用户名: 密码: 验证码:
肿瘤热疗用碳纳米管热种子复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤热疗当前最迫切需要解决的问题是如何在所需加热的组织进行均匀的加热,使其达到43℃以上的有效治疗温度,但又不引起附近正常组织严重的和永久性的损伤,即如何实现肿瘤靶向定位治疗。纳米科技的飞速发展为肿瘤热疗开启了新的思路。研发一种吸波性能优异、高产热率、生物相容性好的新型肿瘤热疗用热种子材料,实现微波靶向定位热疗,将为肿瘤的医治开辟一条高效的新途径,具有十分重要的科学意义与实用价值。碳纳米管(CNTs)是纳米材料的典型代表之一,具有良好的吸波性能和热学性能,决定了它作为热种子材料在微波肿瘤靶向热疗中具有广阔的应用前景。
     本文围绕碳纳米管热种子材料的生物学效应、表面修饰、吸波性能以及其在微波的作用下是否具有明显的热效应,这一主题进行了一系列的实验工作和理论研究,为促进热种子材料的实用化,同时制备了具有可注射性的热疗用温敏凝胶。本论文主要研究内容如下:
     1、本研究以Wistar大白鼠为研究对象,主要对不同尺寸的多壁碳纳米管的生物学效应进行了系统的评价。采用气管注入和尾静脉注射两种方式将直径为40-60nm多壁碳纳米管(40-60MWNTs)和直径小于10nm的多壁碳纳米管(10MWNTs)暴露于大白鼠的体内,同时分别采用纳米二氧化硅(SiO_2)和乙炔碳黑(Cb)作为阳性和阴性对照。详细评估了MWNTs缓慢注入大白鼠气管后在肺部产生的毒性及MWNTs进入体内后对靶器官的影响。
     气管注入法实验结果表明:实验中纳米颗粒均不同程度的引起了肺部的损伤,引起肺部损伤严重程度的顺序为:Cb>10nm MWNTs>40-60nm MWNTs>SiO_2。另外,MWNTs对肺部损伤的程度与剂量呈依赖关系,当在低剂量(1mg/kg)时,40-60nm MWNTs仅仅对肺部引起了轻微的炎症损伤,与空白对照组几乎没有区别。随着剂量的增大,MWNTs对肺部的损伤越来越显著。
     尾静脉注射法实验结果表明:纳米粒子进入大鼠体内后,大鼠心脏、肾脏、肝脏和胃结构正常,未见明显的病理损伤。但是各种纳米粒子却在大鼠肺部沉积,随着暴露时间的延长,纳米粒子一部分被肺巨噬细胞清除体外,但是残余的纳米粒子引起了肺部的病理学改变。与气管注入法相似,商品化MWNTs对肺部的损伤呈现正的剂量一效应关系。
     另外,不同的暴露方式对靶器官的影响程度不同。在相同的剂量下,采用气管注入法MWNTs引起的肺部损伤比采用尾静脉注射法MWNTs引起的肺部损伤要显著。综合上述数据和结果,我们可以看出,碳纳米管对人类的身体健康具有潜在的毒性。
     2、针对CNTs潜在的毒性,本文选取羟基磷灰石(HAp)、四氧化三铁(Fe_3O_4)和壳聚糖(CS)三种目前公认的生物相容性较好的材料,对CNTs进行了表面修饰,在保证CNTs优异性能的同时,提高CNTs的生物相容性,扩大CNTs在医学中的应用。
     采用化学沉淀结合水热法成功实现了HAp对CNTs的表面修饰。当CNTs质量分数为10%,160℃水热处理5小时后,在CNTs的表面可以获得具有一定微观形貌、高结晶度、组分单一的HAp包覆层。
     采用化学沉淀结合水热法成功实现了Fe_3O_4对CNTs的表面修饰,Fe_3O_4纳米小粒子在CNTs的表面包覆均匀,具有普遍性;包覆Fe_3O_4后的CNTs具有纯Fe_3O_4相似的超顺磁性,当CNTs的质量分数为10%时,其比饱和磁化强度为64.53emu/g,矫顽力为14.03Oe,可以实现CNTs在磁场中的定向,说明我们成功制备了一种新的肿瘤靶向热疗用材料。
     采用表面沉积交联法,实现了CS对CNTs的表面修饰。包覆CS后CNTs的管径尺寸从40-60 nm增加到100nm左右。CS均匀的覆盖在CNTs表面,界面结合良好。由于CS覆盖层的静电排斥作用,使被包裹后CNTs的团聚减少。
     3、采用矢量网络分析仪测试碳纳米管复合材料的电磁参数,并对实测的电磁参数数据进行计算得反射率R(dB)—f(GHz)曲线,结果表明:
     CNTs/HAp复合材料为典型的电损耗型吸波材料,在0-5GHz范围内具有较好的吸波性能,其中CNTs在其中起到主导作用。随着CNTs含量的增加,CNTs/HAp复合材料的吸波能力逐渐增强,吸收峰向着高频移动,频宽增大。当CNTs的质量分数为8%时,复合材料的最大吸收峰在3.0 GHz附近,反射率达-26dB。
     Fe_3O_4对CNTs包覆起到了调整CNTs电磁参数的作用,在原有的介电损耗的基础上又增加了Fe_3O_4的磁滞损耗和共振吸收等特性。CNTs/Fe_3O_4复合材料在0-5GHz范围内具有较好的吸波性能,当CNTs的质量分数为4%时,CNTs/Fe_3O_4复合材料的吸收峰在2.2 GHz附近,反射率达-19dB,频宽为1G左右,能够满足微波热疗用热种子材料对吸波性能的要求。
     4、通过进行纳米材料在微波场中的升温实验,我们表征了材料的热效应,实验结果表明:
     经过HAp修饰后的碳纳米管的热效应远没有原始碳纳米管的热效应明显。随着CNTs含量的增大,CNTs/HAp复合材料粉体热效应越来越显著。当CNTs质量分数>8%时,其热效应基本上趋于稳定状态。CNTs/HAp生物复合材料优异的吸波性能和在微波场中具有良好的产热能力,加上HAp的优异的生物相容性,说明该复合材料可以作为微波热种子材料应用于肿瘤热疗。
     CNTs/Fe_3O_4复合材料在微波辐照下,热效应效果明显。另外,由于Fe_3O_4具有很好的磁性能和生物相容性,可以很好的解决热种子材料在生物体内的靶向定位问题。CNTs/Fe_3O_4复合材料是实现微波靶向热疗理想的热种子材料。
     5、在壳聚糖—甘油磷酸钠温敏凝胶的基础上成功制备出含有碳纳米管复合热种子材料的热疗用温敏凝胶。
     流变学测试表明:碳纳米管复合热种子材料(CNTs、CNTs/Fe_3O_4复合材料和CNTs/HAp复合材料)的加入在一定程度上破坏了凝胶的网络结构,使温敏凝胶的初始凝胶温度升高,但是仍然具有温敏特性。在10℃时G′<G″呈现液体的性质,在37℃时,G'>G″呈现凝胶的性质,并且随着剪切频率的改变,G'<G″曲线平直,受频率的影响不大,说明37℃时已经形成了完美的稳定的凝胶结构。
     碳纳米管复合热种子材料在凝胶体系中分布均匀,在微波场中具有良好的产热能力。25w下辐照10min,当CNTs含量为6mg/mL时,体系温度在初始温度基础上,升高了34.6℃;当CNTs/Fe_3O_4复合材料的含量为20mg/mL时,体系温度在初始温度基础上,温度升高了38.7℃;当CNTs/HAp复合材料的含量为20mg/mL时,体系温度在初始温度基础上,温度升高了35℃,说明含有碳纳米管复合热种子材料的温敏凝胶可以满足微波热疗的要求。
     6、用MTT法检测细胞增殖活力和计算相对增殖率。结果表明:CS温敏凝胶、CNTs-CS温敏凝胶、CNTs-Fe_3O_4-CS温敏凝胶、CNTs-HAp-CS温敏凝胶各浓度浸提液的细胞毒性为0-1级;采用直接接触法观察细胞与材料共同培养若干时间的细胞形态,结果表明:CNTs-Fe_3O_4-CS温敏凝胶生物相容性良好。形态学观察表明细胞在凝胶薄膜上具有良好的形态,细胞能在薄膜上面粘附、增殖。因此,可以认为所制备的热疗用温敏凝胶无细胞毒性,生物相容性良好,为进一步研究打下基础。
One of the major problems of tumor hyperthermia is how to make the temperature in tumor increase to 43℃and therefore to kill the tumor cells,without damaging the normal tissue nearby in recent years.A novel thermo-seed material with high thermal efficiency and good biocompatibility can carry out tumor targeted therapy in microwave hyperthermia.It will be a newly and highly effective way for the tumor hyperthermia. CNTs is a typical representative of nanomaterial.Due to outstanding microwave absorbing and thermal properties,carbon nanotubes could be used as thermo-seed material for microwave tumor targeted therapy.
     In this paper,the biological effects、the surface modification、microwave absorbing properties and the thermal effects of MWNTs were researched.Following are the main contents:
     1、We exposed different sizes mutil-wall carbon nanotubes(MWNTs)into Wistar rats in intratracheal instillation and intravenous injection two different administration modes.At the same time,we used silica(SiO_2)and acetylene carbon black(Cb),as positive and negative control.
     The results showed that:In intratracheal instillation experiments,the nanoparticles caused different levels of lung damage.The order of lung injury degree is:Cb>10nm MWNTs>40-60nm MWNTs>SiO_2.In addition,MWNTs showed dose-dependent relationship on the extent of lung injury.In the low-dose(1mg/kg),40-60 nm MWNTs only caused minor damage to lung inflammation,there were no difference with the control group almost.As the dose increased,the lung injury degree became more and more severely.When carbon nanotubes was exposed into rats by the method of intravenous injection the structure of lung tissue can produce obvious histopathologic changes but other tissues are almost in order.When the same dose carbon nanotubes was poured into the rats by intravenous injection and intratracheal instillation respectively,the inflammation reflection is mild that arose by the former than the latter. Under the conditions of this test,pulmonary exposure to MWNTs in rats by intratracheal instillation produced a series of multiple lesion in a dose-dependent and time-dependent manner,evidence of a foreign tissue body reaction.Although there are anormous differences in lung between rodent animals and human beings,the results could call attention to the human beings at potential risk for exposure to MWNTs.
     2、In this paper,the suface of CNTs were modified by hydroxyapatite(HAp),iron oxide(Fe_3O_4)and chitosan(CS)which are currently recognized to be biocompatible in order to attain a kind of multi-wall nanotubes composites combining the biocompatibility and the unique properties of pristine multi-wall carbon nanotubes.This will enlarge the potential application of CNTs in tumor hyperthermia.
     HAp nanoparticles were decorated on CNTs successfully by a simple and effective coprecipitation and hydrothermal treatment method.When CNTs content was 10%, after hydrothermal treatment,a certain high degree of crystallinity,pure component single HAp layer were obtained on the surface of CNTs.
     Fe_3O_4 nanoparticles were densely decorated on CNTs successfully prepared by a simple and effective coprecipitation and hydrothermal treatment method.Fe_3O_4 nanoparticles in the surface of carbon nanotubes were uniform and universal;The hysteresis loops of the decorated MWNTs were measured by vibrating sample magnetometer(VSM),and the results showed that the composite was ferromagnetism with the saturated magnetization of 64.53 emu/g,and the coercive of 14.03 Oe.This results showed that CNTs/Fe_3O_4 composite had superparamagnetic character so that it could be easily magnetized in a applied magnetic field and could be used as a new tumor-tageted material in hyperthermia.
     We have successfully decorated the CNTs with chitosan by a controlled surface deposition and crosslinking process.The results of XRD and IR all expressed that the surface of CNTs were fully coverd with chitosan.This condition resulted in the external diameter of CNTs became thicker from 40-60nm to about 100nm which was very clear in TEM micrograph.We expect that the decoration can improve the biocompatibility of carbon nanotubes and the wettability of CNTs surface.
     3、The complex permeability and permittivity of the carbon nanotube composite were measured.Based on the theoretical calculation of reflection loss,the microwave absorption property of carbon nanotube composite has been measured in the frequency range from 0.5-5.0 GHz.The results showed that:
     CNTs/HAp composite had better absorbing properties in the 0.5-5.0 GHz range. With increasing of carbon nanotubes content,the microwave absorbing capacity of CNTs/HAp composite has been gradually strengthened,the absorption peak towards high frequency,the bandwidth was increased.When CNTs content was 8%,a maximum reflection loss value of-26 dB had been obtained at 3.0 GHz.The results indicated that this composite had significant potential for electromagnetic wave absorption application in tumor hyperthermia.
     CNTs/Fe_3O_4 composite also had better absorbing properties in the 0-5 GHz range. when CNTs content was 4%,the reflection loss value of -19dB and the bandwidth of 1G had been obtained at 2.2GHz.The results indicated that this composite had significant potential for electromagnetic wave absorption application in tumor hyperthermia.
     4、The thermal effect of thermo-seed material were described by heating experiment in the microwave field.The results showed that:
     With the increasing of CNTs content,the thermal effect was more obvious.But when CNTs content exceeded 8%,the thermal effect was gradually stabilized.CNTs played a dominant role in the thermal effect of CNTs/HAp composite powders.The thermal effects of CNTs/Fe_3O_4 composite was evident in the microwave field.When CNTs content exceeded 8%,the thermal effects of CNTs/Fe_3O_4 composite was comparative with pure CNTs.
     5、Carbon nanotubes composite-chitosan thermosensitive gels were prepared, which were characterized by Scanning Electronic Microscope(SEM)and Fourier Transform Infrared Spectrometer(FTIR).In this system chitosan thermosensitive gels were used as the carrier with CNTs composite dispersed in it.IR and SEM images indicated that CNTs composite were dispersed homogeneously in the carrier,and there were no chemical reactions between CNTs composite and gels components.
     The initial gelation temperature rised because the network structure of gel were damaged by adding nano thermal-seed material,Meanwhile,they still had thermo-sensitive properties.The viscoelastic properties of thermo-sensitive gel for hyperthermia,as investigated rheologically,indicated that if the region was below 37℃, where G′was lower than G″,showed the common viscoelastic behavior of a liquid;in the second region,G′and G″increased with the increasing of temperature and G′was higher than G″,indicated that an elastic gel network had been formed.
     Nano thermal-seed materials had a good heat production capacity in the microwave field,and were distributed uniform in the gel system.Under this condition(the power, 25w;irradiated temperature,10 minutes),when the content of CNTs was 6 mg/ml,the temperature of the system could increased by 34.6℃.when the content of CNTs/Fe_3O_4 was 20 mg/ml,the temperature of the system could increased by 34.6℃,when the content of CNTs/HAp was 20 mg/ml,the temperature could increased by 35℃.
     6、Cytotoxicity evaluation using L-929 cells as model system showed that the CNTs-CS thermo-sensitive gels,CNTs-Fe_3O_4-CS thermo-sensitive gels and CNTs-HAp- CS thermo-sensitive gels were nontoxic in proper composition.Option and SEM micrographs showed good morphology of L-929 cells in these hydrogels.MTT assay confirmed that there were no signicant difference between the hydrogels and control in cell avtivity,the toxicity level were 0-1 level.The results would be useful for the further research of developing these thermo-sensitive gels for tumor hyperthermia.
     This paper was supported by the Natural Science Foundation of the People's Republic of China(Grant No.30540061 and 50672051)
引文
[1]白春礼.纳米科技及发展前景[J].科学通报,2001,46(2):89-92.
    [2]白春礼.纳米科技—全面理解内涵,促进健康发展[J].学会月刊,2001,11:10-12.
    [3]曹茂盛,曹传宝,徐甲强.纳米材料学[M].哈尔滨工程大学出版社,2002.
    [4]曹茂盛,蒋成禹,田永君.纳米材料导论[M].哈尔滨工业大学出版社,2001.
    [5]张立德,解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005.
    [6]Ma M,Wu Y,Zhou J,et al.Size dependence of specific power absorption of Fe_3O_4 particle in AC magnetic field[J].Journal of Magnetism and Magnetic Materials,2004,268:33-39.
    [7]梦翠华.纳米技术在高分子材料改性中的应用[J].化工新型材料,2001,29(2):3-6.
    [8]Oberdorster G,Oberdorster E,Oberdorster J.Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J].Environ Health Perspect,2005,113:823-839.
    [9]张万忠,李万雄.纳米材料研究综述[J].湖北农学院学报,2003,23:397-400.
    [10]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995,6:29-34.
    [11]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [12]Zheng M,Jagota A,Strano M S,et al.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly[J].Science,2003,302:1545-1548.
    [13]Frank S,Ponchara P,Wang Z L,et al.Carbon Nanotube Quantum Resistors[J].Science,1998,280:1744-1746.
    [14]Rueckes T,Kim K,Joselevich E,et al.Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing[J].Science,2000,289:94-97.
    [15]Chen Y,Haddon R C,Fang S,et al.Chemical attachment of organic functional groups to single-walled carbon nanotube material[J].J Mater Res,1998,13:2423-3231.
    [16]姬海宁,张怀武.纳米碳管的研究与发展[J].磁性材料及器件,2001,32(4):37-40.
    [17]张成国.碳纳米管化学沉积CeO_2/Fe_2O_3的研究.山东大学硕士论文,2006,5.
    [18]Zhou X,Zhou J J,Ou-Yang Z C.Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory[J].Phy Rev B,2000,62:13692-13696.
    [19]Treacy M M J,Ebbesen W,Gibson J M.Exceptionally high Young's modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
    [20]Wong W E,Sheehan P E,Lieber C M Nanobeam mechanics-elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.
    [21]Bower C,Rosen R,Jin L.Deformation of carbon nanotubes in nanotube-polymer composites[J].Appl Phy Lett,1999,74:3317-3319.
    [22]Hayashida T,Pan L,Nakayama Y.Mechanical and electrical properties of carbon tubule nanocoils[J].Physica B,2002,323:352-353.
    [23]Coleman J N,Khan U,Blau W J,et al.Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon,2006,44:1624-1652.
    [24]Nardelli M B,Fattebert J L,Orlikowski D,et al.Mechanical properties,defects and electronic behavior of carbon nanotubes[J].Carbon,2000,38:1703-1711.
    [25]Lau K T,Gu Chong,Hui D.A critical review on nanotube and nanotube/nanoclay related polymer[J].Composites:Part B,2006,37:425-436.
    [26]张勇,朱海哲.碳纳米管[J].炭素技术,1995,6:21-26.
    [27]韩强,姚小虎.碳纳米管的原子模拟和连续体描述[M].北京:科学出版社,2007,9.
    [28]Goze-Bac C,Latil S,Lauginie P,et al.Magnetic interactions in carbon nanostructures[J].Carbon,2002,40:1825-1842.
    [29]Melanie David,Tomoya Kishi,Masanori Kisaku,et al.Magnetic and electronic properties of Fe-filled single-walled carbon nanotubes on metal surfaces[J].Surface Science,2007,601(18):4366-4369.
    [30]Orellana W,Fuentealba P.Structural,electronic and magnetic properties of vacancies in single-walled carbon nanotubes[J].Surface Science,2006,600(18):4305-4309.
    [31]Zhao J J,Chen X S,John R H.Optical properties and photonic devices of doped carbon nanotubes[J].Analytica Chimica Acta,2006,568(1-2):161-170.
    [32]Wei Fa,Xiaoping Yang,Jiangwei Chen,et al.Optical properties of the semiconductor carbon nanotube intramolecular junctions[J].Physics Letters A,2004,323(11-2):122-131.
    [33]Ho Y H,Chang C P,Shyu F L,et al.Electronic and optical properties of double-walled armchair carbon nanotubes[J].Carbon,2004,42(15):3159-3167.
    [34]Shan G C,Bao S Y.The effect of deformations on electronic structures and optical properties of carbon nanotubes[J].Physica E:Low-dimensional Systems and Nanostructures,2006,35(1):161-167.
    [35]Wei J Q,Zhu H W,Wu D H,et al.Carbon nanotubes filaments in household light bulbs[J].Appl Phy Lett,2004,84(24):4869-4871.
    [36]周萍,怡然.储氢的碳纳米管[J].国外科技动态,2000,39(4):27-27.
    [37]Becher M,Haluska M,Hirscher M,et al.Hydrogen storage in carbon nanotubes[J].C.R.Physique,2003,4:1055-1062.
    [38]Xu W C,Takahashi K,Matsuo Y,et al.Investigation of hydrogen storage capacity of various carbon materials[J].International Journal of Hydrogen Energy,2007,32(13):2504-2512.
    [39]Zhang H Y,Fu X J,Yin J F,et al.The effect of MWNTs with different diameters on the electrochemical hydrogen storage capability[J].Physics Letters A,2005,339(3-5):370-377.
    [40]Rodney S Ruoff,Dong Qian,Wing Kam Liu.Mechanical properties of carbon nanotubes:theoretical predictions and experimental measurements[J].C R Physique,2003,4:993-1008.
    [41]Bieruk M J,Liaguno M C,Rasosavijevi C M.Carbon nanotube composites for thermal management[J],Appl Phys Lett,2002,80:2767-2769.
    [42]Ning J W,Zhang J,Pan Y,et al.Fabrication and thermal properties of carbon nanotube/SiO_2composites[J].J Mater Sci Lett,2003,22:1019-1021.
    [43]黄祖雄,吴唯.碳纳米管在聚合物基吸波隐身复合材料上的应用[J].材料工程,2004,7:55-59.
    [44]沈翔,龚荣洲.碳纳米管的电磁性能和表面修饰研究现状[J].材料导报,2003,17:9-12.
    [45]曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003,2:34-36.
    [46]赵东林,沈曾民.含碳纳米管微波吸收材料的制备及其微波吸收性能研究[J].无机材料学报,2005,3(5):608-612.
    [47]Lin H Y,Zhu H,Guo H F,et al.Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J].Materials Letters,2007,61(16):3547-3550.
    [48]Peng Z H,Peng J C,Ou Y.Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes[J].Physics Letters A,2006,359(1):56-60.
    [49]Fan Z J,Luo G H,Zhang Z F,et al.Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites[J].Materials Science and Engineering:B,2006,132(1-2):85-89.
    [50]刘先曙.防止隐形飞机遭雷电袭击的碳纳米管复合材料板[J].科技导报,2002,6:25.
    [51]Jounet C,Maser W K,Bernier P,et al.Large-scale production of single-walled carbon nanotubes by electric-arc technique[J].Nature,1997,388(6644):756-758.
    [52]Guo T,Nikolaev P,Thess A,et al.Catalytic growth of single-walled nanotubes by laser vaporization[J].Chem Phy Lett,1995,243:49-54.
    [53]Dai H J,Rinzler A G,Nikolaev P,et al.Single-walled produced by metal-catalyzed disproportionation of carbon monoxide[J].Chem Phy Lett,1996,260:471-475.
    [54]Jounet C,Bernier P.Production of carbon nanotubes[J].Appl Phys A-Mater,1998,67:1-9.
    [55]Van der Waals RL,Ticich TM,Curtis VE.Diffusion flame synthesis of single-walled carbon nanotubes[J].Chem Phy Lett,2000,323:217:223.
    [56]Li Y M,Mann D,Rolandi M,et al.Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method[J].Nano Lett,2004,(2):317-321.
    [57]Song X,Fang Y.A technique of purification process of single-walled carbon nanotubes with air[J].Spectrochimica Acta Part A,2007,67:1131-1134.
    [58]Ebbesen T W,Ajayan P M,Hiura H,et al.Purification of nanotubes[J].Nature,1994,367:519.
    [59]Jeong T,Kim W Y,Hahn Y B.A new purification method of single-wall carbon nanotubes using H_2S and O_2 mixture gas[J].Chemical Physics Letters,2001,344:18-12.
    [60]Montoro L A,Rosolen J M.A multi-step treatment to effective purification of single-walled carbon nanotubes[J].Carbon,2006,44:3293-3301.
    [61]Colomer J F,Piedigrosso P,Fonseca A,et al.Different purification methods of carbon nanotubes produced by catalytic synthesis[J].Synthetic Metals,1999,103:2482-2483.
    [62]An K H,Jeon K K,Moon J M,et al.Transformation of singlewalled carbon nanotubes to multiwalled carbon nanotubes and onion-like structures by nitric acid treatment[J].Synthetic Metals,2004,140:1-8.
    [63]Chen C M,Chen M,Peng Y W,et al.Microwave digestion and acidic treatment procedures for the purification of multi-walled carbon nanotubes[J].Diamond & Related Materials,2005,14:798-803.
    [64]周宇松,吴希俊,周剑英.碳纳米管复合材料的研究进展[J].材料导报,2001,15(1):39-41.
    [65]刘举庆,肖潭,吴萍.碳纳米管的功能化及其在聚合物结构复合材料中的应用[J].纳米科技,2007,3:21-25.
    [66]Tsang S C,Chen Y K,Harris P L F,et al.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372:159-162.
    [67]Liu J,Rinzler A G,Dai H J,et al.Fullerence pipes[J].Science,1998,280:1253-1256.
    [68]Lago R M,Tsang S C,Lu K L,et al.Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid group[J].J Chem Soc Chem Commun,1995,13:1355-1356.
    [69]Chen J,Harmon M A,Hu H,et al.Solution properties of single walled carbon nanotubes[J].Science,1998,282:95-98.
    [70]Chen J,Rao A M,Lyuk syutov S,et al.Dissolution of fulllength single-walled carbon nanotubes[J].J Phy Chem.B,2001,105:2525-2528.
    [71]Balasubramanian K,Burghaard M.Chemically functionalized carbon nanotubes[J].Small,2005,1(2):180-192.
    [72]Chen R J,Zhang Y G,Wang D W,et al.Noncovalent sidewall functionalization of single-walled carbon nano tubes for protein immobilization[J].J Am Chem Soc,2001,123:3838-3839.
    [73]Wang W,Lin Y,Sun Y P.Poly(N-vinyl carbazole)- functionalized singled-walled carbon nanotubes:Synthesis,characterization,and nanocomposites thin films[J].Polymer,2005,46:8634-8640.
    [74]Moore V C,Strano M S,Haroz,E H,et al.Individually suspended single-walled carbon nanotubes in various surfactants[J].Nano Lett,2003,3(10):1379-1382.
    [75]Moulton S E,Minett A I,Murphy R,et al.Biomolecules as selective dispersants for carbon nanotubes[J].Carbon,2005,43:1879-1884.
    [76]Zhang J,Lee J K,Wu Y,et al.Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J].Nano Lett,2003,3(3):403-407.
    [77]Service R E Superstrong nanotubes show they are smart,too[J].Science,1998,281:940-942.
    [78]郭小天,许海燕.碳纳米管及其复合材料在生物医学领域的研究进展[J].生物医学工程学杂志,2006,23(2):438-441.
    [79]张广,邓锟.纳米碳管在生物医学工程领域中的应用[J].晋东南师范专科学校学报,2004,21(2):23-26.
    [80]Dai H J.Carbon nanotubes:opportunities and challenges[J].Surface Science,2002,500:218-241.
    [81]Khabashesku V N,Margrave J L,Barrera E V.Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications[J].Diamond & Related Materials, 2005,14:859-866.
    [82] McKenzie J L, Waid M C, Shi R Y, et al. Decreased functions of astrocytes on carbon nanofiber materials[J]. Biomaterials, 2004, 25(7-8):1309-1317.
    [83] Webster T J , Waid M C, McKenzie J L, et al. Nano-biotechnology: carbon nano-fibers as improved neural and orthopedic implants[J]. Nanotech, 2004,15(1):48-54.
    [84] Hu H, Ni Y C, Montana V, et al. Chemically functionalized carbon nano tubes as substrates for neuronal growth[J]. Nano Lett, 2004,4(3):507-511.
    [85] Benjamin S. Harrison, Anthony Atala. Carbon nanotube applications for tissue engineering[J]. Biomaterials, 2007,28:344-353.
    [86] Xinfeng Shi, Balaji Sitharaman, Quynh P. Pham, et al. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering[J]. Biomaterials, 2007, 28: 4078-4090.
    [87] Shim M , Kam N W S, Chen R J, et al. Functionalization of carbon nano tubes for biocompatibility and biomolecular recognition [J]. Nano Lett, 2002, 2 (4):285.
    [88] Fu K, Huang W , Lin Y, et al. Functionalization of carbon nano tubes with bovine serum album in inhomogenous aqueous solution[J]. J Nanosci Nanotechnol, 2002, 2:457-461.
    [89] Pantarotto D, Partidos C D, Graff R, et al. Synthesis, structural characterization, an immunological properties of carbon nanotubes functionalized with peptides[J]. J Am Chem Soc, 2003,125(20):6160-6164.
    [90] Pantarotto D, Partidos C D, Hoebeke J, et al. Immunisation with peptide-functionalized carbon nanotubes enhances virus-specific neutralising antibody response[J]. Chem Biol, 2003, 10:961-966.
    [91] Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes[J]. Chem Commun, 2004,1:16-17.
    [92] Kam N W S, Jessop T C, Wender P A, et al. Nanotube molecular transporters: intemalisation of carbon nanotube-protein conjugates into mammalian cells[J]. J Am Chem Soc, 2004, 126 (22):6850-6851.
    [93] Kam N W S, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality [J]. J Am Chem Soc, 2005,127(16):6021-6026.
    [94] Cherukuri P., Bachilo S M, Litovsky S H, et al. Weisman, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells[J]. J Am Chem Soc, 2004, 126(48):15638-15639.
    [95]廖静敏,李光,马念章.碳纳米管在生物传感器中的应用[J].传感技术学报,2004,(3):467-471.
    [96]Kandimalla V B,Tripathi V S,Ju H X.A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application[J].Biomaterials,2006,27:1167-1174.
    [97]Arnaldo C.Pereira,Marina R.Aguiar,Alexandre Kisner,et al.Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube[J].Sensors and Actuators B,2007,124:269-276.
    [98]Dan Dua,Xi Huang,Jie Cai,et al.Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix[J].Sensors and Actuators B,2007,127:531-535.
    [99]Mello L D,Kubota L T.Biosensors as a tool for the antioxidant status evaluation[J].Talanta,2007,72:335-348.
    [100]Bai L,Zhou Z.Computational study of B-or N-doped single-walled carbon nanotubes as NH_3 and NO_2 sensors[J].Carbon,2007,45:2105-2110.
    [101]Collins P G,Bradley K,Ishigam M,et al.Extreme oxygen sensitivity of electronic properties of carbon nano tubes[J].Science,2000,287:1801-1804.
    [102]Kong J,Frank lin N,Zhou C,et al.Nano tubemo lecular wires as chemical sensors[J].Science,2000,287:622.
    [103]Pan Du,Shuna Liu,Ping Wu,et al.Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes[J].Electrochimica Acta,2007,52:6534-6547.
    [104]Yang P H,Wei W Z,Tao C Y.Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode[J].Analytica Chimica Acta,2007,585:331-336.
    [105]Liu Q,Lu X B,Li J,et al.Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J].Biosensors and Bioelectronics,2007,22:3203-3209.
    [106]Liande Zhu,Chunyuan Tian,Jiangli Zhai,et al.Sol-gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing[J].Sensors and Actuators B,2007,125:254-261.
    [107]Tsai YC,Chen S Y,Liaw H W.Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors[J].Sensors and Actuators B,2007,125:474-481.
    [108]Gooding J J,Wibowo R,Liu J Q,et al.AFM study of aligned carbon nano tubes[J].J Am Chem Soc,2003,125:90-106.
    [109]Maxwell C.Kum,Kanchan A.Joshi,Wilfred Chen,et al.Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application[J].Talanta,2007,74(3):370-375.
    [110]Webster T J,Waid M C,McKenzie J L,et al.Nano-biotechnology:carbon nanofibres as improved neural and orthopaedic implants[J].Nano Tech,2004,15:48.
    [111]Hae-Won Kim,Yoon-Jung Noh,Young-Hag Koh,et al.Effect of CaF_2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications.Biomaterials,2002,23:4113-4121.
    [112]李爱民.CNTs/HAp纳微米生物复合材料及其生物相容性研究[D].山东大学博士论文,2004.
    [113]赵萍.CF/CNTs增强磷酸钙骨水泥复合材料及其生物相容性评价[D].山东大学博士论文,2005.
    [114]Zhao L P,Gao L.Novel in situ syntjesis of MWNTs-hydroxyapatite composites.Carbon,2004,42(2):423-426.
    [115]Dreher K L.Health and environmental impact of assessment of manufactured nano-pacticles[J].Toxicological Science,2004,77:3-5.
    [116]刘风云.纳米级微颗粒技术用于医学影像诊断的研究[J].中华医学信息导报,2001,16:16.
    [117]Wang H F,Deng X Y,Wang J,et al.XPS study of C-I covalent bond on single walled carbon nanotubus(SWNTs)[J].Acta Physico-Chimica Sinica,2004,20(7):673-675.
    [118]Renwick L C,Donaldson K,Clouter A.Impairment of alveolar macrophage phagocytosis by ultrafine particles[J].Toxicological and Applied Pharmacology,2001,172:19-27.
    [119]Rahman Q,Lohani M,Dopp E,et al.Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryo fibroblast[J].Environmental Health Perspectives,2002,110:797-800.
    [120]Service R F.Nanomaterials show signs of toxicity[J].Science,2003,300(11):24.
    [121]Brumfiel G.A little knowledge[J].Nature,2003,424(17):246-248.
    [122]Kelly K L.Nanotechnology grows up[J].Science,2004,304:1732-1734.
    [123]汪冰,丰伟悦,赵宇亮等.纳米材料生物学效应及其毒理学研究进展[J].中国科学 B辑化学,2005,35(1):1-10.
    [124]Chen C Y,Xing G M,Wang J X,Multihydroxylated[Gd@C82(OH)22]n nanoparticles:antineoplastic activity of high efficiency and low toxicity[J].Nano Lett,2005,5(10):2050-2057.
    [125]Chen C Y,Meng H.,Xing G M,Acute toxicological effects of copper nanoparticles in vivo[J].Toxicol Lett,2006,163:109-120.
    [126]Wang B,Feng W Y,Wang T C.Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice[J].Toxicol Lett,2006,161(2):115-123.
    [127]Wang J X,ChenC Y,Li B.Antioxidative function and iodistribution of[Gd@G82(OH)22]nanoparticles in tumor-bearing mice[J].Biochem Pharmacol,2006,71:872-881.
    [128]Oberdorster G,Maynard A,Donaldson K,et al.Principles for characterizing the potential human health effects from exposure to nanomaterials:elements of a screening strategy[J].Particel and Fibre Toxicology,2005,2(8):1-35.
    [129]Zhang Q,Kusaka Y,Sato K,et al.Differences in the extent of inflammation caused by intraracheal exsposoure to 3 ultrafine metals:Role of free radical[J].Journal of Toxicological Environmental Health A,1998,53(6):423-438.
    [130]Utell M J.,Frampton M W.Who is susceptible to particulate matter and why?[J].Inhal Toxicol,2000,12(suppl.1):37-40.
    [131]Chalupa D C,Morrow P E,Oberdorster G,et al.Ultrafine particle deposition in subjects with asthma[J].Environ Health Perspect,2004,112:879-182.
    [132]Lam C W,James J T,McCluskey R,Hunter R L.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicological Sciences,2004,77(1):126-134.
    [133]Warheit D B,.Laurence B R,Reed K L,et al.Comparative pulmonary toxicity assesment of single wall carbon nanotubes in rats[J].Toxicological Sciences,2004,77(1):117-125.
    [134]Huczko A,Lange H,Calko E,et al.Physiological testing of carbon nanotubes:Are they asbestos-like?[J]. Pol Fullerene Sci Technol, 2001, 9:251-254 (Abstract).
    [135] Shvedova A A, Kisin E R, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(5):698-708.
    [136] Wang H F, Liu Y F, Zhao Y L, et al. Preparation and biodistribution of 1251- labeled water-soluble single-wall carbon nanotubes[J]. J Nanosci Nanotech, 2004, 4(8):1019-1025.
    [137] ICRP. Human Respiratory Model for Radiological Protection[J]. Annals of the ICRP, 1994, 24: ICRP publication # 66
    [138] Oberdorster G, Ferin J, Lehnert B E. Correlation between particle size, in vivo particle persistence and lung injury[J]. Environ Health Perspect, 1994,102:173-179 .
    [139] Bermudez E, Mangum J B, Wong B A, et al. Pulmonary responses of mice, rats, and Hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J]. Toxicological Sciences, 2004,77 :347-357.
    [140] Monteiro-Riviere N A, Nemanich R J, Inman A O, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes[J]. Toxicology Letters , 2005,155:377-384.
    [141] Koyama S, Endo M, Kim Y A, et al. Role of systemic T-cell and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice [J]. Carbon, 44:1079-1092.
    [142] Huczko A L, Lange H. Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy[J]. Fullerene Sci Technol, 2001, 9(2):247-250.
    [143] Manna S K, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activatesnuclear transcription factor2B in human keratinocytes [J]. Nano Lett, 2005, 5(9):1676-1684.
    [144] Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce Tlymphocyte apoptosis[J]. Toxiol Lett, 2006,160(2):121-126.
    [145] Chen F.Q, Dingal H, Stilwell J, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano2onions on human skin fibroblast[J]. Nano Lett, 2005, 5(12):2448-2464.
    [146] Garibaldi S, Brunelli C, Bavastrello O, et al. Carbon nanotube biocompatibility with cardiac muscle cells[J ]. Nanotech, 2006,17:391-397.
    [147] Worle-knisch J M, Pulskampk K, Krug H F. Oops they did it again Carbon nanotubes hoax scientists in viability assays[J].Nano Lett,2006,6(6):1261-1268.
    [148]Cui D,Tian F,Ozkan C S,et al.Effect of single wall carbon nanotubes on human HEK293cells[J].Toxicol Lett,2005,155:73-85.
    [149]Muller J,Huaux F,Lison D.Respiratory toxicity of carbon nanotubes:How worried should we be?[J].Carbon,2006,44:1048-1056
    [150]Jia G,Wang H,Yan L.et al Cytotoxicity of carbon nanomaterials:Single-wall nanotube,multiwall nanotube,and fullerene[J].Environ Sci Technol,2005,39:1378-1383.
    [151]Proposal for a council Decision.Concerning the Seventh framework programme of the European Atomic Energy Community(Euratom)for nuclear research and training activities.http://ec.europa.eu/research and training activibies.
    [152]Porter A E,Gass M,Muller K,et al.Direct imaging of single-walled carbon nanotubes in cells[J].Nature Nanotechnology,2007,2(11):713-717.
    [153]赵世俊.肿瘤热疗研究进展[J].国外医学临床放射学分册,2004,27(4):252-255.
    [154]刘宝瑞,钱晓萍.肿瘤热化疗的基础与临床研究进展[J].国外医学肿瘤学分册,2004,31(1):34-37.
    [155]张旭良,张影.肿瘤热疗中的几个医学工程问题[J].医疗设备信息,2002,3:1-3.
    [156]高悦.2450MHz骨肿瘤微波等效体模的研制及其参数的测量.第四军医大学硕士论文,2002,5.
    [157]张树平,王玉瑛.微波热疗在肿瘤临床中的应用[J].实用医技杂志,2002,2:15-18.
    [158]Tsnyoshi Ohno,Katsunori Kawano,Arsushi Sasakr,et al.Expansion of an ablated site and induction of apoptosis after microwave coagulation therapy in rat liver[J].J Hepalobiliary Pancreat Surg,2001,8:360-366.
    [159]Lindegard J C,et al.A comparision between the effect of step-down heating in a tumor and a normal tissue in vivo[J].Int J Hyperthermia,1991,7:519-526.
    [160]王煦漫.Fe_3O_4磁性粒子的制备及其在磁热疗中的应用[D].华东理工大学博士论文,2004,12.
    [161]Eniu D,Cacaina D,Coldea M,et al.Structural and magnetic properties of CaO-P_2O_5-SiO_2-Fe_2O_3 glass-ceramics for hyperthermia[J].Journal of Magnetism and Magnetic Materials,2005,293:310-313.
    [162]Hilger I,Fruhauf K,Andra W,et al.Heating potential of iron oxides for therapeutic purposes in interventional radiology[J].Academic Radiology,2002,9(2):198-202.
    [163]Park J H,Im K H,Lee S H,et al.Preparation and characterization of magnetic chitosan particles for hyperthermia application[J].Journal of Magnetism and Magnetic Materials,2005,293:328-333.
    [164]Kim D H,Lee S H,Kim K N,et al.Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application[J].Journal of Magnetism and Magnetic Materials,2005,293:320-327.
    [165]Kim D H,Lee Kim K N,Cytotoxicity of ferrite panicles by MTT and agar diffusion methods for hyperthermic application[J].Journal of Magnetism and Magnetic Materials,2005,293:287-292.
    [166]Nel A,Xia T,Madler L,et al.Toxic potential of materials at the nanolevel[J].Science,2006,311:622-627.
    [167]Donaldson K,Stone V,Clouter A,et al.Ultrafine panicle[J].Occup Environ Med,2001,(58):211-216.
    [168]Oberdorster G,Oberdorster E and Oberdorster J.Nanotoxicology:An emerging discipline evolving from studies of ultrafine particle[J].Environ Health Perspect,2005,(113):823-839.
    [169]Manna S K,Sarkar S,Barr J,et al.Single-walled carbon nanotube induces oxidative stress and activatesnuclear transcription factor2B in human keratinocytes[J].Nano Lett,2005,5(9):1676-1684.
    [170]Sayes C M,Fortner J D,Guo W,et al.The differential cytotoxicity of water-soulble fullerernces]J].Nano Lett,2004,4(10):1881-1887.
    [171]Tamura K,Takashi N,Akasaka T,et al.Effects of micro/nano particle size on cell function and morphology[J].Key Eng Mater,2004,254-256:919-922.
    [172]Deng X,Jia G,Sun H,et al.Translocation and fate of multi-walled carbon nanotubes in vivo[J].Carbon,2007,45:1419-1424.
    [173]赵士芳.羟基磷灰石陶瓷在牙槽嵴增高术中的应用[J].口腔医学,1989,9(4):174-176。
    [174]Sugar A W,Thielens P,Stafford G D,et al.Augmentation of the atrophic maxillary alveolar ridge with hydroxyapatite granules in a Vicryl(Polyglactin 910)knitted tube and simultaneous open vestibuloplasty[J].British Journal of Oral and Maxillofacial Surgery,1995,33(2):93-97.
    [175]陆辉,李玉环.羟基磷灰石陶瓷在牙槽外科的应用[J].蚌埠医学院学报,1997,22(1):48-49.
    [176]谢建林,渴嬷,李伟,等.羟基磷灰石人工牙齿的研究[J].工业陶瓷,1989,(2):6-10.
    [177]李宝昌,王志强,张文芳,等.羟基磷灰石在骨折内固定中的应用[J].河北医药,1996,18(1):1-2.
    [178]Frank C.den Boer,Burkhard W.Wippermann,Taco J.Blokhuis,et al.Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow[J].Journal of Orthopaedic Research,2003,21(3):521-528.
    [179]Michael Thorwarth,Stefan Schultze-Mosgau,Peter Kessler,et al.Bone Regeneration in Osseous Defects Using a Resorbable Nanoparticular Hydroxyapatite[J].Journal of Oral and Maxillofacial Surgery,2005,63(11):1626-1633.
    [180]陈光.羟基磷灰石复合材料人工骨的研究进展[J].国外医学口腔医学分册,1992,19(5):288-291.
    [181]Horatiu Rotaru,Mihaela Baciut,Horatiu Stan,et al.Silicone rubber mould cast polyethylmethacrylate-hydroxyapatite plate used for repairing a large skull defect[J].Journal of Cranio-Maxillofacial Surgery,2006,34(4):242-246.
    [182]Taisuke Kobayashi,Kiyofumi Gyo,Takayuki Shinohara,et al.Ossicular reconstruction using hydroxyapatite prostheses with interposed cartilage[J].American Journal of Otolaryngology,2002,23(4):222-227.
    [183]Joel A.Goebel,Abraham Jacob.Use of hydroxyapatite bone cement for difficult ossicular reconstruction[J].Otolaryngology - Head and Neck Surgery,2004,131(2):66.
    [184]Santosh Aryal,K.C.Remant Bahadur,N.Dhamaraj,et al.Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix[J].Scripta Materialia,2006,54:131-135.
    [185]Bin Zhao,Hui Hu,Swadhin K.Mandal,et al.A Bone Mimic Based on the Self-Assembly of Hydroxyapatite on Chenmically Functionalized Single-Walled Carbon Nanotubes[J].Chem Mater,2005,17:3235-3241.
    [186]Liping Zhao,Lian Gao.Novel in situ synthesis of MWNTs-hydroxyapatite composites[J].Carbon,2004,42:423-460.
    [187]李爱民,孙康宁,董维芳,等.烧结工艺对碳纳米管/羟基磷灰石复合材料力学性能与微观结构的影响[J].人工晶体学报,2004,33(4):624-628.
    [188]孙康宁,李爱民,尹衍升,等.碳纳米管/羟基磷灰石复合材料的制备研究[J].中国生物 医学工程学报,2004,23(6):573-578.
    [189]Gilchrist R K,Medal R,Shorey W D,et al.Selective inductive heating of lymph nodes[J].Annals of Oncology,1957,146(4):595-606.
    [190]Stoffelbach F,Aqil A,Jerome C,et al.An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles,and their orientation in a magnetic field[J].Chem Commun,2005,(36):4532-4533.
    [191]Correa-Duarte M A,Grzelczak M,Salgueirino-Maceira V,et al.Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticle[J].J Phy Chem B,2005,109(41):19060-19063.
    [192]Qu S,Wang J,Kong J L,et al.Magnetic loading of carbon nanotube/nano-Fe_3O_4 composites for electrochemical sensing[J].Talanta,2007,71:1096-1102.
    [193]单妍.碳纳米管表面功能化及其复合材料[D].中国科学院上海硅酸盐研究所博士学位论文,2006.
    [194]Harish Prashanth K.V,Kittur F S.,Tharanathan R.N.Solid state structure of chitosan prepared under different N-deacetylating conditions[J].Carbohydrate Polymers,2002,50(1-1):27-33.
    [195]Ogawa K,Yui Toshifumi,Okuyama Kenji.Three D structures of chitosan[J].International Journal of Biological Macromolecules,2004,34(1-2):1-8.
    [196]Crini G.Prog.Chitosan-oxychitin coatings for prosthetic materials[J].Polym Sci,2005,30(1):38-70.
    [197]Park S I,Zhao Y Y.Crosslinked chitosan-preparation and characterization[J].Agric Food Chem,2004,52(7):1933-1939.
    [198]Lee Y M,Park Y.Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans[J].Biomaterials,2000,21(2):153-159.
    [199]Hu Y,Jiang X Q,Ding Y,et al.Palladium sorption on glutaraldehyde-crosslinked chitosan[J].Adv Mater,2004,16(11):933-937.
    [200]Ding Y,Hu Y,Jiang X Q,et al.Poly(N-vinyl carbazole)-functionalized single-walled carbon nanotubes Synthesis,characterization,and nanocomposite thin films[J].Angew.Chem Int Ed,2004,43(46):6369-6372.
    [201]陈福春,曹家树,侯春林,等.应用几丁糖预防股骨下段及踝部骨折术后粘连的初步观察[J].中国矫形外科杂志,2000,7(3):215.
    [202]Jin Shu Mao,Li Guo Zhao,Yu Ji Yin,et al.Structure and properties of bilayer chitosan-gelatin scaffolds[J].Biomaterials,2003,24:1067-1074.
    [203]谷庆阳,高亚兵,陈肖华,等.壳聚糖无纺布敷料对切割伤伤口止血和促进愈合作用的研究[J].解放军医学杂志,1999,24(6):429.
    [204]刘流,刘晓岗,王云普.甲壳素、壳聚糖在医药领域的应用[J].辽宁化工,2001,30(12):538-539.
    [205]Liu Y Y,Tang J,Chen X Q,et al.Decoration of carbon nanotubes with chitosan[J].Carbon,2005,43:3178-3180.
    [206]Spinks,G M,Shin S R,Wallace G G,et al.Mechanical properties of chitosan/ CNT microfibers obtained with improved dispersion[J].Sensors and Actuayor B,2006,115:678-684.
    [207]Luo X L,Xu J J,Wang J L,et al.Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application[J].Chem Commun,2005:2169-2171.
    [208]Li J,Liu Q,Liu Y J,et al.DNA biosensor based on chitosan film doped with carbon nanotubes[J].Analytical Biochemistry,2005,346:107-114.
    [209]甘治平,官建国,王维.单层均匀吸波材料电磁参数的匹配研究[J].航空材料学报,2002,22(2):37-40.
    [210]周春华.纳米Fe_3Al金属间化合物吸波性能的研究[D].山东大学博士论文,2004.
    [211]廖宇涛.碳纳米管复合材料的电磁参数与吸收电磁波性能的研究.广东工业大学硕士论文,2006.
    [212]Chenite A,Chaput C,Wang D,et al.Novel injectable neutral solutions of chitosan from biodegradable gels in situ[J].Biomaterials,2000,21:2155-2161.
    [213]Ruel -Gariepy E,Chenite A,Chaput C,et al.Characterization of thermosensitive chitosan gels for the sustained delivery of drugs[J].Int J Pharm,2000,203:89-98.
    [214]Jarry C,Chaput C,Chenite A,et al.Effects of steam sterilization on the thermogelling chitosan-based gels[J].J Biomed Mater Res,2001,58(1):127-135.
    [215]Ruel -Gariepy E,Shive M,Bichara A,et al.A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel[J].Eur J Pharm Biopharm,2004,57:53-63.
    [216]Berger J,Reist M,Chenite A,et al.Pseudo-thermosetting chitosan hydrogels for biomedical application[J].Int J Pharm,2005,288:17-25.
    [217]Molinaro G,Leroux J C,Damas J,et al.Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials[J].Biomaterials,2002,23:2717-2722.
    [218]Ruel-Gariepy E,Leclair G,Hildgen P,et al.Thermosensitive chitosan- based hydrogel containing liposomes for the delivery of hydrophilic molecules[J].J Control Release,2002,82:373-383.
    [219]Jaepyoung Cho,Marie-Claude Heuzey,Andre begin et al.Physical gelation of chitosan in the presence of β-glycerophosphate:the effect of temperature[J].Biomacromolecules,2005,6:3267-3275.
    [220]Chenite A,Buschmann M,Wang D,et al.Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions[J].Carbohydrate Polymers,2001,46(1):39-47.
    [221]李玉宝.生物医用材料[M].北京:化学工业出版社,2003.
    [222]杨加峰.HA涂层纤维增强的高分子人工颅骨的实验研究.华北煤炭医学院硕士学位论文,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700