用户名: 密码: 验证码:
气升式反应器中模拟燃料油的生物脱硫特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是当今世界的主要能源之一,全球每天约消耗1000多万吨的原油,这些燃料油燃烧后产生的SO_2是形成酸雾、酸雨等环境污染的重要原因。低含硫矿物燃料的稀缺、高品质清洁燃料油的需求和日益严格的控制标准迫切需要开发燃烧前深度脱硫技术。加氢技术是目前的主要脱硫法,然而其在操作成本和深度脱硫方面的不足制约着脱硫技术的发展。生物脱硫具有反应条件温和、专一性强、不影响油品热值等优点,已成为加氢脱硫工艺较好的补充,随着世界范围内对油品含硫标准的日益严格,作为深度脱硫技术的生物脱硫受到越来越多的关注。
     本研究利用实验室自主分离的脱硫菌株分支杆菌ZD-19,以促进生物脱硫的工业应用为目标进行研究。课题前期研究证明ZD-19可以沿4S途径降解二苯并噻吩(DBT)和4,6二甲基二苯并噻吩(4,6DMDBT),并且具有较高的去除效率。为了进一步考察ZD-19的脱硫底物范围,本论文就ZD-19对4甲基二苯并噻吩(4MDBT)的脱硫特性进行了研究,结果表明ZD-19也能专一性的切断4MDBT的C-S键,且由于4MDBT独特的不对称结构,代谢过程中羟基取代位置发生变化,所得产物为两个同分异构体:4甲基2苯基苯酚和2羟基3甲基联苯。研究还证实ZD-19并不能有效降解苯并噻吩(BT)。本部分实验表明ZD-19是一株对DBT及其衍生物有较高去除效率的优势菌种。
     微生物能够在油相中作用是BDS应用于实际油品脱硫的关键。摇瓶实验中,ZD-19在油水两相体系中具有较高的脱硫活性,反应10h,1mmol/LDBT的降解效率达到78.5%;其最佳脱硫活性是水相中的2倍,且两相体系促进了传质,提高了细胞的利用效率,较高菌液浓度时没有出现抑制现象,具有比水相实验较高的脱硫活性。与摇床实验比较,气升式反应器独特的流体力学特征更加利于两相混合和传质,在生长细胞脱硫和休止细胞脱硫实验中都表现出明显的优势。反应器内ZD-19达到指数生长后期时细胞最大比生长速率和细胞浓度为0.15g/(L·h)和8.1g/L,分别是摇床实验1.4倍和2.3倍。ZD-19在油水两相实验中表现出较高的脱硫活性,具有应用于油品脱硫的潜力。
     目前BDS研究还局限于摇瓶实验,生物脱硫反应器的设计与研究具有重要意义。本研究在自行设计的气升式反应器中生物降解正十六烷中的DBT,对气升式反应器的基本工艺参数进行优化。在实验所选的条件下,最佳表观速率为11.8cm/s。表观速率达到13.0cm/s时,出现轻微柱塞流现象,液滴直径增大,传质效果开始降低。反应器中ZD-19休止细胞在生长介质(培养基)和非生长介质(磷酸缓冲溶液)中具有几乎相同的脱硫活性;过低的菌液浓度下不仅两相界面小,传质速率低,也使DBT对细胞的毒性作用明显,脱硫效率很差,实验条件下10-40g/L的菌液浓度都具有较好的比脱硫速率;增加DBT初始浓度,脱硫量略有增加,直至高DBT的致毒作用使菌液脱硫活性降低,此时传质速率较高,体系属于反应控制。
     在气升式反应器内,立足于考察ZD-19在模拟燃料油体系中的脱硫特性,实验以柴油中含量较多的有机硫化合物DBT、4MDBT和4,6DMDBT为模型化合物,设计了单一底物和混合底物实验。单底物脱硫实验表明,ZD-19对DBT、4MDBT和4,6DMDBT的脱硫能力为DBT≈4MDBT>4,6DMDBT。4MDBT的高脱硫效率和对细胞的低毒性,使得混合体系下的总硫去除率更高;双底物脱硫实验和混合脱硫实验共同表明,ZD-19对多种有机硫共存时的脱硫效果良好,具有应用于实际油品脱硫的潜力,有很广的应用前景。
About ten million tons of crude oil was consumed every day, resulting in the emission of sulfur-oxides to the atmosphere, which is a main cause of serious environmental problems such as acid rain. High sulfur contents of the crude oil reserves, the need for fuels ultra-low in sulfur and continued stringent regulations call for deep desulfurization technologies. Hydrodesulfurization (HDS) is the dominating method to desulfurize oil, but its defect of high operation cost and deep desulfurization limited the development of desulfurization technology. Biodesulfurization (BDS) which can selectively desulfurize the most recalcitrant sulfur compounds from oil under mild conditions, remaining the combustion value of the fuels, support HDS very well. As stricter standard of sulfur content in oil appears, BDS gains more attention.
     Mycobacterium sp. ZD-19 can metabolize dibenzothiophene(DBT) and 4,6dimethyldibenzothiophene(4,6DMDBT) through a sulfur-specific pathway. The biodesulfurization of 4methyldibezothiophene(4MDBT) by ZD-19 was also investigated in this thesis. The results showed that ZD-19 can also desulfurize 4MDBT through a sulfur-specific pathway. The metabolic pathway for biodesulfurization of 4MDBT was studied, and the final product of 4MDBT biodesulfurization was determined by GC-MS, which were identified as two isomers: 4-methyl-2phenylphenol and 2-hydroxy-3-methyl-biphenyl.
     Secondly, biodesulfurization by resting cells of ZD-19 was investigated of biphasic system in shake flasks scale. The results indicated that, ZD-19 in oil-aqueous system had twice the desulfurization activity of aqueous phase, because inhibitions effects by product accumulation in aqueous media were not so clear in biphasic condition as 2-hydroxybiphenyl (HBP) oil-water partition coefficient is very high; and mass transfer limitation was partially eliminated. In contrast to shake flasks, biodesulfurization in a self-designed airlift bioreactor(ALR) can achieve higher desulfurization rate; the maximum specific growth rate and the highest cell concentration at the late exponential growth phase in the reactor were 0.15g/(L·h) and 8.1g/L, which were 1.4 and 2.3 times that of shake flasks respectively. The results showed ALR's great potential for the commercial use of biodesulfurization to remove sulfur from fuel oil.
     Biodesulfurization of DBT in oil-aqueous system was carried out in the ALR. The optimal gas velocity was 11.8cm/s. Slight plug-flow was formed when the gas velocity achieved 13.0cm/s, and the oil droplet diameter and the interface area decreased consequently, which were the main causes of the decreased desulfurization rate. The biodesulfurization of resting cells of ZD-19 could be proceed in the non-growth media (phosphate buffer) as efficiently as in the growth medium (BSM). The desulfurization rate increased with the increasing of DBT concentration as well, while high DBT concentration would inhibit the activity with an optimal of 3 mmol·L~(-1). The results suggested that under high concentration of DBT and optimal gas velocity, the mass transfer rate was much higher compared to DBT conversion rates, when the microbial desulfurization rate was the overall rate-limiting process step.
     Lastly, The desulfurization ability of Mycobacterium sp. ZD-19 for DBT and alkylated dibenzothiophenes (Cx-DBTs) was studied of stimulant fuel oil system in the ALR. The desulfurization of DBT, 4MDBT or 4,6-dimethyldibezothiophene ( 4, 6-DMDBT) as a sole substrate, and the mixture of two or three of them as sulfur substrate were investigated respectively. The results suggested that this strain could efficiently desulfurize DBT and Cx-DBTs, their activity was: DBT≈4MDBT>4,6DMDBT. The degradation rate of total sulfur related to the composition and structure of sulfur substrates. The total sulfur remove percentage when DBT and 4MDBT were mixed was larger than any other cases, which attributed to the high desulfurization rate of 4MDBT and its little negative effect on cells activities.
     Biodesulfurization of DBT derivatives such as 4-MDBT and 4,6-DMDBT demonstrated Mycobacterium sp. ZD-19's ability to attack a wide range of sulfur compounds present in diesel oil. The activity of the strain shows its possibility of the commercial use for decreasing the sulfur content of diesel fuels.
引文
[1]Monticello D J.Biodesulfurization and the upgrading of petroleum distillates.Current Opinion in Biotechnology.2000,11:540-546
    [2]Kilbane J J.Microbial biocatalyst developments to upgrade fossil fuels.Current Opinion in Biotechnology.2006,17:305-314
    [3]Parekh B K.Coal desulfurization,high-efficiency preparation methods:by S.Komar Kawatara and Timothy C.Eisele.Taylor and Francis Inc.,New York,NY,360 pp.International Journal of Coal Geology,2003,55:71
    [4]Pacheco M A,Lange E A,Pienkos P T,et al.Recent advances in biodesulfurization of diesel oil.National Petrochemical & Refiners Association.1999
    [5]Lee M K,Senius J D,Grossman M J.Sulfur-specific microbial desulfurization of scerically hindered of dibenzothiophene.Applied Environmental Microbiology.1995,61:4362-4366
    [6]Soleimani M,Bassi A,Margaritis A.Biodesulfurization of refractory organic sulfur compounds in fossil fuels,Biotechnology Advances.2007,25:570-596
    [7]Atlas R M,Boron D J,Deever W R,et al.Method for removing organic sulfur from heterocyclic sulfur containing organic compounds.2001,1:986
    [8]Shaft R,Hutchings G.Hydrodesulfurization of hindered dibenzothiophene:an overview.Catalyst Today.2000,59:423
    [9]Krnig A,Herding G,Hupfeld B,et al.Currenttasks and challenges for exhaust after treatment research,a viewpoint from the automotive industry.Top Catalyst.2001,16/17:23-31
    [10]Reichmuth D S.Metabolic engineering of a dibenzothiophene biodesulfurization operon(PhD thesis).University of California,Berkeley,2002;81 pages
    [11]韩金玉,吴懿琳,李毅.生物脱硫技术的应用研究进展.化工进展,2003,22(10):1072-1075
    [12]孔瑛,赵金生,侯影飞等.石油生物催化脱硫的研究进展,工业微生物,2004,34(2):35-40
    [13]Atlas R M,Boron D J,Deever W R,et al.Method for removing organic sulfur from heterocyclic sulfur containing organic compounds.2001,US patent number H1,986
    [14]Jia X Q,Wen J P,Sun Z P,et al.Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp.WQ-01 and its mutant in oil-water dispersions.Chemical Engineering Science,2006,61:1987-2000
    [15]Kilbane J J,John J.Sulfur-specific microbial metabolism of organic compounds.Resources Conservation and Recycling.1990,3:69-79
    [16]Ohshiro T,Hirat T,Hashimoto I,et al.Characterization of dibenzothiophene desulfurization reaction by whole cells of Rhodococcus H-2 in the presence of hydrocarbon,Joumal of Fermentation and Bioengineering.1996,82:610-612
    [17]Denis-larose C,Labbe D,Bergeron H,et al.Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several Rhodococci,Applied.Environmental.Microbiology.1997,63:2915-2919
    [18]Maghsoudi S,Vossoughi M,Kheirolomoom A,et al.Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp strain P32C1.Biochemical.Engineering Journal.2001,8:151-156
    [19]Sung R,Yong K C.Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona Strain,CYKS1,Applied and Environmental Microbiology,1998,64(6):2327-2331
    [20]Gilbert S C,Morton J,Buchanan S C.Isolation of a unique benzothiophene desulfurizing bacterium,Gordona sp.strain 213E(NCIMB40816)and characterization of the desulfurization pathway,Microbiology,1998,144:2545-2553
    [21]Maghsoudia S,Kheirolomooma A,Vossoughib M.Selective desulfurization of dibenzothiophene by newly isolated Corynebacterium sp.strain P32C1,Biochemical Engineering Journal,2000,5:11-16
    [22]Wang M D,Li W,Wang D H.The behavior of desulfurization of dibenzothiophene by Corynebacterinm sp ZD-1 in aqueous phase,Energy and environmental-A world of challenges and opportunities,Proceedings,2003,513-519
    [23]Darzins A,Mrachko G T.Sphingomonas biodesulfurization catalyst,US patent No.6,133,016(2000)
    [24]Shan G;Xing J,Luo M.Immobilization of Pseudomonas delafieldii with magnetic polyvinyl alcohol beads and its application in biodesulfurization,Biotechnology Letters,2003,25:1977-1981
    [25]Li F L,Xu P.Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp.X7B,FEMS Microbiology Letters,2003,223:301-307
    [26]Chen H,Zhang W J,.Chen J M,Cai Y B,Li W.Desulfurization of various organic.sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp.ZD-19.Bioresource Technology,2008,99(9):3630-3634
    [27]张英.微杆菌ZD-M2的分离及其脱硫特性研究.硕士学位论文.2005
    [28]Omori T,Saiki Y,Kasuga K,et al.Desulfurization of alkyl and aromatic sulfides and sulfonates by dibenthiophene-desulfurizing Rhodococcus sp.strain SY1.Bioscience.Biotech.Biochem.1995,59,1195-1198
    [29]Folsom B R,Schieche D R,Digrazia P M,et al.Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis 1-19.Applied.Environmental.Microbiology.1999,65:4967-4972
    [30]Kilbane J J.Biodesulfurization:future prospects in coal cleaning,Proceedings 7th Annual International Pittsburgh Coal Conference,1990,373-381
    [31]Gray K A,Pogrebinsky O S,Mrachko G T et al.Molecular mechanisms of biocatalytic desulfurization of fossil fuel. Biotechnology. 1996,14(13): 1705-1709
    [32] Gray K A, Squires C H, Monticello D J. US Pat. 5,846,813,1996
    [33] McFarland B L. Biocatalytic sulfur removal from fuel: applicability for producing low sulfur gasoline. Critical Reviews in Microbiology. 1998,24(2): 99-147
    [34] Ohishiro T, Suzuki K, Izumi Y. Regulation of dibenzothiophene degrading enzyme activity of Rhodococcus erythropolis D-l,Journal of fermention and bioengineering,1996,81(2):121-124
    [35] Li W, Zhang Y, Wang M D, et al. Bodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2.FEMS Microbiology Letters, 2005,247(1):45-50
    [36] Berdugo C. Aqueous-organic phases separation by membrane reactors in biodesulfurization reactions. Fuel and Energy Abstracts, 2006,47 (5):367
    [37] Kaufman E N, Harkins J B, Rodriguez M, et al. Development of an electro-spray bioreactor for crude oil processing. Fuel Processing Technology, 1997, 53(1-3): 127-144
    [38] Dounias G A. Economic feasibility of biochemically upgrading heavy crudes, Brookhaven National Laboratory Report, 1995
    [39] Tsouris C, Abhijeet P, Eric B. An electrically driven gas-liquid-liquid contactor forbioreactor and other applications, Chemical Reserch,1999, (38): 1877-1883
    [40] Yang J Z, Hu Y Qi, Zhao D S, et al. Marison aTwo-layer continuous-process design for the biodesulfurization of diesel oils under bacterial growth conditions, Biochemical Engineering. 2007,37 :212-218
    [41] Boltes K, Caro A, Leton P, et al. Gas-liquid mass transfer in oil-water emulsions with an airlift bio-reactor, Chemical Engineering and Processing: Process Intensification, 2008
    [42] Mehrnia M R, Towfighi J , Bonakdarpour B. Influence of top-section design and draft-tube height on the performance of airlift bioreactors containing water-in-oil microemulsion, Journal of Chemical Technology and Biotechnology, 2004,79(3):260-267
    [43] Mehrnia M R, Bonakdarpour B,Towfighi J. Design and operational aspects of airlift bioreactors for petroleum biodesulfurization. Environmental Progress, 2004,23(3):206-214
    [44] Mehrnia M R, Towfighi J, Bonakdarpour B. Gas hold-up and oxygen transfer in a draft-tube airlift bioreactor with petroleum-based liquids, Biochemical Engineering Journal,2005,22(2): 105-110
    [45] Lee I S, Bae H S, Ryu H W, et al. Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 Cells. Biotechnology progress,2005,21: 781-785
    [46] Juras cik M, Blazej M, Annus J, et al. Experimental measurements of volumetric mass transfer coefficient by the dynamic pressure-step method in internal loop airlift reactors of different scale. Chemical Engineering Journal.2006,125:81-87
    [47] Blazej M, Annus J, Markos J. Using of the dynamic pressure-step method for mass transfer coefficient measurement in the internal loop airlift reactor. Chemical Papers .2003,57:445-450
    [48] Blazej M, Annus J, Markos J. Comparison of gassing-out and pressure-step dynamics methods for kLa measurement in an airlift reactor with internal loop. Transactions of I Chem E, Part A: Chemical Engineering Research and Design. 2004,1375-1382
    [49] Jurascik M, Sikula I, Annus J, et al. Modeling of fermentation in an airlift bioreactor, In: Proceedings of the 32nd Conference of Slovak Society of Chemical Engineering. 2005,224-227
    [50] Fedorak P M, Westlake D W S. Microbial degradation of organic sulfur compounds in Prudhoe Bay crude oil. Microbiology. 29:291-296
    [51] Fedorak P M, Westlake D W S. Degradation of sulfur heterocycles in Prudhoe Bay crude oil by soil enrichments. Water. Air. Soil Pollution. 21:225-230
    [52] Setti L, Rossi M, Lanzarini G, et al. The effect of n-alkanes in the degradation of dibenzothiophene and of organic sulfur compounds in heavy oil by a Pseudomonas sp. Biotechnology. Letters. 1992,14:515-520
    [53] Setti L, Lanzarini G, Pifferi P G. Dibenzothiophene biodegradation by a Pseudomonas sp. in model solutions. Process. Biochemical. 1995,30: 721-728
    [54] Kaufman E N, Borole A P, Shong R., et al. Sulfur specificity in the bench-scale biological desulfurization of crude oil by Rhodococcus IGTS8. J. Chemical Technology Biotechnology. 1999,74:1000-1004
    [55] Li F L, Xu P, Feng J H, et al, Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Applied Environmental Microbiology. 2005,71:276-281
    [56] Li F L, Zhang Z Z, Feng J H, et al. Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B, Journal of Biotechnology. 2007,127:222-228
    [57] Maghsoudi S, Vossoughi M, Kheirolomoom A. Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1, Biochemical Engineering Journal.2001, 8 :151-156
    [58] Shan G B, Zhang H Y, Xing J M, et al. Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture, Biochemical Engineering Journal, 2006,27:305-309
    [59] Luo M F, Xing J M, Gou Z X, et al. Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane, Biochemical Engineering Journal, 2003,13:1-6
    [60] Caro A, Boltes K, Leton P, et al. Dibenzothiophene biodesulfurization in resting cellconditions by aerobic bacteria, Biochemical Engineering Journal, 2007, 35 :191-197
    [61] Mohebali G, Ball A S, Rasekh B. et al. Biodesulfurization potential of a newly isolated bacterium,Gordonia alkanivorans RIPI90A,Enzyme and Microbial Technology,2007,40:578-584
    [62]Del Olmo C H,Alton A,Santos V,et al.Modeling the production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization:Influence of media composition,Enzyme and Microbial Technology,2005,37:157-166
    [63]Del Olmo C H,Santos V E,Alcon A,et al.Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization:influence of operational conditions,Biochemical Engineering Journal,2005,22:229-237
    [64]Marcelis C L M,Leeuwen M V,Polderman H G,et al.Model description of dibenzothiophene mass transfer in oil-water dispersions with respect to biodesulfurization.Biochemical Engineering Journal,2003,16:253-264
    [65]Rashtchi M,Mohebali G H,Akbamejad M M,et al.Analysis of biodesulfurization of model oil system by the bacterium,strain RIPI-22,Biochemical Engineering Journal,2006,29:169-173
    [66]Boltes K,Caro A,Leton,P,et al.Gas-liquid mass transfer in oil-water emulsions with an airlift bio-reactor,Chemical Engineering and Processing,2008
    [67]Caro A,Leton P,Garcia-Calvo E,et al.Enhancement of dibenzothiophene biodesulfurization using β-cyclodextrins in oil-to-water media,Fuel,2007,86:2632-2636
    [68]Rashidi L,Mohebali G,Towfighi D J,et al.Biodesulfurization of dibenzothiophene and its alkylated derivatives through the sulfur-specific pathway by the bacterium RIPI-S81,African Journal of Biotechnology,2006,5(4):351-356
    [69]李建源 周新锐 赵德丰.苯并噻吩及其衍生物.化学通报.2005,68:1-7
    [70]Chao Y P,Makoto M,Yasusba S,et al.Biotechnology Progress,2001,17:781-785
    [71]Aleksieva P,Peeva L.Investigation of acid proteinase biosynthesis by the fungus Humicola lutea 120-5 in an airlift bioreactor.Enzyme and Microbial Technology.2000,26(5):402-405
    [72]孙志鹏.搅拌式反应器中脱硫菌株培养及反应特性研究.硕士学位论文.2006
    [73]Nikolova P,Ward O P.Whole cell biocatalysis in nonconventional media.Ind.Microbiol.1993,12:76-86
    [74]王燕,尹侠,薛胜伟.表观气速对气升式环流反应器性能的影响.化学反应工程与工艺.23(2):104-108
    [75]卢刚,郑平.气升式内环流反应器流体力学特征探讨.浙江大学学报(农业与生命科学版).2003,29(2):188-194
    [76]Zhang T W,Wang J F,Luo Z,et al.Multiphase flow characteristics of a novel internal-loop airlift reactor.Chemical Engineering Journal.2005,109(1-3):115-122
    [77]吕效平,王延儒,时钧.固体颗粒对强化传递性质的多相气升式反应器流体力学影响.南京化工大学学报,1999,21,(6):14-19
    [78]Prince R C,Grossman M J.Substrate Preferences in Biodesulfurization of Diesel Range Fuels by Rhodococcus sp.Strain ECRD-1,Applied and Environmental Microbiology.2003,69:5833-5838
    [79]Gunam I B W,Yaku Y,Hirano M,et al.Biodesulfurization of Alkylated Forms of Dibenzothiophene and Benzothiophene by Sphingomonas subarcticaT7b,Journal of Bioscience and Bioengineering,2006,101(4):322-327
    [80]Boltes K,Del Aguila R A,Garcia-Calvo E.Biodesulfurization of alkylated forms of dibenzothiophene by Pseudomonas putida CECT5279,Journal of Biotechnology,2007,131(2):143-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700