XY, Xiu RJ. Establishment of a new microcirculatory quantitative parameter-microvascular tortuosity [J]. Int. J. Microcirculation:Clin. And Exp.1986,(5):210-214.
    [17]Xiu RJ, Ying XY. A non-invasive synchronous method for measurement of macro- and microcirculatory parameters in clinical research [J]. Proc. of Chinese Academy of Medical Science and PUMC, Vol.2,1987.
    [18]Ying XY, Xiu RJ. Development of a new microcirculatory image processing system using image separation processing mode[J]. Int. J. of Microcirculation:clin, and Exp. Vol,7,1988.
    [19]Ying XY, Xiu RJ. Feature Extraction of Digital Microvessel images for Microvascular Network Analysis. Proc.5th World Congress for Microcirculation U.S.A,1991.
    [20]应晓优,鲍永坚,修瑞娟等.用自适应血管边缘检测方法自动跟踪测量血管自律运动[J].微循环学杂志.1996,6(3):26-29.
    [21]Lee J, Jirapatnakul A, Reeves A P, et al. Vessel Diameter Measurement from Intravital Microscopy[J]. Ann Biomed Eng,2009;37(5):913-926.
    [22]Wang Cheng, Li HW, Xiu RJ,et al. Experimental study on the fountion of cardiomyocyte[J]. Clinical Hemorhreoloy and Microcirculation.2003,29(3-4):369-374.
    [23]Jia SD, Xiu RJ. Study on founction of cardiomyocyte[J]. J Chin Microcirc.2000.4,137-139.
    [24]王程,李宏伟,李爱玲,张静,修瑞娟.各部位心肌细胞对硝酸酯类药物预适应能力的实验研究[J].中国病理生理杂志.2006,22(1):43-48.
    [25]Wang Q, Zeng YJ, Huo P, et al. A specialized plug-in software module for computer-aided quantitative measurement of medical images[J]. Medical Engineering & Physics, 2003;25:887-892.
    [26]Blatt RJ, Clark AN, Courtney J, et al. Automated quantitative analysis of angiogenesis in the rat aorta model using Image-Pro Plus 4.1 [J]. Computer Methods and Programs in Biomedicine. 2004;75:75-79.
    [27]Sugii Y, Nishio S, Okamoto K. In vivo PFV measurement of red blood cell velocity field in microvessels considering mesentery motion[J]. Physiol. Meas.2002;23:403-416.
    [28]Wu CC, Zhang G, Huang TC, et al. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation [J]. Microvascular Research,2009;78:319-324.
    [29]Walid SK, Stephen JS, Jerrod PK, et al. Liver microcirculation analysis by red blood cell motion modeling in intravital microscopy images[J]. IEEE Transactions on Biomedical Engineering, 2008;55(1):162-170.
    [30]Magers S, Faber J E. Real-time measurement of microvascular dimensions using digital cross-correlation image processing[J]. J Vasc Res,1992,29(3):241-247.
    [31]Eaton A M, Hatchell D L. Measurement of Retinal Blood Vessel Width Using Computerized Image Analysis[J]. Investigative Ophthalmology & Visual Science,1988,29(8)1258-1264.
    [32]应晓优,鲍永坚,修瑞娟等.用自适应血.管边缘检测方法自动跟踪测量血管自律运动[J].微循环学杂志,1996;6(3):26-29.
    [33]Kim S, Kong R L, Popel A S, et al. A Computer-Based Method for Determination of the Cell-Free Layer Width in Microcirculation[J]. Microcirculation,2006,13:199-207.
    [34]Xin S, Morie S, Masahiro E. An ultra structural study of cardiac myocytes in post myocardial infarction ventricular aneurysm representative of chronic ischemic myocardium using semi quantitative and quantitative assessment[J]. Cardiovascular Pathology,2001;9(1):1-6.
    [35]Carole S, Francois G, Andre M, et al. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mt 1 melatonin receptors in the Siberian and Syrian hamsters[J]. Neuroendocrinology,2001;74:55-61.
    [36]Wang ZR, Wang L, Yin HH, et al. Effect of total flavonoids of hippophae rhamnoides on contractile mechanics and calcium transfer in stretched myocyte[J]. Space Medicine & Medical Engineering,2000;13 (1):7-12.
    [37]Harary I, Wallace G, Bristol G. A video-computer for the chronotropic and inotropic measurements of the beating of cultured heart cells[J]. Cytometry 1983;3(5):367-375.
    [38]Gervais-Pingot V, Legrand JJ, Nasr G, et al. In vitro quantification by image analysis of inotropic and chronotropic effects of drugs on cultures of cardiac myocytes[J]. Cell Biol Toxicol,1994; 10(5):297-300.
    [39]滕奇志,罗代升,何小海等.基于图象相关性的心肌细胞博动频率检测[J].计算机工程与应用,2004;21:6-8.
    [40]滕奇志,罗代升,何小海等.图像处理方法用于离体培养乳鼠心肌细胞动态特征分析[J].生物医学工程学杂志,2007;24(1):5-8.
    [41]Stummann TC, Wronski M, Sobanski T, et al. Digital Movie Analysis for Quantification of Beating Frequencies, Chronotropic Effects, and Beating Areas in Cardiomyocyte Cultures[J]. Assay and Drug Development Technology,2008,6(3):375-385.
    [42]Fauconnier J, Bedut S, Guennec JYL, et al. Ca2+ current-mediated regulation of action potential by pacing rate in rat ventricular myocytes[J]. Cardiovascular Research.2003,57:670-680.
    [43]Hescheler J, Halbach M, Egert Ulrich, et al. Determination of Electrical Properties of ES Cell-derived Cardiomyocytes Using MEAs[J]. Journal of Electrocardiology.2004,37:110-116.
    [44]Lange E, Kucera JP. The Transfer Functions of Cardiac Tissue during Stochastic Pacing. Biophysical Journal.2009,96:294-311.
    [1]Arshad F, Wang L, Sy C, et al. Blood-brain barrier integrity and breast cancer metastasis to the brain[J]. Patholog Res Int.2010,29(10):1-12.
    [2]Gulliksrud K, Galappathi K, Rofstad EK. Interstitial fluid pressure and vascularity of intradermal and intramuscular human tumor xenografts[J]. Int J Radiat Oncol Biol Phys. 2011,80(1):258-264.
    [3]Xiu RJ, Freyschuss A, Ying XY, et al. The Antioxidant Butylated Hydroxytoluene Prevents Early Cholesterol-Induced Microcirculatory Changes in Rabbits [J]. J Clin Invest.1994,93(6): 2732-2737.
    [4]Karasu C. Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes:effects of antioxidant treatment[J]. Open Cardiovasc Med J.2010,26(4):240-256.
    [5]田牛,修瑞娟,邹荫方等.微循环障碍相关疾病[M].郑州:河南科学技术出版社,1984:132-135.
    [6]Matsushita K, Fukumoto M, Kobayashi T,et al. Diabetes-induced inhibition of voltage-dependent calcium channels in the retinal microvasculature:role of spermine[J]. Invest Ophthalmol Vis Sci. 2010,51(11):5979-5990.
    [7]Xiu RJ, Cheng J, Berglund O. Disturbances of Microcirculation on AIDS Patients[J]. Microvascular Research.1991,42(2):151-159.
    [8]Xiu RJ, Li S, et al. Progress in Treatment of Diabetic Gangrene Via Improvement of Microcirculation. Proceeding of First Asian Congress for Microcirculation, Osaka, Japan,1993.
    [9]Han JQ, Yu MH, Dai M, et al. Effect of artificial oxygen carrier with chemotherapy on tumor hypoxia and neovascularization[J]. Artificial cells, blood substitutes, and immobilization biotechnology.2008; 36(5):431-438.
    [10]Muhammad-Amri, Abdul-Karim, KhalidAl-Kofahi,et al. Automated tracing and change analysis of angiogenic vasculature from invivo multiphoton confocal image time series[J]. Microvascular Research.2003,66:113-125.
    [11]Crisafulli B, Boschetti F, Venturoli D,et al. A semiautomatic procedure for edge detection of in vivo pulmonary microvessels and interstitial space[J]. Microcirculation.1997,4(4):455-468.
    [12]Wang Q, Zeng YJ, Huo P, et al. A specialized plug-in software module for computer-aided quantitative measurement of medical images[J]. Medical Engineering & Physics. 2003,25:887-892.
    [13]Schmugge SJ, Keller S, Nguyen N, et al. Segmentation of vessels cluttered with cells using a physics based model[J]. Med Image Comput Comput Assist Interv.2008,11(1):127-134.
    [14]Rebecca JB, Adam NC, Jama C, et al. Automated quantitative analysis of angiogenesis in the rat aorta model using Image-Pro Plus 4.1 [J]. Computer Methods and Programs in Biomedicine.2004,75:75-79.
    [15]修瑞娟,徐鸿道.当代中国的微循环研究[M].北京:国际文化出版社,1987:162-163.
    [16]Hafez SA, Caceci T, Freeman LE. Angiogenesis in the caprine caruncles in non-pregnantand pregnant normal and swainsonine-treated does[J]. The Anatomical Record.2007,290:761-769.
    [17]Ying XY, Xiu RJ. Establishment of a new microcirculatory quantitative parameter-microvascular tortuosity [J]. Int J Microcirculation:Clin And Exp.1986,5:210-214.
    [18]Veera N, TeaV, Frej S,et al. Altered extent, pattern and characteristics of microvascular density are indicators of neoplastic progression in the endometrium[J]. Int J Cancer.2005,115:975-980.
    [19]Ying XY, Xiu RJ. Development of a new microcirculatory image processing system using image separation processing mode[J]. Int J of Microcirculation:clin, and Exp.1988,7:55-59.
    [20]Ying XY, Xiu RJ. Feature Extraction of Digital Microvessel images for Microvascular Network Analysis. Proc.5th World Congress for Microcirculation U.S.A.,1991
    [21]Fekir A, Benamrane N. Segmentation of medical image sequence by parallel active contour[J]. Adv Exp Med Biol.2011,696(6):515-522.
    [22]Prasad MN, Brown MS, Ahmad S, et al. Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs[J]. Acad Radiol.2008,15(9):1173-1180.
    [23]Xiu RJ, Ying XY. A non-invasive synchronous method for measurement of macro-and microcirculatory parameters in clinical research[J]. Proc. of Chinese Academy of Medical Science and PUMC.1987,2:214-218.
    [24]Brasski G, Kaebler A. Learning OpenCV—Computer vision with the OpenCV Library[M]北京,清华大学出版社.2006:155-159.
    [25]Luengo-Oroz MA, Angulo J. Cyclic mathematical morphology in polar-logarithmic representation[J]. IEEE Trans Image Process.2009,18(5):1090-1096.
    [26]Aranha PC, Moreira DF, Mardegan JP. Morphodigital evaluation of the trabecular bone pattern in the mandible using digitized panoramic and periapical radiographs [J]. Minerva Stomatol.2009, 58(3):73-80.
    [27]秦红星,蔡绍皙.对血液细胞图像自动分割的研究.生物医学工程学杂志[J].2004,21(4):153-154.
    [28]Wang D, Shi L, Chu WC. Et al. Segmentation of human skull in MRI using statistical shape information from CT data[J]. J Magn Reson Imaging.2009,30(3):490-498.
    [29]Chinga-Carrasco G, Lenes M, Johnsen PO,et al. Computer-assisted scanning electron microscopy of wood pulp fibres:dimensions and spatial distributions in a polypropylene composite[J]. Micron.2009,40(7):761-768.
    [30]Hedberg H, Dokladal P, Owall V. Binary morphology with spatially variant structuring elements: algorithm and architecture[J]. IEEE Trans Image Process.2009,18(3):562-572.
    [31]Geraets WG, van Daatselaar AN, Verheij JG An efficient filling algorithm for counting regions[J]. Comput Methods Programs Biomed.2004,76(1):1-11.
    [32]Logeswaran R, Eswaran C. Discontinuous region growing scheme for preliminary detection of tumor in MRCP images[J]. J Med Syst.2006,30(4):317-324.
    [33]刘相滨,胡峰松,张邦基.一种新的区域种子填充算法[J].计算机工程与应用.2002,18:101-103.
    [34]Asari K.V. A fast and accurate segmentation technique for the extraction of gastrointestinal lumen from endoscopic images[J]. Med Eng Phys.2000,22(2):89-96.
    [35]Cheung AT, Miller JW, Craig SM, et al. Comparison of real-time microvascular abnormalities in pediatric and adult sickle cell anemia patients[J]. Am J Hematol.2010,85(11):899-901.
    [36]Ganzer R, Blana A, Gaumann A, et al. Topographical anatomy of periprostatic and capsular nerves:quantification and computerised planimetry [J]. Eur Urol.2008,54(2):353-60.
    [37]Van Vre EA, van Beusekom HM, Vrints CJ, et al. Stereology:a simplified and more time-efficient method than planimetry for the quantitative analysis of vascular structures in different models of intimal thickening[J]. Cardiovasc Pathol.2007,16(1):43-50.
    [1]Wu TG, Li WH, Lin ZQ, et al. Effects of folic acid on cardiac myocyte apoptosis in rats with streptozotocin-induced diabetes mellitus[J]. Cardiovasc Drugs Ther,2008,22(4):299-304.
    [2]Markou T, Cieslak D, Gaitanaki C, et al. Differential roles of MAPKs and MSK1 signalling pathways in the regulation of c-Jun during phenylephrine-induced cardiac myocyte hypertrophy[J]. Mol Cell Biochem,2009,322(1):103-112.
    [3]Nishio R, Matsumori A. Gelsolin and cardiac myocyte apoptosis:a new target in the treatment of postinfarction remodeling [J]. Circ Res,2009,104(7):829-831.
    [4]王敏,张文斌,周斌全等.葡萄糖浓度变化对乳鼠心肌细胞的影响及其机制的探讨[J].中华心血管志,2008,36(11):1027-1031.
    [5]李凡东,雷印胜,邹承伟等.质粒介导shRNA对心肌细胞kir2.1蛋白表达和搏动频率的影响[J].中国胸心血管外科临床杂志,2006,13(1):28-31.
    [6]Wang Cheng, Li HW, Xiu RJ,et al. Experimental study on the fountion of cardiomyocyte[J]. Clinical Hemorhreoloy and Microcirculation.2003,29(3-4):369-374.
    [7]Jia SD, Xiu RJ. Study on founction of cardiomyocyte[J]. J Chin Microcirc.2000.4,137-139.
    [8]高高丹,李宏伟,李爱玲等.Akt介导过氧化氢促进新生大鼠心肌细胞肥大[J].基础医学与临床.2008,2:149-152.
    [9]Liu JW, Xia QS, Zhang QJ, et al. Peroxisome proliferator-actived receptor-y ligands 15-dexoy-deltal214-prostaglandin J2 and pioglitazone inhibit H2O2-induced TNF-α and LIX expression in neonatal rat cardiac myocytes[J]. Shock.2009,1:45-51.
    [10]Belevych A, Kubalova Z, Terentyev D, et al. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure[J]. Biophys J.2007,93:4083-4092.
    [11]Cagalinec M, Chorvat DJ, Mateasik A, et al. Sustained spiral calcium wave patterns in rat ventricular myocytes[J]. J Cell Mol Med.2007,11:598-599.
    [12]Dupont G, Combettes L, Leybaert L. Calcium dynamics:Spatio-temporal organization from the subcellular to the organ level[J]. Int Rev Cytol.2007,261:193-245.
    [13]Fauconnier J, Bedut S, Guennec JYL, et al. Ca2+ current-mediated regulation of action potential by pacing rate in rat ventricular myocytes[J]. Cardiovascular Research.2003,57:670-680.
    [14]Hescheler J, Halbach M, Egert Ulrich, et al. Determination of Electrical Properties of ES Cell-derived Cardiomyocytes Using MEAs[J]. Journal of Electrocardiology.2004,37:110-116.
    [15]Lange E, Kucera JP. The Transfer Functions of Cardiac Tissue during Stochastic Pacing[J]. Biophysical Journal.2009,96:294-311.
    [16]Stummann TC, Wronski M, Sobanski T, et al. Digital Movie Analysis for Quantification of Beating Frequencies, Chronotropic Effects, and Beating Areas in Cardiomyocyte Cultures[J]. Assay and Drug Development Technology,2008,6(3):375-385.
    [17]滕奇志,罗代升,何小海等.图像处理方法用于离体培养乳鼠心肌细胞动态特征分析[J].生物医学工程学志,2007,24(1):5-8.
    [18]伏思华,雷志辉,杨夏.心肌细胞搏动视频自动分析系统[J].实验力学,2003,18(1):67-72.
    [19]滕奇志,罗代升,何小海等.基于图象相关性的心肌细胞博动频率检测[J].计算机工程与应用,2004,21:6-8.
    [20]Lipshultz SE, Simbre VC, Hart S,et al. Frequency of elevations in markers of cardiomyocyte damage in otherwise healthy newboms[J]. Am J Cardiol.2008,102(6):761-766.
    [21]Korhonen T, Rapila R, Ronkainen VP. Local Ca2+ releases enable rapid heart rates in developing cardiomyocytes[J]. J Physiol.2010,588(9):1407-1417.
    [22]Tavakolian, Zadeh FM, Chuo Y,et al. Development of a Novel Contactless Mechanocardiograph Device[J]. International Journal of Telemedicine and Applications.2008,33:1-5.
    [23]Kamgoue A, Ohayon J, Usson Y,et al. Quantification of cardiomyocyte contraction based on image correlation analysis[J]. Cytometry A.2009,75(4):298-308.
    [24]Yin S, Zhang X, Zhan C,et al. Measuring single cardiacmyocyte contractile force via moving a magnetic bead[J]. Biophys J.2005,88:1489-1495.
    [25]Li HW, Xiu RJ. Study on response of Ca+ to anoxia in cerebral endothelial cells via confocal microscopy [J]. J Chin Microcirc.1996.6,8-10.
    [26]沈静,谢苗荣,徐雍等.乳鼠心肌细胞培养基纯化方法的改良[J].中国医药导刊,2001,3:225-226.
    [27]王涛,余志斌,谢满江等.新生大鼠心肌细胞培养技巧[J].第四军医大学学报.2001,23:307-308
    [28]Cen M, Luo D. Error-space estimation method and simplified algorithm for space target tracking[J]. Appl Opt.201049(28):5384-5390.
    [29]Wu J, Jiang C, Liu Z, Houston D, et al. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies. Environ Health Insights[J]. 2010,4:93-108.
    [30]Li K, Miller ED, Chen M, et al. Cell population tracking and lineage construction with spatiotemporal context[J]. Med Image Anal.2008,12(5):546-66.
    [31]Yu Q, Medioni G. Multiple-target tracking by spatiotemporal Monte Carlo Markov chain data association [J]. IEEE Trans Pattern Anal Mach Intell.2009,31(12):2196-2210.
    [32]Tong W. Subpixel image registration with reduced bias[J]. Opt Lett.2011,36(5):763-765.
    [33]Langarizadeh M, Mahmud R, Ramli AR,et al. Improvement of digital mammogram images using histogram equalization, histogram stretching and median filter. J Chromatogr A.2011, 1218(19):2820-2825.
    [34]Lu S, Cheung CY, Liu J, et al. Automated layer segmentation of optical coherence tomography images[J]. IEEE Trans Biomed Eng.2010,57(10):2605-2608.
    [35]Gaborski TR, Sealander MN, Ehrenberg M, et al. Image correlation microscopy for uniform illumination [J]. J Microsc.2010,237(1):39-50.
    [36]Kamgoue A, Ohayon J, Usson Y, et al. Quantification of cardiomyocyte contraction based on image correlation analysis[J]. Cytometry A.2009,75(4):298-308.
    [37]Lee J, Jirapatnakul A, Reeves AP, et al. Vessel Diameter Measurement from Intravital Microscopy [J]. Ann Biomed Eng,2009,37(5):913-926.
    [38]王蓓,许亮,赵敏等QTVI结合腺苷负荷超声心动图评估冠心病心肌纵向收缩功能[J].中国超声医学杂志,2009,25(8):769-772.
    [39]Butz T, Lang CN, van Bracht M,et al. Segment-orientated analysis of two-dimensional strain and strain rate as assessed by velocity vector imaging in patients with acute myocardial infarction[J]. Int J Med Sci,2011,8(2):106-13.
    [40]Rutschow S, Leschka S, Westermann D,et al. Left ventricular enlargement in coxsackievirus-B3 induced chronic myocarditis--ongoing inflammation and an imbalance of the matrix degrading system[J]. Eur J Pharmacol,2010,630(1-3):145-151.
    [41]Wang L, Wang J, Xie M,et al. Clinical study of the ascending aorta wall motion by velocity vector imaging in patients with primary hypertension[J]. J Huazhong Univ Sci Technolog Med Sci. 2009,29(1):127-130.
    [42]王玮.速度向量成像技术对心脏运动的研究[J].国际心血管病杂志,2009,36(6):349-351.
    [43]Chen J, Cao T, Duan Y,et al. Velocity vector imaging in assessing myocardial systolic function of hypertensive patients with left ventricular hypertrophy [J]. Can J Cardiol.2007,23(12):957-961.
    [44]苗丽,邓万俊.等容收缩期心肌加速度评价心室收缩功能的研究进展[J].心血管病学进展2009,30(5):849-852.
    [45]Zhang H, Li J, Liu L,et al. Quantitative assessment of myocardial acceleration in normal left ventricle with velocity vector imaging[J]. Echocardiography.2008,25(7):699-705.
    [46]Loiske K, Emilsson K. A comparison of right ventricular volume change during systole obtained using the monoplane Simpson's method in two-dimensional echocardiographic apical four-chamber view with right ventricular volume change obtained using a prisma model reflecting the systolic long-axis shortening of the right ventricle of the heart:A pilot study[J]. Exp Clin Cardiol. 2008,13(2):75-78.
    [47]Hashimoto I, Uese K, Watanabe S,et al. Assessment of variables affecting flow propagation velocity of the left ventricle in healthy children[J]. Pediatr Int.2007,49(3):305-9.
    [48]Westholm C, Bjallmark A, Larsson M,et al. Velocity tracking, a new and user independent method for detecting regional function of the left ventricle[J]. Clin Physiol Funct Imaging.2009,;29(1):24-31.
    [49]Talens-Visconti R, Rivera M, Climent V,et al. Maximum longitudinal relaxation velocity of the left ventricle:its clinical value and relationship with NT-proBNP plasma levels in heart failure[J]. Echocardiography.2006,23(4):295-302.
    [50]Zhang H, Zhu T, Tian X,et al. Quantitative echocardiographic assessment of myocardial acceleration in normal left ventricle by using velocity vector imaging[J]. J Am Soc Echocardiogr. 2008,21(7):813-7.
    [51]Holtzman NG, Schoenebeck JJ, Tsai HJ,et al. Endocardium is necessary for cardiomyocyte movement during heart tube assembly[J]. Development,2007,134(12):2379-86.
    [52]周清华.正常人左右心房室长轴运动特征[J].基础医学与临床,1998,18(1):67-68.
    [53]Zeng S, Zhou QC, Peng QH,et al. Assessment of regional myocardial function in patients with dilated cardiomyopathy by velocity vector imaging[J]. Echocardiography.2009,26(2):163-170.
    [54]Nakagawa Y, Fujimoto S, Mizuno R,et al. Assessment of the normal adult right ventricular diastolic function using M-mode echocardiographic measurement of tricuspid ring motion[J]. Int J Card Imaging.1998,14(6):391-395.
    [55]Weidemann F, Eyskens B, Jamal F,et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging[J]. J Am Soc Echocardiogr.2002,15(1):20-28.
    [56]Pena JL, Silva MG, Faria SC,et al. Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging[J]. J Am Soc Echocardiogr. 2009,22(4):369-375.
    [1]Intaglietta M, Xiu RJ. The Wavelike Properties of Vasomotion and its Origin of Microvascular Bifurcations[J]. Int. J. of Microcirculation Clinical and Experimental.1984,3:3-4.
    [2]Xiu RJ, Intaglietta M.. Extreme Wave-Like Tissue Perfusion Due to Vasomotion Enhancement by Specialized Chinese Vasoactive Drugs[J]. Int. J. of Microcirculation Clinical and Experimental.1984,3:3-4.
    [3]Pradhan RK, Chakravarthy VS. Informational dynamics of vasomotion in microvascular networks:a review[J]. Acta Physiol (Oxf).2011,201(2):193-218.
    [4]Ito S, Nakasuka K, Morimoto K, et al. Angiographic and clinical characteristics of patients with acetylcholine-induced coronary vasospasm on follow-up coronary angiography following drug-eluting stent implantation [J]. J Invasive Cardiol.2011,23(2):57-64.
    [5]Xiu RJ, Freyschuss A. Ying Xiaoyou, et al. The Antioxidant Butylated Hydroxytoluene Prevents Early Cholesterol-Induced Microcirculatory Changes in Rabbits[J]. J Clin Invest. 1994,93:2732-2737.
    [6]Hapuarachchi T, Park CS, Payne S. Quantification of the effects of vasomotion on mass transport to tissue from axisymmetric blood vessels[J]. J Theor Biol.2010,264(2):553-559.
    [7]Davis MJ, Zawieja DC, Gashev AA. Automated measurement of diameter and contraction waves of cannulated lymphatic microvessels[J]. Lymphatic Research and Biology,2006,4(1):3-10.
    [8]Lee J, Jirapatnakul A, Reeves AP, et al. Vessel Diameter Measurement from Intravital Microscopy [J]. Ann Biomed Eng,2009,37(5):913-926.
    [9]Intaglietta M, Tompkins WR. Microvascular measurements by video image shearing and splitting[J]. Microvasc Res,1973,5(3):309-312
    [10]Ying XY, Xiu RJ. "A novel electronic method for dynamic measurement of microvascular diameter." Proc. Chin. Acad. Med. Sci. & Peking Union Med. Coll.1986,1 (4):196-202.
    [11]应晓优,鲍永坚,修瑞娟等.用自适应血管边缘检测方法自动跟踪测量血管自律运动[J].微循环学杂志,1996;6(3):26-29.
    [12]张坚,修瑞娟.大鼠肠系膜微淋巴管自律运动特征的研究[J].中华医学杂志,75(5):262-265.
    [13]Tyml K, Anderson D, Lidington D, et al. A new method for assessing arteriolar diameter and hemodynamic resistance using image analysis of vessel lumen[J]. Am J Physiol Heart Circ Physiol,2003,284(9):1721-1728.
    [14]Davis MJ. An improved computer-based method to automatically track internal and external diameter of isolated microvessels[J]. Microcirculation,2005,12:361-372.
    [15]Dielenberg R, Halasz P, Hosaka K, et al. Vessel motion measurement in real-time using movement detection at multiple regions of interest[J]. Journal of Neuroscience Methods,2006,152:40-47.
    [16]Goobic AP, Tang JS, Acton ST. Image stabilization and registration for tracking cells in the microvasculature[J]. IEEE Transactions on Biomedical Engineering,2005,52(2):287-299.
    [17]Maintz JB, Viergever MA. A survey of medical image registration[J]. Med Image Anal,1998,2(1):-36.
    [18]Acton ST, Wethmar K, Ley K. Automatic tracking of rolling leukocytes in vivo[J]. Microvascular Research,2002,63:139-148.
    [19]Wu CC, Zhang G, Huang TC, et al. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation[J]. Microvascular Research,2009,78:319-324.
    [20]Eaton AM, Hatchell DL. Measurement of retinal blood vessel width using computerized image analysis. Investigative Ophthalmology & Visual Science[J],1988,29(8):1258-1264.
    [21]Blatt R.J, Clark AN, Courney J, et al. Automated quantitative analysis of angiogenesis in the rat aorta model using Image-Pro Plus 4.1 [J]. Computer Methods and Programs in Biomedicine,2004,75:75-79.
    [22]Wang Q, Zeng YJ, Huo P, et al. A specialized plug-in software module for computer-aided quantitative measurement of medical images[J]. Medical Engineering & Physics,2003,25:887-892.
    [23]Christopher GO, Timothy JE, Woodward EG. A comparison of manual and automated methods of measuring conjunctival vessel widths from photographic and digital images[J]. Ophthal Physiol Opt,2004,24:74-81.
    [24]Dixon JB, Gashev AA, Zawieja DC, et al. Image Correlation Algorithm for Measuring Lymphocyte Velocity and Diameter Changes in Contracting Microlymphatics[J]. Annals of Biomedical Engineering,2007,35(3):387-396.
    [25]张坚,修瑞娟.大鼠肠系膜微淋巴管自律运动特征的研究[J].中华医学杂志.1995,75(5):262-265.
    [26]Kim S, Kong RL, Popel AS, et al. A Computer-Based Method for Determination of the Cell-Free Layer Width in Microcirculation[J]. Microcirculation,2006,13:199-207.
    [1]Dixon JB, Greiner ST, Gashev AA, et al. Lymph Flow, Shear Stress, and Lymphocyte Velocity in Rat Mesenteric Prenodal Lymphatics[J]. Microcirculation,2006,13:597-610.
    [2]修瑞娟.微血管自律运动的研究—Ⅰ.微血管自律运动的连续动态观察及电子计算机分析[J].中华医学杂志,1985,65(3):129-135.
    [3]修瑞娟.微血管自律运动的研究—Ⅱ.骨骼肌的微血管自律运动.中华医学杂志[J],1985,65(4):203-207.
    [4]Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B. Measuring and interpreting ocular blood flow and metabolism in glaucoma[J]. Can J Ophthalmol.2008, 43(3):328-336.
    [5]Pelliccia P, Savino A, Cecamore C, Primavera A, Schiavone C, Chiarelli F. Early changes in renal hemodynamics in children with diabetes:Doppler sonographic findings[J]. J Clin Ultrasound.2008,36(6):335-340.
    [6]Oberg PA, Tenland T, Nilsson GE. Laser-Doppler flowmetry--a non-invasive and continuous method for blood flow evaluation in microvascular studies[J]. Acta Med Scand Suppl,1984,687: 17-24.
    [7]Marx R, Kalweit G, Sunderdiek U, Jax TW, Klein RM, Szabo S, Hoffmeister HM, Giilker H. Stress Doppler echocardiography of the internal thoracic artery--a new non-invasive approach for functional assessment after minimally invasive coronary bypass grafting[J]. Interact Cardiovasc Thorac Surg.2006,5(5):584-588.
    [8]Wayland H, Johnson PC. Erythrocyte velocity measurement in microvessels by a two-slit photometric method[J]. J Appl Physiol,1967,22:333-337.
    [9]Intaglietta M, Silverman NR, Tompkins WR. Capillary flow velocity measurements in vivo and in situ by television methods[J]. Microvasc Res,1975,10(2):165-179.
    [10]Klyscz T, Junger M, Jung F. Cap image--a new kind of computer-assisted video image analysis system for dynamic capillary microscopy[J]. Biomed Tech.1997,42(6):168-75.
    [11]Liu YY, Yang JY, Sun K, et al. Determination of eruthrocyte flow velocity by dynamic grey acale measurement using off-line image analysis[J]. Clinical Hemorheology and Microcirculation, 2009,43:263-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700