用户名: 密码: 验证码:
磷钼杂多化合物的制备及其催化柴油深度脱硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环境保护意识的日益提高,燃油中硫含量的控制指标不断提高。实际上,燃油中硫的零排放将成为未来世界各国寻求的最终目标。当前,传统的加氢脱硫工艺(HDS)对噻吩硫的脱除率低已成为燃油深度脱硫的瓶颈,而氧化脱硫方法(ODS)以其反应条件温和、脱硫效率高和容易脱去HDS难脱除的噻吩类含硫化合物等特点受到广泛关注。本论文通过复分解方法制备了八种磷钼杂多化合物,并通过傅立叶红外光谱(FT-IR)、X射线衍射图谱(XRD)、紫外可见光谱(UV-vis)、热重分析(TG-DSC)和扫描电镜分析(SEM)等手段对这些化合物的结构和热稳定性进行了分析;以这些磷钼杂多化合物作催化剂,研究了模型油(苯并噻吩和二苯并噻吩)和柴油的氧化脱硫,并对柴油氧化后的分离方法和磷钼杂多化合物催化柴油氧化脱硫的反应机理进行了探讨。
     由磷钼酸分别与氯化镧、氯化铈、氯化氧化钒、氯化铬经复分解反应制得四种磷钼酸金属盐。FT-IR图谱表明,磷钼酸掺杂金属盐后其Keggin结构未受破坏;XRD图谱显示,镧、铈、钒、铬等金属离子的添加对磷钼酸盐的结构形成和完善有利;UV-vis图谱显示,磷钼酸掺杂金属盐后金属元素进入抗衡位,其特征吸收峰位置发生少许红移,使得Ob,Oc→Mo的跃迁能降低;TG-DSC图谱表明,镧、铈、钒、铬等金属盐掺入后,磷钼杂多化合物的表面和杂多阴离子的结构发生了较大改变。
     考察了分别以磷钼酸、磷钼酸镧盐、磷钼酸铈盐、磷钼酸钒盐与磷钼酸铬盐作催化剂时模型油和柴油的氧化脱硫。结果表明,催化剂用量、H2O2初始浓度、反应温度和反应时间等因素对氧化脱硫均有影响,且二苯并噻吩(DBT)和苯并噻吩(BT)的氧化反应都符合表观一级反应动力学规律;在相同的反应条件下,微波辐射加热时DBT、BT的脱除率相比较于普通加热都得到了显著提高;使用磷钼酸镧盐作催化剂时,脱硫效果较好,当用V(DMF)/V(diesel)为1/4的DMF萃取一次,直馏柴油的脱硫率达到72.2 %,回收率为97.6 %,柴油硫含量从994 g/g降至276 g/g,达到欧洲柴油质量Ⅲ号标准。
     由磷钼酸分别与四甲基氯化铵、十二烷基三甲基氯化铵、十六烷基三甲基氯化铵、十八烷基三甲基氯化铵经复分解反应制得四种磷钼酸季铵盐。FT-IR图谱表明,磷钼酸掺杂季铵盐后其Keggin结构未受破坏;XRD结果显示,磷钼酸掺杂季铵盐后活性中心得到了分散,并且分散程度随着季铵盐中烷基链长度的增加而提高;UV-vis图谱显示,磷钼酸掺入季铵盐后,Mo=O键、组内Mo—Ob—Mo桥氧键和组间Mo—Oc—Mo桥氧键的强度都得到了明显降低,供氧能力增强;TG-DSC图谱表明,磷钼酸掺入季铵盐后,磷钼杂多化合物的表面和杂多阴离子的结构发生了较大改变,磷钼杂多化合物的热稳定性降低;SEM图谱显示,磷钼酸掺入季铵盐后,形成了类似于分子筛式的蓬松结构,催化活性中心得到高度分散,有利于提高催化效率。
     考察了分别以磷钼酸四甲基铵、磷钼酸十二烷基三甲基铵、磷钼酸十六烷基三甲基铵和磷钼酸十八烷基三甲基铵作催化剂时模型油和柴油的氧化脱硫。结果表明,催化剂用量、H2O2初始浓度、反应温度和反应时间等因素对模型油和柴油的氧化脱硫均有影响,并且在相同的反应条件下DBT比BT更容易被氧化;动力学研究表明,DBT和BT的氧化都符合表观一级反应,磷钼酸十二烷基三甲基铵、磷钼酸十六烷基三甲基铵和磷钼酸十八烷基三甲基铵催化DBT氧化的表观活化能分别为31.4 kJ/mol、26.8 kJ/mol和22.5 kJ/mol,而BT催化氧化的表观活化能分别为45.7 kJ/mol、54.5 kJ/mol和62.4 kJ/mol;磷钼酸四甲基铵中的碳链太短,不能形成稳定的乳化体系,因而催化活性较低;十八烷基的长链能够将DBT环抱到催化反应中心并形成稳定的乳化体系,因而磷钼酸十八烷基三甲基铵对DBT表现出了较好的催化活性;十二烷基的长链对BT分子具有较好的环抱能力和具有较低的位阻效应,因而磷钼酸十二烷基三甲基铵对BT表现出了较好的催化活性;以磷钼酸十八烷基三甲基铵作催化剂,在m(催化剂) / m(柴油) = 1. 8 %、V ( H2O2 ) / V (柴油) = 2.5 %、反应温度为70℃的条件下反应3 h,柴油的脱硫率达88. 7 %,回收率不低于99 %。
     探讨了柴油氧化后萃取剂种类、萃取剂用量和萃取次数等分离条件对柴油的脱硫率和回收率的影响。结果显示,选择DMF作萃取剂时,柴油同时具有较高的脱硫率和回收率;减少单次萃取剂的用量并增加萃取的次数,既可以减少萃取剂的总用量,又可以同时提高柴油的脱硫率和回收率;增加萃取次数,脱硫率提高了,但柴油的回收率却明显下降。因此,柴油的高脱硫率和高回收率是一对矛盾。
     运用气相色谱和气相色谱/质谱联用手段追踪了DBT和BT的氧化产物,并推测了磷钼杂多化合物催化柴油氧化脱硫的反应机理。首先,过氧化氢亲核进攻催化剂的MoVI活性中心,形成活性的氢过氧化MoVI,然后含硫化合物中的硫原子亲核进攻氢过氧化MoVI同时释放出一个水分子后形成MoVI过氧自由基,紧接着MoVI过氧自由基进攻硫原子,形成亚砜和释放出催化剂的活性中心MoVI。接下来,亚砜经过与上述相似的催化氧化过程进一步氧化成砜,释放出的催化剂活性中心MoVI进入新的催化氧化循环。由于杂多化合物催化柴油氧化脱硫为多相反应,而磷钼酸季铵盐和柴油能够形成稳定的催化乳化体系,因此磷钼酸季铵盐的催化活性大大高于磷钼酸金属盐。
With people's environmental awareness increasing, the control target of sulfur content in fuel oil continues to increase. In fact, zero-emission of sulfur in fuel oil will be the ultimate goal for the future of the world. The conventional hydrodesulfurization process (HDS) is inefficient for removing of thiophene sulfurs and has become the bottleneck for deep desulfurization of fuel oil. However, the oxidative desulfurization method (ODS) has been widely concerned for its mild reaction conditions, efficiency and easy to take off thiophene sulfur which is difficult to be removed by HDS. In the paper, eight types of phosphomolybdates have been prepared by double decomposition, and the samples’constructions and thermal properties have been characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), thermogravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM). Moreover, the oxidative desulfurization of model oil (benzothiophene and dibenzothiophene) and diesel fuel catalyzed by the samples, the separation methods for the oxidized diesel fuel and the catalytic reaction mechanism of oxidative desulfurization catalyzed by phosphomolybdates have been discussed.
     Metallic phosphomolybdates have been prepared by mixing of phosphomolybdic acid and lanthanum chloride, cerium chloride, vanadium oxide chloride and chromium chloride via double decomposition reaction, respectively. FT-IR analysis shows that the phosphomolybdates keep the Keggin structures. XRD analysis indicates that the additions of lanthanum, cerium, vanadium and chromium are favorable for the structure formation and improve of the phosphomolybdates. UV-vis. analysis shows that the characteristic absorption peaks become a little red shift with mixing of metallic elements into the counter positions, which cut down the transition energies of the Mo-Ob-Mo and Mo-Oc-Mo bonds. TG-DSC analysis shows that the surface and heteropoly anion structures of the phosphomolybdates have been changed with mixing of lanthanum, cerium, vanadium and chromium, respectively.
     The catalytic oxidative desulfurizations of model oil and diesel fuel have been investigated by phosphomolybdic acid, lanthanum phosphomolybdate, cerium phosphomolybdate, vanadium oxide phosphomolybdate and chromium phosphomolybdate, respectively. The results show that the amount of catalyst, initial concentration of H2O2, reaction temperature and reaction time are impacted on the oxidative desulfurization, and the oxidative reactions of dibenzothiophene (DBT) and benzothiophene (BT) are in conformity with apparent-first order kinetics. The conversion rates of DBT and BT under microwave radiation heating are significantly higher than those of traditional heating with the same reaction conditions. When catalyzed by lanthanum phosphomolybdate and extracted once with V(DMF)/V(diesel) of 1/4, the better desulfurization rate of diesel fuel reaches 72.2 % with the recovery rate of 97.6 %, and the sulfur content in the diesel fuel reduces from 994 g/g to 276 g/g, which meets the European III standard.
     Quaternary ammonium phosphomolybdates have been prepared by mixing of phosphomolybdic acid and tetramethyl ammonium chloride (TMAC), dodecyl trimethyl ammonium chloride (DTAC), hexadecyl trimethyl ammonium chloride (HTAC) and octadecyl trimethyl ammonium chloride (OTAC) via double decomposition reaction, respectively. FT-IR analysis shows that the quaternary ammonium phosphomolybdates keep the Keggin structures. XRD anslysis indicates that HPMo clusters are finely dispersed with mixing of quaternary ammonium salts, and the dispersion levels increase with longer alkyl chains in the catalysts. UV-vis analysis shows that the bond strengths of Mo=O, Mo-Ob-Mo and Mo-Oc-Mo lower with mixing of quaternary ammonium salts, which indicates the favorable ability for oxygen supply. TG-DSC analysis indicates that the surface and heteropoly anion structures of the phosphomolybdates have been changed with mixing of quaternary ammonium salts and the thermal stabilization of the quaternary ammonium phosphomolybdates has been cut down. SEM anslysis shows that the catalysts form the loose structure like the molecular sieves, which leads to the higher dispersion of the catalytic active centers and higher catalytic properties.
     The catalytic oxidative desulfurizations of model oil and diesel fuel have been investigated by tetramethyl ammonium phosphomolybdate, dodecyl trimethyl ammonium phosphomolybdate, hexadecyl trimethyl ammonium phosphomolybdate and octadecyl trimethyl ammonium phosphomolybdate, respectively. The results show that the amount of catalyst, initial concentration of H2O2, reaction temperature and reaction time are impacted on the oxidative desulfurization, and the catalytic oxidative reactivity towards DBT is much higher than that of BT under the same reaction conditions. The oxidative reactions of dibenzothiophene (DBT) and benzothiophene (BT) are in conformity with apparent-first order kinetics. The apparent activation energies of DBT catalyzed by dodecyl trimethyl ammonium phosphomolybdate, hexadecyl trimethyl ammonium phosphomolybdate and octadecyl trimethyl ammonium phosphomolybdate are 31.4 kJ/mol, 26.8 kJ/mol and 22.5 kJ/mol, respectively, and the apparent activation energies of BT are 45.7 kJ/mol, 54.5 kJ/mol and 62.4 kJ/mol, respectively. As the alkyl chains in the tetramethyl ammonium phosphomolybdate are too short to form stable emulsion system, so the catalytic reactivy of the catalyst is low. Octadecyl chains are more favorable to wrap up DBT to the catalytic center and form stable emulsion system with the better conversion rates of DBT. The shorter dodecyl chains can wrap up BT more suitably and bring smaller steric hindrance, which displays the better conversion rates of BT. Under the condition of m(catalyst)/m(diesel) 1.8 %, v(H2O2)/v(diesel) 2.5 %, 70°C and 3 h, the desulfurization rate of diesel fuel reaches 88.7 % with the recovery rate of no less than 99 % catalyzed by octadecyl trimethyl ammonium phosphomolybdate.
     The effects of the separation methods, such as the types of extractant, extractant dosage and extraction times, for the desulfurization rates and the recovery rates of the diesel fuel have been investigated. The results show that the diesel fuel can get the high desulfurization rate and the high recovery rate with using DMF as the extractant. To cut down the solvent/diesel ratio and increase the extraction times, the total amount of the extraction agent can be reduced and the higher desulfurization rate and recovery rate can be got. With the extraction times increasing, the desulfurization rates increase, but the recovery rates of diesel decrease significantly. Therefore, the high desulfurization rate and the high recovery rate are contradictory for the oxidative desulfurization of diesel fuel.
     The oxidized products of DBT and BT have been traced by gas chromatography (GC) and gas chromatography/mass spectrum (GC/MS), and the reaction mechanism of oxidative desulfurization of diesel fuel has been speculated. Firstly, hydrogen peroxide attacks nucleophilicly the active center MoVI of the catalyst to form the active hydrogen peroxide MoVI. Secondly, the sulfur atom in the sulfur compounds attacks nucleophilicly the hydrogen peroxide MoVI and gives out one water molecule to form the MoVI peroxy radicals. Thirdly, the MoVI peroxy radicals attack the sulfur atoms to form sulfoxides and give out the active center MoVI. Then, the sulfoxides can be oxidized to sulfones with a similar oxidation process of the previous, and the leased active site MoVI enters a new cycle of catalytic oxidation. As the catalytic oxidation of diesel fuel is a multi-phase reaction and the efficient catalytic emulsion system can be formed with mixing of quaternary ammonium salts, the catalytic reactivity of quaternary ammonium phosphomolybdates are much higher than those of metallic phosphomolybdates.
引文
[1] Mc K J J. Petroleum processing handbook[M]. New York: Marcel Dedder Inc, 1992, 677-696.
    [2] Yin C,Zhu G,Xia D. A study of the distribution of sulfur compounds in gasoline fraction produced in China. Part II. The distribution of sulfur compounds in full-range FCC and RFCC naphthas[J]. Fuel Process Technol, 2002, 79: 135-140.
    [3]山红红,李春义,赵博艺,等. FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-81.
    [4]郑嘉惠.清洁燃料生产技术评述[J].当代石油化工,200l,11(1):4-6.
    [5]孙志娟,余漠鑫,张心弧,等.油品中噻吩类硫化物脱除技术研究进展[J].化工进展,2002,24(9):l002-l010.
    [6]赵地顺,张娟,孙增涛,等.活性炭负载TiO2光催化氧化二苯并噻吩的研究[J].燃料化学学报,2008,36(3):322-325.
    [7]刘翠微,张态艳,马四国,等.燃料油氧化脱硫技术进展[J].河北工业科技,2005,22(1):44-47.
    [8]赵玉艳,冯丽娟,郑素莲,等.柴油催化氧化脱硫新技术[J].化学研究与应用,2007,19(11):1191-1198.
    [9]范印帅,刘淑芝,孙兰兰.柴油脱氮精制技术研究进展[J].化工科技,2007,15(2):63-66.
    [10] Gore W L, Bonde S E, Dolbear G E, et al. Method of desulfurization and dearomatization of petroleum liquids by oxidation and solvent extraction[P]. US: 6596914, 2003.
    [11] Bonde S E, Gore W L, Dolbear G E, et al. The conversion extraction desulfurization process: a technology update[J]. Prepr-Am Chem Soc Div Petro Chem, 2000, 45(2): 365-372.
    [12] LüH Y, Gao J B, Jiang Z X, et al. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J Catal, 2006, 239: 369-375.
    [13] Ma X L, Sun L, Song C S. A New approach to deep desulphurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catal Today, 2002, 77: 107-116.
    [14]王萍,吕志凤,战风涛.活性炭吸附法脱除加氢催化柴油中的硫化物[J].石化技术与应用,2006,24(3):194-197.
    [15]蒋宗轩.吸附和氧化-萃取(吸附)用于柴油超深度脱硫研究[D].大连:中国科学院大连物理化学研究所,2003.
    [16] Kim J H, Ma X L, Zhou A N, et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: A study on adsorptive selectivity and mechanism[J]. Catal Today, 2006, 111(l-2): 74-83.
    [17] Zhang J C, Song L F, Hu J Y, et al. Investigation on gasoline deep desulfurization for fuel cell applications[J]. Energy Conversion and Management, 2005, 46(l): l-9.
    [18] Union Oil Company of California. Desulfurization of hydrocarbons[P]. US: 4419224, 1983-12-06.
    [19] Exxon Research and Engineering Company. Nickel adsorbent for sulfur removal from Hydrocarbon feeds[P]. US: 4634515, 1987-01-06.
    [20] Arturo J H, Qi G, Yang R T. Desulfurization of commercial fuels byπ-complexation: Monolayer CuCl/γ-A12O3[J]. Appl Catal B: Environ, 2005, 61: 212-218.
    [21] Vinay M B, Chang H K, Jung G P, et al. Desulfurization of diesel using ion-exchanged zeolites[J]. Chem Eng Science, 2006, 61(8): 2599-2608.
    [22] Riso A D, Gullotti M, Casella L, et al. Selectivity in the peroxidase catalyzed oxidation of phenolic sulfides[J]. J Mol Catal A: Chem, 2003, 204-205: 391-340.
    [23] Ohshiro T, Izumi Y. Microbial desulfurization of organic sulfur compounds in petroleum[J], Biosci Biotechnol Biochem, 1999, 63(l): 1-9.
    [24]佟明友,马挺,张全,等.利用休止细胞法选择性脱除燃料油中有机硫[J].环境科学,2005,26(l):24-27.
    [25]马挺,佟明友,张全,等.脱硫菌Fds-1的分离鉴定及其对柴油脱硫特性的研究[J].微生物学报,2006,46(l):104-110.
    [26] Chang J H, Chang Y K, Hee W R, et al. Desulfurization of light gas oi1 in immobilized cell systems of Gordona sp. CYKS1 and norcardia sp. CKYS2[J]. FEMS Microbio Letters, 2000, 182: 309-312.
    [27]郭坤,侯凯湖,杨红健.汽油非加氢深度脱硫技术的进展[J].河北化工,2005,1(3):4-6.
    [28]王军民,房少华,廖启玲,等.催化裂化汽油溶剂萃取脱硫工艺的研究[J].炼油设计,2000,30(10):32-34.
    [29]张艳维,李建华,张光杰.燃料油氧化脱硫技术进展[J].精细石油化工进展,2008,9(3):27-31.
    [30]陈兰菊,郭绍辉,赵地顺.车用燃料油氧化脱硫技术进展[J].燃料化学学报,2005,33(2):247-252.
    [31]王宏伟,贺振富,田辉平. FCC汽油非临氢脱硫技术进展[J].化工进展,2005,24(11):1216-1224.
    [32] Huff J, George A, Alexander B D, et al. Sulfur removal process[P]. US: 6048451, 2000-04- 11.
    [33]黄蔚霞.离子液体对催化裂化汽油脱硫降烯烃的催化性能研究[D].北京:石油化工科学研究院,2004.
    [34]路勇,何鸣元,宋家庆,等.氢转移反应与催化裂化汽油质量[J].炼油设计,1999,29(6):5-11.
    [35]朱全力,赵旭涛,赵振兴.加氢脱硫催化剂与反应机理的研究进展[J].分子催化,2006,20(4):372-383.
    [36]王宏伟,贺振富,田辉平. FCC汽油非临氢脱硫技术进展[J].化工进展,2005,24 (11):1216-1224.
    [37]王鹏,傅军,何鸣元.含噻吩烷烃在分子筛上裂化脱硫的研究[J].石油炼制与化工,2000,31(3):58-62.
    [38]张竹梅.生产低硫汽油的新技术[J].石油化工环境保护,2004,27(1):53-56.
    [39]赵杉林,孔令照,李萍,等.微波辐射柴油脱硫实验研究[J].化工科技,2005,13(3):1-4.
    [40] Exxon Mobil Research and Engineering Company. Membrane process for separating sulfur compounds from FCC light naphatha[P]. US: 20020111524, 2002-08-15.
    [41] Mondal S, Hangun-Balki Y, Alexandrava L. Oxidation of sulfur components in diesel fuel using Fe-TAML catalyst and hydrogen peroxide[J]. Catal Today, 2006, 116(7): 554-561.
    [42]杨成.生产超低硫燃料油的氧化脱硫技术进展[J].当代化工,2005,34(5):292-294.
    [43]李林,唐晓东,邹雯炆,等.氧化脱硫生产低硫柴油[J].精细石油化工进展,2007,8(1):51-55.
    [44]唐晓东,崔盈贤,丁志鹏,等.直馏柴油选择催化氧化脱硫催化剂的制备与评价[J].石油化工,2005,34(10):15-19.
    [45]余国贤,陈辉,陆善祥,等.柴油催化氧化深度脱硫研究[J].高校化学工程学报,2006,20(4):616-621.
    [46]吕志凤,战风涛,李林,等.用H2O2-有机酸氧化脱除催化裂化柴油中的硫化物[J].石油大学学报(自然科学版),2001,25(3):26-31. [47 ]赵地顺,任红威,李乐.季铵盐相转移催化氧化噻吩脱硫的研究[J] .高等学校化学学报,2007,28 (4):739- 742.
    [48]李忠铭,余国贤,陆善祥.亚铁离子及甲酸催化过氧化氢氧化柴油深度脱硫研究[J].石油与天然气化工,2006,35(4):255-258.
    [49] Petro S I. Selective oxidation: better removal of sulfur from diesel fuel [J]. Chem Eng, 2000, 107 (4): 17-19.
    [50]齐云霞,熊杰明,任绍梅,等.乙酸酐/过氧化氢催化氧化脱除α-甲基萘中甲基苯并噻吩[J].石油化工高等学校学报,2006,19 (4):15-18.
    [51]赵地顺,马四国,刘翠微. FCC汽油选择性氧化脱硫的实验室研究[J].石油炼制与化工,2006,37 (1):30-33.
    [52] Dolbear G E, Skov E R. Selective oxidation as a route to petroleum desulfurization[M]. Prepr-Am Chem Soc, Div Pet Chem, 2000, 45(2): 375-378.
    [53] Zannikos F, Losi E, Stoumas S. Desulfurization of petroleum fractions by oxidation and solvent extraction[J]. Fuel Process Technol, 1995, 42: 35-45.
    [54]杨丽娜,李德飞,李东胜,等.石油二厂催化裂化柴油化学方法脱硫[J].抚顺石油学院学报,2002,22 (2):22-24.
    [55] Taramasso M,Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides[P]. US: 4410501, 1983-10-18.
    [56] Reddy J S, Kumar R, Ratnasamy P. Titanium silicate-2: Synthesis, characterization and catalytic properties[J]. Appl Catal, 1990, 58(2): L1-L4.
    [57] Corma A, Esteve P, Martinez A. et al. Oxidation of olefms with hydrogen peroxide and ten-butyl hydroperoxide on Ti-beta catalyst[J]. J Catal, 1995, 152: 18-24.
    [58] Vander W J C, Rigutto M S, Van B H, et al. Zeolite titanium beta as a selective catalyst in the peoxidation of bulky alkenes[J]. Appl Catal A, 1998, 167: 331-342.
    [59] Corma A, Navarro M T, Perez-Parienta J. Synthesis of an ultralarge pore titanium silicateisomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. J Chem Soc Chem Commun, 1994, 368(2): 147-148.
    [60] Blasco T, Corma A, Navarro M T, et a1. Synthesis, characterization and catalytic activity of Ti-MCM-41 structures[J]. J Catal, 1995, 156(1): 65-74.
    [61] Koyano K A, Tatsumi T, et a1. Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure[J]. J Chem Soc Chem Commun, 1996, 145-146.
    [62] Tuel A L, Ben Y. A new template for the synthesis of titanium silicalites with the ZSM-48 structure[J]. Zeolites, 1995, 15: 164-170.
    [63] Peter T T, Malama C, Thomas J P. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J]. Nature, 1994, 368: 321-323.
    [64] Vasile H, Fajula F, Bousquet J. Mild oxidation with H2 over Ti-containing molecular sieves- A very efficient method for removing aromatic sulfur compounds form fuels[J]. J Catal, 2001, 198(2): 179-186.
    [65] Shiraishi Y, Hara N, Hirai T, et al. Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts[J]. J Chem Eng Jp, 2002, 35(12): 1305-1311.
    [66] Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2[J]. Catal Today, 2004, 93-95: 341-345.
    [67] Kong L Y, Li G, Wang X S, et a1. Thiophene oxidation over titanium silicalite using hydrogen peroxide[J]. Chin J Catal, 2004, 25(2): 89-90.
    [68] Kong L Y, Li G, Wang X S. Kinetics and mechanism of liquid phase oxidation of thiophene over TS-1 using H2O2 under Mild Conditions[J]. Catal Lett, 2004, 92(3-4): 163-167.
    [69] Collins F M, Andrew R L, Christopher S. Oxidative desulphurization of oils via hydrogen peroxide an heteropolyanion catalysis[J]. J Mol Catal A: Chem, 1997, 1 (17): 397-403.
    [70] Huang D,Wang Y J,Yang L M, et al. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006, 450: 1880-1885.
    [71] Yazu K,Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its applcation to oxidative desulfurization of light oil[J]. Energy & Fuels, 2001, 15: 1535-1536.
    [72] Yazu K, Furuya T, Miki K, et al. Tungstophosphoric acid–catalyzed oxidativedesulfurization of light oil with hydrogen peroxide in a light oil/ acetic acid biphasic system[J]. Chem Letters, 2003, 32(10): 920-921.
    [73] Li C, Jiang Z X, Gao J B, et al. Ultra-deep desulfurization of diesel via oxidation with a recoverable catalyst assembled in emulsion[J]. A European Journal- Chemistry, 2004, 10(9): 2277-2280.
    [74] Gao J B, Wang S G, Jiang Z X, et al. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets[J]. J Mol Catal A: Chemical, 2006, 258: 261-266.
    [75] Yan X M, Lei J H, Liu D, et al. Synthesis and catalytic properties of mesoporous phosphotungstic acid/SiO2 in a self-generated acidic environment by evaporation induced self-assembly[J]. Materials Research Bulletin, 2007, 42: 1905-1913.
    [76]宾晓蓓,王凯鹏,曹宏,等.磷钨杂多化合物结构对柴油氧化脱硫性能的影响[J].当代化工,2006,35(4):223-226.
    [77] Mure T, Fairbridge C, Ring Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems[J]. Appl Catal A: General, 2001, 219: 267-280.
    [78]单玉华,邬国英,李为民,等.氧化法精制汽油或柴油的方法[P]. CN: 99119904, 2001-07-11.
    [79] Ramirez-Verduzco L F, Torres-Garcia E, Quintan G, et al. Desulfurization of diesel by oxidation/extraction scheme: Influence of the extraction solvent[J]. Catal Today, 2004, 98: 289-294.
    [80] Zapata B, Pedraza F, Miguel A V, et al. Catalyst screening for oxidative desulfurization using hydrogen peroxide[J]. Catal Today, 2005, 106: 219-221.
    [81] Caero L C, Hernandez E, Pedraza F, et al. Oxidative desulfurization of synthetic diesel using supported catalysts: Part I. Study of the operation conditions with a vanadium oxide based catalyst[J]. Catal Today, 2005, 107-108: 564-569.
    [82] Luis C C, Jorge F, Navarro A, et al. Oxidative desulfurization of synthetic diesel using supported catalysts: Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process[J]. Catal Today, 2006, 116(4): 562-568.
    [83]关涛,杜颖,叶芳.柴油催化氧化脱硫的研究[J].广州化工,2006,34(4):44-46.
    [84] Mei H, Mei B W, Yen T F. A new method for obtaining ultra-low sulfur diesel fuel via ultrasound assisted oxidative desulfurization[J]. Fuel, 2003, 82(4): 405-414.
    [85]李英,赵德智,袁秋菊.在超声条件下过氧化氢-三氟乙酸对柴油氧化脱硫性能的研究[J].炼油技术与工程,2005,35(4):36-39.
    [86]景晓燕,亢世杰,何周.超声波条件下催化氧化柴油脱硫的研究[J].应用科技,2006,33(12):57-59.
    [87]韩雪松,赵德智,戴永川.超声波作用下柴油深度氧化脱硫的研究[J].石油炼制与化工,2006,37(2):30-33.
    [88]韩雪松,赵德智,刘文豹.功能超声波作用下柴油的深度氧化脱硫[J].辽宁石油化工大学学报,2005,25(4):23-26.
    [89]石振东,商丽艳,赵杉林,等.微波辅助H2O2-CH3COOH-DMF氧化脱硫的研究[J].石油化工高等学校学报,2008,21(4):41-44.
    [90]商丽艳,李萍,赵杉林,等.微波辐射柴油氧化脱硫实验研究[J].科学技术与工程,2006,6(13):1901-1903.
    [91]张玲,李萍,张起凯.微波作用下柴油脱硫新方法的研究[J].化工科技,2007,15(l):13-16.
    [92]赵杉林,孔令照,李萍.微波辐射柴油脱硫实验研究[J].化工科技,2005,13(3):1-4.
    [93]赵地顺,刘翠微,马四国. FCC汽油光催化氧化脱硫的实验室研究[J].石油炼制与化工,2006,37(6):23-26.
    [94] Shiraishi Y, Ham H, Hirai T, et al. Deep desulfurization process for light oil by photosensitized oxidation using a triplet photosensitizer and hydrogen peroxide in an oil/water two-phase liquid-liquid extraction system[J]. Ind Eng Chem Res,1999, 38(4): 1589-1595.
    [95] Shiraishi Y, Hara H, Hirai L, et al.TiO2-mediated photocatalytic desulfurization process for light oils using all organic two-phase system[J]. J Chem Eng JP, 2002, 35(5): 489-492.
    [96] Matsuzawa S, Tanka J, Sato T, et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: Effect of hydrogen peroxide and ultrasound irradiation[J]. Photochem Photobiol A, 2002, 149(1-3): 183-189.
    [97] Robertson J, Bandosz T J. Photooxidation of dibenzothiophene on TiO2/hectorite thin films layered catalyst[J]. J Colloid and Interface Science, 2006, 299: 125-135.
    [98] Liu W Y, Lei Z L, Wang J K. Kinetics and mechanism of plasma oxidative desulfurization in liquid phase[J]. Energy Fuels, 2001, 15(1): 38-43.
    [99] Zaykina R F, Zaykin Y A, Mamonova T B, et al. Radiation methods for demercaptanization and desulfurization of oil products[J]. Radiation Physics and Chemistry, 2002, 63(3-6): 621-624.
    [100]刘万楹,雷正兰,吕伟,等.有机硫化物的等离子体液相氧化脱硫[J].应用化学,1997,5:83-85.
    [101] Schucker R C. Electrochemical oxidation of sulfur compounds in naphtha using ionic liquids[P]. US: 6274026, 2001-08-14.
    [102] Schucker R C. Electrochemical oxidation of sulfur compounds in naphtha[P]. US: 6338778, 2002-02-22.
    [103]汪远昊,王文波,刘红研,等.汽油电化学催化氧化脱硫酸性电解体系的筛选[J].石油炼制与化工,2006,37(8):29-33.
    [104] Wang W B, Wang S J, Wang Y H, et al. A new approach to deep desulfurization of gasoline by electrochemically catalytic oxidation and extraction[J]. Fuel Process Technol, 2007, 88: 1002-1008.
    [105] Kozhevnikov I V, Matveev K I. Homogeneous catalysts based on heteropolyacids ( review)[J]. Appl Catal, 2000, 5: 135-150.
    [106] Yadav G D, Mistry C K. Oxidation of benzyl alcohol under a synergism of phase transfer catalysis and heteropolyacids[J]. J Mol Catal A: Chem, 2001, 172(1-2): 135-149.
    [107] Pope M T, Muller A. Polyoxometalate Chemistry: An old field and new dimensions in several disciplines[J]. Angew Chem Int Ed Eng, 2001, 30: 34.
    [108] Hayashi H, Moffat J B. The properties of heteropolyacids and the conversion of methanol to hydrocarbons[J]. J Catal, 2005, 77: 473-484.
    [109] Ghosh A K, Moffat J B. Acidity of heteropoly compounds [J]. J Catal, 2006, 101: 238-245.
    [110] Nishimura T, Okahara T, Misono M. High catalytic activity of an insolube acidic cesium salt of PW12 for liquid-phase alkylation[J]. Appl Catal, 2001, 73: 7-11.
    [111]王雅珍,马立群,杨玉林.杂多酸的催化阻聚作用[J].精细化工,2000,17(4):228-231.
    [112] Ayturk E, Hamamci H, Karakas G. Production of lactic acid esters catalyzed by heteropoly acid supported over ton-exchange resins[J]. Green Chemistry, 2003, 5(4): 460-466.
    [113]于大伟,柳树华.固载杂多酸PW12 /SiO2催化合成对苯二甲酸二异辛酯[J].抚顺石油学院学报,1999,19(3):34-36.
    [114]杨水金,童文龙.二氧化钛负载磷钨钼杂多酸合成丁酮[J].精细石油化工进展,2006,8(8):21-23. [115 ]吕宝兰,丁志兵,杨水金.二氧化钛负载磷钨杂多酸合成苯甲醛[J].精细化工,2006,4(25):74-77. [116 ]李会鹏,刘传斌,高军.固载杂多酸催化剂研究进展[J].河南化工,2006,4(23):8-10.
    [117]蒋东梅,王军,朱海欧.正庚烷在改性USY负载杂多酸催化剂上加氢异构化反应[J].自然科学报,2003,1(25):36-40.
    [118] Zhu P, Wang D H. An efficient synthesis of substituted benzene-1, 2-dicarboxaldehydes[J]. Science in China, 2007, 2(50): 249-252.
    [119] Keggin J F. The structure and formula of 12-pbospbotongstic acid[J]. Proc Roy Soc London A, 1934, l44: 75-100.
    [120] Yang L N, Li J, Yuan X D, et al. One step non-hydrodesulfurization of fuel oil: Catalyzed oxidation adsorption desulfurization over HPWA-SBA-15[J]. J Mol Catal A: Chem, 2007, 262: 114-118.
    [121] Rappas, Alkis S. Process for Removing Low Amounts of Organic Sulfur from Hydrocarbon fuels[P]. US: 6402940, 2002-11-06.
    [122]陈敏,郑小明.稀土对Keggin结构磷钼酸催化剂结构和性能的影响[J].无机化学学报,2002,18(6):587-590.
    [123]亢世杰.磷钨酸盐催化剂的制备表征及应用研究[D].哈尔滨:哈尔滨工程大学,2007.
    [124] Pizzio L R, Vázquez P G, Cáceres C V, et al. Supported keggin type heteropolycompounds for ecofriendly reactions[J], Appl Catal A, 2003, 256: 125-139.
    [125]唐晓东,崔盈贤,何柏,等.柴油汽-油-固催化氧化脱硫研究[J].西南石油大学学报,2007,29(1):95-97.
    [126]王云,李钢,王祥生等. Ti-HMS催化氧化脱除模拟燃料油中的硫化物[J].催化学报,2005,26(7):567-570.
    [127] Luis C C, Emiliano H, Francisco P, et al. Oxidative desulfurization of synthetic dieselusing supported catalysts part I. Study of the operation conditions with a vanadium oxide based catalyst[J]. Catalysis Today, 2005, 107-108: 564-569.
    [128]李建源,周新锐,赵德丰,等.过氧化环己酮对二苯并噻吩的氧化脱除研究[J].燃料化学学报,2006,34(2):249-251.
    [129]余国贤,陆善祥,陈辉等.活性炭及甲酸催化过氧化氢氧化噻吩脱硫研究[J].燃料化学学报,2005,33(1):74-78.
    [130]戴咏川,亓玉台,赵德智.柴油超声波-Fenton试剂氧化脱硫反应研究[J].石油炼制与化工,2007,38(1):34-38.
    [131] Abdalla Z E A, Li B S, Tufail A. Direct synthesis of mesoporous (C19H42N)4H3(PW11O39)/ SiO2 and its catalytic performance in oxidative desulfurization[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2009, 341: 86-92.
    [132] Chang J, Wang A J, Liu J, et al. Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals[J]. Catal Today, 2010, 149: 122-126.
    [133] García-Gutiérrez J L, Fuentes G A, Hernández-Terán M E, et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system parameters on catalytic activity[J]. Appl Catal A: Gen, 2008, 334: 366-373.
    [134] Trakarnpruk W, Rujiraworauwt. Oxidative desulfurization of gas oil by polyxometalates catalysts[J]. Fuel Process Technol, 2009, 90: 411-414.
    [135] Jiang X, Li H M, Zhu W S, et al. Deep desulfurization of fuels catalyzed by surfactant-type decatungstates using H2O2 as oxidant[J]. Fuel, 2009, 88: 431-436.
    [136] Prasad V V D N, Jeong K E, H. J. Chae, et al. Oxidative desulfurization of 4, 6-dimethyl dibenzothiophene and light cycle oil over supported molybdenum oxide catalysts[J]. Catal Commun 2008, 9: 1966-1969.
    [137] Te M, Fairbridge C, Ring Z, Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems[J]. Appl Catal A, 2001, 219: 267- 280.
    [138] Otsuki S, Nonaka T, Takashima N, et al. Oxidative desulfurization of light gas oil and vaccum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000, 14: 1232-1239.
    [139] Wang D H, Qian E W, Amano H, et al. Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide[J]. Appl Catal A, 2003, 253: 91-99.
    [140] Tang X D, Cui Y X, He B, et al. Gas-liquid-solid catalytic oxidation desulfurization of diesel[J]. J Southwest Petrol Univ, 2007, 29: 95-98.
    [141] Dai Y C, Qi Y T, Zhao D Z, et al. An oxidative desulfurization method using ultrasound/Fenton’s reagent for obtaining low and/or ultra-low sulfur diesel fuel[J]. Fuel Process Technol, 2008, 89: 927-932.
    [142] Cede?o-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, et al. Oxidative desulfurization of synthetic diesel using supported catalysts: Part III. Support effect on vanadium-based catalysts[J]. Catal Today, 2008, 133-135: 244-254.
    [143] Mello P D A, Duarte F A, Nunes M A G, et al. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock[J]. Ultrason Sonochem, 2009, 16: 732-736.
    [144] Zhou X R, Li J, Wang X N, et al. Oxidative desufurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine[J]. Fuel Process Technol, 2009, 90: 317-323
    [145] Yu G X, Lu S X, Chen H, et al. Diesel fuel desulfurization with hydrongen peroxide promoted by formic acid and catalyzed by activated carbon[J]. Carbon, 2005, 43: 2285-2294.
    [146]李大东,蒋福康.清洁燃料生产技术的新进展[J].中国工程科学,2003,5(3):6-14.
    [147] Shirashi Y, Tachibana K, Hirai T, et al. Photochemical production of biphenyls from oxidized sulfur compounds obtained by oxidative desulfurization of light oils[J]. Energy & Fuels, 2003,17: 95-100.
    [148]曾勇平,闵元曾,居沈贵.分子模拟在脱硫机理研究中的应用[J].现代化工,2006,26(4):66-69.
    [149] JoséL G, Gustavo A F, Maria E H, et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3[J]. Appl Catal A: General, 2006, 305: 15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700