用户名: 密码: 验证码:
铁素体/珠光体型钢板内部质量及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业中发展最迅速、最富有活力的钢种是低合金高强度钢,特别是屈服强度在500MPa以下的铁素体/珠光体型钢,该类型钢具备优良的强韧性能,是目前应用最广泛的钢种之一。目前生产铁素体/珠光体型钢的主要途径是在C-Mn钢或C-Mn-Si钢基础上添加微量合金元素铌、钒、钛等,通过TMCP (ThermoMechanical Control Process)工艺控制微合金碳氮化合物的析出和过冷奥氏体的相变行为,以达到优化组织、提高强韧性的目的。国内外研究者长期致力于提升铁素体/珠光体型钢板内部质量的研究,所谓钢板内部质量的好坏,实际上是指钢板内部组织的均匀性和完整性。就一定厚度的钢板而言,无论工艺如何改变,都将出现厚度方向从表层到心部的组织不一致,诸如:晶粒尺寸差异、铁素体形态差异及析出相分布和尺寸差异等。另外,如果钢板的成分设计不合理或工艺控制不当,就可能导致钢板内部出现非铁素体/珠光体组织及其它类型缺陷。
     通过调研国内几家大型钢铁生产企业及工程机械和煤机制造企业,并查阅文献,发现部分批次的铁素体/珠光体型钢板存在内部质量缺陷,尤以分层缺陷最为突出。国内外学者、钢铁生产企业和用户均已发现钢板中的分层缺陷及其对力学性能的不良影响。但是,目前对分层缺陷的成因仍无统一认识,特别是有关连铸坯中心偏析是如何影响热轧钢板分层缺陷这一重要问题尚无深入阐述。对照研究有分层缺陷和无分层缺陷的钢板,发现有分层缺陷钢板的Mn元素含量普遍偏高,另外,部分企业生产的钢板仍然存在其它微合金元素使用过量的情况。
     针对以上两类问题,本文优化了合金成分设计、TMCP工艺和连铸工艺;采用透射电子显微镜(TEM)、扫描俄歇微探针(SAM)、金属原位分析仪及力学性能检测等手段,分析了实验室试轧和工业化生产的钢板微观组织和力学性能。研究了连铸坯中心偏析与热轧钢板分层缺陷的继承性关系,并从热力学和动力学方面揭示了钢板中异常偏析带的形成机理。在此基础上得出各因素(包括:合金成分、连铸工艺、TMCP工艺及后期热处理)对钢板内部质量的影响规律。主要研究内容和结论如下:
     1.通过研究C、Mn、Si、Nb、V、Ti等合金元素在钢中的作用,得出了合金成分减量后的铁素体/珠光体型钢板成分设计。本试验钢以C、Mn、Si作为基本元素,添加适量的Nb、V、Ti微合金元素,以及微量的B元素并尽量降低P、S等有害元素含量,与目前国内市场商用钢种的合金成分对比得出,本试验钢的合金元素加入量明显低于同级别商用钢种。用Gleeble热/力模拟方法测定了试验钢的再结晶曲线和CCT曲线等,优化了TMCP工艺参数,试验钢的奥氏体化温度为1200℃,粗轧阶段初期前4道次设定压下量8.5mm以下以增大再结晶晶粒的体积分数,末道次采取较大压下量以细化奥氏体晶粒,终轧温度控制在1020℃;精轧阶段开轧温度控制在900℃以下,避开900℃~1000℃部分再结晶温度区间,终轧温度控制在830~850℃;冷却速度根据钢板厚度控制在5~10℃/s,终冷温度控制在670~690℃,控冷后直接空冷至室温。设计钢板的工业化试验表明:新工艺流程顺畅,合金成本低于目前同级别的商用钢种,可以实现批量化生产。
     2.通过热力学与动力学计算,结合TEM观察和EDS能谱分析研究了钢板中微合金碳氮化物在TMCP工艺过程中的固溶和析出规律,从细晶强化、固溶强化和析出强化等方面分析了钢板的强韧化机理。结果表明,微合金碳氮化物主要有TiN、VC和Nb(C,N),TiN的固溶和析出温度较高,形态经历了由球形向方形的长大过程,常与VC和Nb(C,N)复合析出,可以有效阻止奥氏体化过程及粗轧再结晶后的晶粒长大;VC呈圆片状,主要是在γ→α转变后的冷却过程中于铁素体晶粒内部共格随机析出的,引起钢板的析出强化;Nb(C,N)呈圆片状,尺寸约10nm,主要在晶界和位错附近形核,并在γ→α转变过程中析出,可以有效钉扎位错运动,强烈阻止形变奥氏体再结晶,具有一定的晶粒细化效果。按照位错绕过析出相的Orowan机制,计算得到析出强化产生的强度增量为143.9MPa,细晶强化产生的强度增量为261.9MPa,固溶强化产生的强度增量为92MPa,设计钢板的计算强度值为497.8MPa。由于细晶强化产生的强化效果超过总强度的40%,因此设计钢板具有良好的塑韧性能。
     3.用金属原位分析仪等研究了连铸坯不同位置的化学成分分布,采取理论计算和统计分析的方法探讨了钢水过热度、二冷水强度、拉速、电磁搅拌及轻压下工艺与连铸坯内部质量和厚度方向组织之间的关系。结果表明,部分批次连铸坯中心处存在明显的C、Mn、S和P元素偏析,Gleeble热/力模拟试验表明,连铸坯热变形后在原中心偏析区出现了带状分布的贝氏体组织。TEM观察发现由连铸坯表层至中心处硫化物夹杂量逐渐增加,且在中心出现聚集分布,这些都与连铸坯中心处Mn偏析有关。控制合理的连铸工艺参数,将钢水过热度控制在30℃以内,适当增强二冷水强度、合理选择连铸坯拉速、控制电磁搅拌频率、选择适当位置进行适度轻压下等措施可以有效改善连铸坯内部质量。
     4.用SEM和SAM等观察了工业化生产的钢板表层、1/4厚度和中心厚度处的微观组织,分别在对应厚度处截取薄试样测量局部区域的力学性能,并从热力学和动力学方面揭示异常偏析带的形成机理。结果表明,有分层缺陷钢板的中心处存在粒状贝氏体异常偏析带和一定程度的混晶,同时存在较多的硫化物夹杂,以上三个因素导致钢板出现分层缺陷。研究得出钢板异常偏析带区存在明显的C-Mn元素偏聚,钢板中的Mn偏聚继承自连铸坯的Mn偏析,异常偏析带区贝氏体的形成与连铸坯中心Mn偏析有直接关系。连铸坯中心处C-Mn偏聚形成的Fe-Mn-C原子团有效束缚了原子运动,增加了奥氏体相变时的晶格重构阻力,为贝氏体的形成创造了热力学条件;C-Mn偏聚使连铸坯中心处C曲线中珠光体转变曲线和贝氏体转变曲线发生相对位移,致使原来的C曲线形状变为河湾形状,为较低冷速下该区域的过冷奥氏体转变为贝氏体创造了动力学条件。有分层缺陷钢板的最佳正火处理工艺为900℃×3min/mm,该正火工艺无法消除Mn元素的偏析,但可以通过扩散降低异常偏析带区的C含量,并使异常偏析带区的贝氏体完全转变为珠光体,同时达到了消除钢板分层缺陷的目的。
The quickest developed and most invigorated steel grade in the steel industry is low alloy and high strength steel, especially the ferrite/pearlite steel with the yield strength below500MPa. This type steel has excellent strength and toughness properties, which is currently one of the most widely used steel grades. At present, the main production technology of ferrite/pearlite steel is adding trace Nb, V, Ti and other microalloying elements to C-Mn steel or C-Mn-Si steel. The precipitation behavior of microalloying carbonitrides, and the phase transition behavior of overcooling austenite were controlled by TMCP (ThermoMechanical Control Process) technology, in order to achieve the goal of optimizing microstructure and improving strength and toughness properties. The researchers at home and aboard are committed to the study of improving the internal quality of ferrite/pearlite steel plate for a long time. The so-called good or bad of internal quality of the steel plate, actually refers to the uniformity and integrity of microstructure of the steel plate. For the steel plate of a certain thickness, whatever the technology how to change, the microstructure will appear inconformity from the surface to the center along thickness direction of steel plate, such as the difference of grain size, the morphology difference of ferrite, also the distribution and size difference of precipitates, et al. In addition, if the composition design is unreasonable or the technology is improper, which may cause non ferrite/pearlite structure or other defects internal the steel plate.
     Through surveying some domestic large scale iron and steel enterprises, engineering machinery and coal machine manufacturing enterprises, also a large number of literatures, we found that some batches of ferrite/pearlite steel plate appeared internal quality defects, especially the lamination defect. Scholars from home and aboard, steelmakers and users have found the lamination defect of steel plates and its adverse influence on mechanical properties. However, at present, there is no unified understanding on the cause of lamination defect, particularly, there is no elaboration about the influence of central segregation of billets on lamination of hot rolled steel plates. We found that the content of Mn element of the steel plate with lamination defect was generally higher through comparatively study on the steel plate with lamination defect and without lamination defect. In addition, we found the steel plates from some steelmakers still used excess other microalloying elements.
     Pointing at these two problems above, the alloying composition design, TMCP technology and continuous casting technology were optimized; the microstructure and mechanical properties of steel plates from laboratory and industrial production were analyzed, with the means of Transmission Electron Microscopy (TEM), Scanning Auger Microprobe (SAM), Original Position Analyzer (OPA) and measurement of mechanical properties, et al.The inherited relation between central segregation of billets and lamination defect of hot rolled steel plates was researched, also the cause of abnormal segregation band was revealed from kinetics and thermodynamics. On this basis, we concluded the influences of the factors (such as, alloying composition, continuous casting technology, TMCP technology and heat treatment) on internal quality of steel plates. The research contents and conclusions are follows:
     1. The reducing composition design of ferrite/pearlite steel plate was derived through studying the role of C, Mn, Si, Nb, V, Ti and other alloying elements in the steel plate. The essential elements such as C, Mn, Si, moderate microalloying elements such as Nb, V, Ti, and trace B element was adding to this experimental steel, also minimizing P, S and other harmful elements. Through contrasting the alloying composition of domestic commercial steels at present, it is derived that the addition of alloying elements of this experimental steel is significantly lower than that of commercial steels of the same level. The recrystallization curves and CCT curves of the experimental steel were determinated with the method of Gleeble thermal/mechanical simulation, and then the TMCP process was optimized. The austenitizing temperature of the experimental steel is1200℃. The first four passes of roughing rolling stage can be set below8.5mm in order to increase the volume fraction of recrystallized grains, and big reduction should be taken at last passes in order to refine austenite grains. The finishing rolling temperature can be controlled at1020℃. In the finishing rolling stage, the finishing rolling temperature can be controlled at830~850℃, and the cooling rate can be controlled at5~10℃/s according to the thickness of steel plates. The finishing cooling temperature can be controlled at670~690℃, then directly air cooling to room temperature after controlled cooling. The industrial experimental of designed steel plate indicates that the new technology is smooth, and the alloying cost is lower than that of commercial steels of the same level at present, also the mass production can be achieved.
     2. Through thermodynamic and kinetic calculations, combined with TEM observation and EDS analysis, the soluting and precipitating behaviors of microalloying carbonitrides during TMCP process were researched. The strengthening and toughening mechanism of the steel plate was analyzed from grain refining, solid solution strengthening and precipitation strengthening. Results indicate that, microalloying carbonitrides of steel plates are mainly TiN、VC and Nb(C,N). The soluting and precipitating temperature of TiN is high. TiN experiences the growth process from sphericity to square, and forms diphase precipitate with VC and Nb(C,N), which can effectively suppress the coarsening of recrystallized grains during the austenitizing and roughing rolling stage. VC with shape of disk, mainly precipitating coherently and randomly at the ferrite interior during cooling after γ→α transformation, can cause the precipitation strengthening of steel plate. Nb(C,N) with shape of disk, its size is about10nm, mainly nucleates at grain boundaries and dislocations, and precipitates during γ→α transformation. They can effectively pin the dislocations motion, strongly discourage the recrystallization of deformed austenite, and have certain extent of grain refinement. According to the Orowan mechanism of dislocations rounding the precipitates, it is calculated that the strength increment from precipitation strengthening is143.9MPa, the strength increment from grain refining is261.9MPa, the strength increment from solid solution strengthening is92MPa, and the calculated strength of designed steel plate is497.8MPa. Due to the strength increment from grain refining is over40%of the total strength, the designed steel plate has well plasticity and toughness.
     3. The composition distribution at different positions along thickness direction of the continuous casting billet was researched by Original Position Analyzer, also the relationship between the technology (molten steel superheat, second cooling intensity, casting speed, electromagnetic stirring, light reduction technology) and internal quality, microstructure along thicknees direction of the continuous casting billet were discussed by theoretical calculations and statistical analysis. Results indicate that, the center of some batches of billets appear obvious C, Mn, S and P element segregation. Gleeble thermal/mechanical simulation experiment shows that, after hot deformation of the billet with central segregation, banded bainitic structure appears at the original segregation region. TEM observation shows that the quantity of sulfide inclusions increases from the surface to the center, and the inclusions appear aggregated distribution at the center. Controlling reasonable continuous casting technology parameters, such as controlling the molten steel superheat below30℃, reasonable stronger second cooling intensity, properly choosing the casting speed, controlling the frequency of electromagnetic stirring and choosing rational position with modest reduction, these measures can obviously improve the internal quality of continuous casting billets.
     4. The microstructure of the surface,1/4thickness and center of the steel plate from industrial production was observed by SEM and SAM. The mechanical properties of local region were measured with the method of cutting thin specimens from corresponding thickness. Then the formation mechanism of abnormal segregation band was disclosed from thermodynamic and kinetics analysis. Results indicate that, the granular bainitic abnormal segregation band and a certain degree of mixed grain appear at the center of the steel plate with lamination defect, simultaneously, some sulphide inclusions appear at this region. These three factors lead to lamination defect of the steel plate. Obvious C-Mn segregation appears at the abnormal segregation region of the steel plate, and the Mn segregation of the steel plate inherites from the Mn segregation of the billet. The formation of the bainite at abnormal segregation region has immediate relationship with the central segregation of the billet. The Fe-Mn-C clusters segregation region caused by the C-Mn segregation at the center of the billet can effectively bind the atomic motion, and increase the lattice reconstruction resistance of austenite transformation, which provide thermodynamic conditions for the bainite. The C-Mn segregation causes the relative displacement of pearlite transformation curve and bainite transformation curve of the corresponding C curve at the center of the billet, so the original C curve of the center of the billet becomes bay-like shape, which creates the kinetics conditions for the transformation from undercooled austenite to bainite with lower cooling rate at this region. The best normalizing technology of the steel plate with lamination defect is900℃×3min/mm, this technology can not eliminate Mn segregation, but can decrease C content of the abnormal segregation band region by diffusing. This technology can also make the bainite of the abnormal segregation band region to transform into pearlite completely, simultaneously, achieve the purpose of eliminating the lamination defect of the steel plate.
引文
[1]万筱如,许昌淦.高强度及超高强度钢[M].北京:机械工业出版社,1988:1-4.
    [2]郑东升,朱伏先,李艳梅,等.含Nb热轧多相钢板厚度方向显微组织的研究[J].轧钢,2010,27(4):1-5.
    [3]D.F.Laurito, C.A.R.P. Baptista, M.A.S. Torres, et al. Microstructure effects on fatigue crack growth behavior of a microalloyed steel [J]. Procedia Engineering, 2010,2(1):1915-1925.
    [4]F.M.Al-Abbasi. Micromechanical modeling of ferrite-pearlite steels [J]. Materials Science and Engineering A,2010,527(26):6904-6916.
    [5]刘相华,周满春,于明,等.钢材品种升级—从低合金高强度到低成本高性能[J].锻压技术,2009,34(4):10-14.
    [6]Pozuelo M, Carreno F, Ruano O A. Innovative ultrahigh carbon steel laminates with outstanding mechanical properties [J]. Materials Science Forum,2003,426: 83-88.
    [7]Xiao Guo-hua, Dong Han, Wang Mao-qiu, et al. Effect of sulfur content and sulfide shape on fracture ductility in case hardening steel [J]. Journal of Iron and Steel Research, International,2011,18(8):58-64.
    [8]迟秀斌.低合金高强度钢开发与研究的新进展[J].鞍钢技术,2000(7): 30-36.
    [9]王祖滨,东涛.低合金高强度钢[M].北京:原子能出版社,1996:4.
    [10]王祖滨.低合金钢和微合金钢的发展[J].中国冶金,1999,(3):19-23.
    [11]Niels Hansen. Hall-Petch relation and boundary strengthening [J]. Scripta Materialia,2004,51(8):801-806.
    [12]雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:9-10.
    [13]J.H.Chen, Y.Kikuta, T.Araki, et al. Micro-fracture behavior induced by M-A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel [J]. Acta Metallurgica,1984,32(10):1779-1788.
    [14]T.Gladman, D.Dulieu. Grain-size control in steels [J]. Metal Science,1974, 8(1):167-176.
    [15]杨才福,张永权.新一代易焊接高强度高韧性船体钢的研究[J].钢铁,2001,36(11):50-54.
    [16]王献钧.美国海军舰船结构用高强度钢研制的新动向[J].材料开发与应用,1992,7(2):27-28.
    [17]韦东远,顾家林,方鸿生,等.1500MPa级贝氏体/马氏体复相高强度钢的疲劳特性[J].钢铁研究学报,2003,15(4):46-50.
    [18]张晓刚.近年来低合金高强度钢的进展[J].钢铁,2011,46(11):1-9.
    [19]Yang-zeng Zheng, A.J.DeArdo, Robert M.Flx, et al. Achieving grain refinement through recrystallization controlled rolling and controlled cooling in V-Ti-N microalloyed steels [J]. HSLA Steels Technology and Applications,1983, Pennsylvania, USA, ASM:85-94.
    [20]WENG Yuqing. Development of HSLA Steels in China at the Turn of Century [C]. HSLA Steels'2000.
    [21]Zener C. Private communication to Smith C S [J]. Transactions of American Institute Metall Engineers,1949,175:15-17.
    [22]Masa Yoshi Hasegawa, Kazuhiko Takeshita, et al. Strength of steel by the method of spaying oxide particles into molten steel stream [J]. Metallurgical Transactions B,1978,9:383-388.
    [23]赵沛,Gladman T.用第二相粒子细化HSLA钢晶粒[J].北京科技大学学报,1993,15(5):472-478.
    [24]东涛,付俊岩.试论我国钢的微合金化发展方向[J].中国冶金,2002,5:16-19.
    [25]Joonoh Moon, Sanghoon Kim, Jae-il Jang, et al. Orowan strengthening effect on the nanoindentation hardness of the ferrite matrix in microalloyed steels [J]. Materials Science and Engineering A,2008,487(1-2):552-557.
    [26]曹建春,刘清友,雍岐龙,等.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006,41(8):60-63.
    [27]李鸿美,曹建春,孙力军,等.含铌微合金钢碳氮化物析出行为研究的现状及发展[J].材料导报,2010,17:84-87.
    [28]Worner C H, Cobo A. On the shape of a grain boundary pinned by a spherical particle [J]. Scripta Metallurgica,1984,18(6):565-568.
    [29]王学伦,宋介中,王巍.二相粒子/析出相钉扎晶界模型研究进展[J].钢铁研究学报,2010,22(12):1-6.
    [30]S.Vervynckt, K.Verbeken, P.Thibaux, et al. Recrystallization-precipitation interaction during austenite hot deformation of a Nb microalloyed steel [J]. Materials Science and Engineering A,2011,528(16-17):5519-5528.
    [31]V.Yu.Novikov. Secondary recrystallization evolution and pinning force behavior [J]. Scripta Materialia,1997,37(4):463-469.
    [32]Robert J. Glodowski. Vanadium microalloying in steel sheet, strip and plate products [J]. International Symposium 2001 on vanadium application technology. Beijing, China,2001:346-352.
    [33]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:65.
    [34]S.Zajac, T.Siwechi, W.B.Hutchinson, et al. Strength mechanisms in vanadium microalloyed steel intended for long products [J]. ISIJ International,1998,38(10): 1130-1139.
    [35]Russwiurm D, Wille P. High strength weldable reinforcing bars [C]. Microalloying'95, Pittsburgh, PA, ISS,1995:377.
    [36]杨才富,张永权,柳书平.钒、氮微合金化钢筋的强化机制[J].钢铁,2001,36(5):55-57.
    [37]谢利群,毛新平,霍向东.Ti对钢的组织性能的影响[J].冶金丛刊,2005,(1):1-5.
    [38]傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801-804.
    [39]成国光,朱晓霞,彭岩峰,等.洁净钢氮化钛凝固细化技术的基础[J].北京科技大学学报,2002,24(3):273-275.
    [40]S.F.Medina, M.Chapa, P.Valles, et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels [J]. ISIJ International, 1999,39(9):930-936.
    [41]Kunishige K, Nagao N. Strengthening and toughening of hot-direct-rolled steels by addition of a small amount of titanium [J]. ISIJ International,1989,29(11): 940-946.
    [42]Saikaly W, Charrin L, Chari A, et al. The effects of thermomechanical processing on the precipitation in an industrial dual-phase steel microalloyed with titanium [J]. Metallurgical and Materials Transactions A,2001,32 (8):1939-1947.
    [43]赵保华.钛对含铌微合金化钢组织结构及性能的影响[D].武汉:武汉科技大学,2012.
    [44]小指军夫.控制轧制控制冷却—改善材质的轧制[M].李伏桃,陈岿译.北京:冶金工业出版社,2002:2.
    [45]刘振宇,唐帅,周晓光,等.新一代TMCP工艺下热轧钢材显微组织的基本原理[J].中国冶金,2013,23(4):10-16.
    [46]S.F.Medina, J.E.Mancila. Determination of static recrystallization critical temperature of austenite in microalloyed steels [J]. ISIJ International,1993,33(12): 1257-1264.
    [47]C.M.Sellers, J.A.Whiteman. Recrystallization and grain growth in hot rolling [J]. Metal Science,1979,13(3-4):187-194.
    [48]吕海娜.EH36高强度船板TMCP工艺优化[D].沈阳:东北大学,2009.
    [49]李箭,徐温崇,孙福玉.控制轧制中的微合金碳氮化物的析出行为[J].钢铁,1991,26(1):47-51.
    [50]Yong Woo Kim, Seok Weon Song, Seok Jong Seo, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Materials Science and Engineering A,2013,565:430-438.
    [51]胡林,胡小东,任玉辉,等.采用全线奥氏体未再结晶区轧制生产超级钢 [J].钢铁,2006,41(2):51-54.
    [52]王国栋.新一代TMCP技术的发展[J].轧钢,2012,29(1):1-8.
    [53]于庆波,孙莹,赵贤平,等.两相区热轧对低碳合金钢板组织性能的影响[J].材料热处理学报,2009,30(1):93-95.
    [54]李胜利,王国栋,刘相华,等.大断面轴承钢控温轧制工艺与实验研究[J].钢铁,2007,42(3):41-43.
    [55]Hao Yu, Yonglin Kang, Zhengzhi Zhao, et al. Microstructure characteristics and texture of hot strip low carbon steel produced by flexible thin slab rolling with warm rolling technology [J]. Materials Characterization,2006,56(2):158-164.
    [56]Huoran Hou, Qi'an Chen, Qingyou Liu, et al. Grain refinement of a Nb-Ti microalloyed steel through heavy deformation controlled cooling [J]. Journal of Materials Processing Technology,2003,137(1-3):173-176.
    [57]李曼云,孙本荣.钢的控制轧制和控制冷却技术手册[M].北京:冶金工业出版社,1990:79-89.
    [58]冯光纯.控轧控冷技术的现状与发展[J].四川冶金,1996,1:73-75.
    [59]徐匡迪.20世纪—钢铁冶金从技艺走向工程科学[J].上海金属,2002,24(1):1-10.
    [60]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J].东北大学学报(自然科学版),2009,30(7):913-922.
    [61]Houyoux C, Herman J C, Simon P, et al. Metallurgical aspects of ultra fast cooling on a hot strip mill [J]. Revue de Metallurgie,1997,97(5):58-59.
    [62]Hiroshi Kagechika. Production and technology of iron and steel in Japan during 2005 [J]. ISIJ International,2006,46 (7):939-958.
    [63]王国栋,刘相华,孙丽钢,等.包钢CSP"超快冷”系统及590MPa级C-Mn低成本热轧双相钢开发[J].钢铁,2008,43(3):49-52.
    [64]赵宪明,吴迪,王国栋,等.一种线材和棒材热轧生产线用超快速冷却装置[P].中国专利:200510046822.4,2006-01-11.
    [65]袁国,王国栋,王日清,等.中厚钢板热处理技术及设备发展概况[J].钢铁研究学报,2009,21(5):1-7.
    [66]王超,卢峰,杜申娟,等.低合金调质钢直接淬火回火工艺研究[J].钢铁研究,2013,41(2):16-20.
    [67]刘靖,鹿守理.低碳钢组织与力学性的关系[J].北京科技大学学报,2002,24(2):208-210.
    [68]T.M.Maccagno, J.J.Jonas, S.Yue, et al. Determination of recrystallization stop temperature from rolling mill logs and comparison with laboratory simulation results [J]. ISIJ International,1994,34(11):917-922.
    [69]H.Yada, Y.Matsumura, K.Nakajima, et al. Ferritic steel having ultra-fine grains and a method for producing the same [P]. U.S.A:4466842,1984-8-21.
    [70]Sunghak Lee, Dongil Kwon, Young Kook Lee, et al. Transformation strengthening by thermomechanical treatments in C-Mn-Ni-Nb steels [J]. Metallurgical and Materials Transactions A,1995,26(5):1093-1100.
    [71]P.D.Hodgson, M.R.Hickson, R.K.Gibbs. Ultrafine ferrite in low carbon steel [J]. Scripta Materialia,1999,40(10):1179-1184.
    [72]王远琦,陈小伟,李志华,等Nb-Ti微合金钢中的奥氏体晶粒长大行为研究[J].钢铁,2010,45(4):72-75.
    [73]Chang Wang, Wenquan Cao, Jie Shi, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel [J]. Materials Science and Engineering A,2013,562:89-95.
    [74]尹桂丽,周立岱,王劲松.非调质钢固溶强化规律的研究[J].辽宁工业大学学报(自然科学版),2008,28(5):333-337.
    [75]T.Gladman. The physical metallurgy of microalloyed steels [M]. The Institute of Materials, London,1997:53.
    [76]焦增宝,刘锦川.新型纳米强化超高强度钢的研究与进展[J].中国材料进展,2011,30(12):6-11.
    [77]Orowan E. Symposium on internal stress in metal and alloys [M]. London: Institute of Metals,1948:139.
    [78]Schnitzer R, Schober M, Zinner S, et al. Effect of Cu on the evolution of precipitation in an Fe-Cr-Ni-Al-Ti maraging steel [J]. Acta Materialia,2010,58(10): 3733-3741.
    [79]Yen H W, Huang C Y, Yang J R. The nano carbide control:design of super ferrite in steels [J]. Advanced Materials Research,2010,89-91:663-668.
    [80]D.A.Hughes. Microstructure evolution, slip patterns and flow stress [J]. Materials Science and Engineering A,2001,319-321:46-54.
    [81]刘东升.钢铁材料变形奥氏体相变的研究与应用[D].沈阳:东北大学, 1999.
    [82]M.Charleux, W.J.Poole, M.Militzer, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel [J]. Metallurgical and Materials Transactions A,2001,32(7):1635-1647.
    [83]王建刚.EH36高强度船板钢的研制与开发[D].沈阳:东北大学,2006.
    [84]A.Scholes. Segregation in continuous casting [J]. Ironmaking and steelmaking, 2005,32(2):107-108.
    [85]Wenjun Wang, Xionggang Hu, Linxin Ning, et al. Improvement of center segregation in high-carbon steel billets using soft reduction [J]. Journal of University of Science and Technology Beijing,2006,13(6):490-496.
    [86]G.Lesoult. Macrosegregation in steel and ingots:Characterisation, formation and consequences [J]. Materials Science and Engineering A,2005,413-414:19-29.
    [87]何庆文,王宝,王福明,等.大方坯轴承钢中心偏析的成因及预防措施[J].钢铁,2009,44(8):39-41.
    [88]Tooru Matsumiya. Recent topics of research and development in continuous casting [J]. ISIJ International,2006,46(12):1800-1804.
    [89]薛正良,李正邦,张家雯.高碳钢连铸方坯中心偏析[J].炼钢,2000,16(1):56-59.
    [90]Naveau P. Development of a heat exchanger for casting with low superheat [J]. Revue de Metallurgie/Cahiers d'Informations Techniques,1993,90(3):395-401.
    [91]韩启彪,杨武.铜质冷却水口的试验研究和传热分析[J].钢铁研究学报,2007,19(8):28-32.
    [92]Li Peisong, Lu Junhui. Control of equiaxed crystal ratio of high carbon steel billets by circular seam cooling nozzle [J]. Journal of Iron and Steel Research International,2001,18(2):24-30.
    [93]张俊婷.双辊冷却低过热度浇注结晶器内钢水流畅温度场耦合数值模拟[D].太原:太原科技大学,2008.
    [94]Wilmotte S, Naveau P, Knaff F. A New approach for preventing central Segregation in high carbon blooms and billets [C].4th International Conference Continuous Casting, Preprints,1988,1:235-246.
    [95]王晓东,李廷举,金俊泽.电磁场对连铸凝固末端凝固过程的影响[J].金属学报,2001,37(9):971-974.
    [96]Wu H J, Wei N, Bao Yan-ping, et al. Effect of M-EMS on the solidification structure of a steel billet [J]. International Journal of Minerals Metallurgy and Materials,2011,18(2):159-164.
    [97]于艳,刘俊江,徐海澄.结晶器电磁搅拌对连铸坯质量的影响[J].钢铁,2005,40(2):31-33.
    [98]陈永,李桂军,杨素波,等.大方坯连铸关键装备技术应用研究[J].钢铁钒钛,2004,25(1):1-6.
    [99]王永顺,谌智勇,董珍.电磁搅拌对圆坯质量的影响[J].包钢科技,2008,34(3):4-6.
    [100]周汉香,于学斌.电磁搅拌对铸坯质量的影响[J].武钢技术,2004,42(3):47-50.
    [101]刘洋,王新华.二冷区电磁搅拌对连铸板坯中心偏析的影响[J].北京科技大学学报,2007,29(6):582-585.
    [102]王彪,谢植,贾光霖.凝固电磁搅拌参数确定及其对中心偏析的影响[J].钢铁,2007,42(3):18-21.
    [103]Du W, Wang K, Song C J. Effect of special combined electromagnetic stirring mode on macrosegregaion of high strength spring steel blooms [J]. Ironmaking and Steelmaking,2008,35(2):153-156.
    [104]李春龙,蒋茂发,王宝峰.组合电磁搅拌对大方坯内部质量的影响[J].东北大学学报(自然科学版),2003,24(7):677-680.
    [105]Otake R, Yamada T, Hirayama R, et al. Effects of double-axis electromagnetic stirring in continuous casting [J]. IEEE Transactions Magnetics, 2010,46(1):82-86.
    [106]朱苗勇,林启永.连铸坯的轻压下技术[J].鞍钢技术,2004(1):1-6.
    [107]Sivesson. Improvement of inner quality in continuously cast billets through thermal soft reduction and use of multivariate analysis of saved process variables [J]. Iron Making and Steel Making,1996,23(6):504-511.
    [108]林启勇,朱苗勇.不同钢种连铸板坯轻压下率的规律分析[J].金属学报,2007,43(12):1297-1300.
    [109]林启勇,朱苗勇.板坯连铸动态轻压下控制模型的开发与应用[J].钢铁,2008,43(9):38-40.
    [110]Tomasz Rec, Andrzej Milenin. The 3D numerical model of macrosegregation in steel ingot during continuous casting with soft reduction [J]. Computer Methods in Materials Science,2009,9(2):215-220.
    [111]Peng Rui, Zhang Xiao Long, Zhang Hua. Emulation of dynamic secondary cooling and soft reduction in continuous slab casting [J]. Communications in Computer and Information Science,2011,224(1):356-364.
    [112]Luo S, Zhu M Y. Characteristics of solute segregation in continuous casting bloom with dynamic soft reduction and determination of soft reduction zone [J]. Ironmaking and Steelmaking,2010,37(2):140-146.
    [113]李维彪,王芳,齐凤升,等.结晶器喂钢带连铸坯凝固过程的数学模拟[J].金属学报,2007,11(43):1191-1194.
    [114]朱诚意,李光强,饶江平,等.连铸薄板坯的质量缺陷及其改善措施研究[J].上海金属,2006,28(2):15-20.
    [115]Nosochenko O V, Isaev O B, Lepikhov L S. Reducing axial segregation in a continuous-cast semifinished product by micro-alloying [J]. Metallurgist,2003, 47(5-6):244-247.
    [116]成旭东,唐志军,徐学良,等.船板拉伸试样断口分层的研究与控制[J].连铸,2010,6:42-46.
    [117]N.Narasaiah, K.K.Ray. Small crack formation in a low carbon steel with banded ferrite-pearlite structure [J]. Materials Science and Engineering,2005,392: 269-277.
    [118]冯锐,李胜利,冯勇,等.Q460C钢板微观组织对拉伸断口特征的影响[J].金属热处理,2012,37(1):22-25.
    [119]李红.船用钢板断口开裂分层原因的分析[D].鞍山:辽宁科技大学,2008.
    [120]饶添荣,李杰,成国光,等.DH36高强度船板拉伸断口分离缺陷分析[J].钢铁研究,2010,38(1):21-23.
    [121]郑建平,侯中华,廖仕军.Q690D钢轧后拉伸分层试样的显微组织研究[J].南钢科技与管理,2011,4:11-14.
    [122]国秀元,马兴云,杨宪礼,等.不同脱氧工艺对钢板分层的影响[J].炼钢,2001,17(6):43-46.
    [123]陆淑娟,王高田,陈润泽.Q460C钢板剪切分层原因分析[J].宽厚板,2008,14(1):30-32.
    [124]潘伟.低合金高强度钢板分层原因与对策[J].甘肃冶金,2009,31(3):33-36.
    [125]姜锡山,赵晗.钢铁显微断口速查手册[M].北京:机械工业出版社,2010:413-416.
    [126]H.Inagaki. Fractographic study of the formation of the separation in a control-rolled, low carbon niobium steel [J]. Zeitschrift fur Metallkunde,1988, 79(6):364-374.
    [127]陈方玉,邹德辉,陈吉清.Q345B钢板材拉伸断口分层的机理[J].钢铁研究,2010,38(10):21-25.
    [128]P.Shanmugam, S.D.Pathak. Some studies on the impact behavior of banded microalloyed steel [J]. Engineering Fracture Mechanics,1996,53(6):991-1005.
    [129]R.A.Grange. Effect of microstructure banding in steel [J]. Metallurgical and Materials Transactions B,1971,2:417-426.
    [130]Akhmad A.Korda, Y.Mutoh, Y.Miyashita, et al. In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching [J].2006,54(11):1835-1840.
    [131]Keiro Tokaji, Takeshi Ogawa, Yukio Harada. The growth of small fatigue cracks in a low carbon steel:the effect of microstructure and limitations of linear elastic fracture mechanics [J]. Fatigue and Fracture of Engineering Materials and Structures,1986,9(3):205-217.
    [132]D.Alaoua, S.Lartigue, A.Larere, et al. Precipitation and surface segregation in low carbon steels [J]. Materials Science and Engineering A,1994,189(1-2): 155-163.
    [133]T.Tanaka. Controlled rolling of steel plate and strip [J]. International Metals Reviews,1981,26(28):185-212.
    [134]李艳梅,朱伏先,崔凤平,等.中厚钢板分层缺陷的形成机制分析[J].东北大学学报(自然科学版),2007,28(7):1002-1005.
    [135]Takeshi Miyashtia, Masatsugu Nagai. Stress analysis for steel plate with multilayered CFRP under uniaxial loading [J]. Procedia Engineering,2011,14: 2411-2419.
    [136]S.Dey, E(?)rvik, X.Teng, et al. On the ballistic resistance of double-layered steel paltes:An experimental and numerical investigation [J]. International Journal of Solids and Structure,2007,44(20):6701-6723.
    [137]赵金涛.船板钢铸坯中心偏析与轧板拉伸分层的研究[D].武汉:武汉科技大学,2011.
    [138]郑建平,黄贞益,姜辉,等.Q345B钢轧后拉伸分层试样的显微组织研究[J].热处理,2009,24(1):42-46.
    [139]王智轶,乐可襄.Q345B中厚板拉伸试验断口分层的原因分析[J].宽厚板,2009,15(3):11-14.
    [140]赵鹏,乐可襄.济钢船板分层缺陷形成机制分析[J].宽厚板,2009,15(3):36-39.
    [141]Zhou Min, Du Lin-xiu, Liu Xiang-hua. Relationship among microstructure and properties and heat treatment process of ultra-high strength X120 pipeline steel [J]. Journal of Iron and Steel Research International,2011,18(3):59-64.
    [142]于庆波,刘相华,赵贤平.控轧控冷钢的显微组织形貌及分析[M].北京,科学出版社,2010:267.
    [1]徐富春.微纳尺度表征的俄歇电子能谱新技术[D].厦门:厦门大学,2009.
    [2]李金波,胡志刚,杜琦铭.利用直读光谱仪检测铸坯偏析的探索与实践[J].中国冶金,2011,21(12):54-59.
    [3]Sugimoto K, Usui N, Kobayashi M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels [J]. ISIJ International,1992,32(12):1311-1318.
    [4]魏洁,李权,唐广波,等.碳锰钢压缩过程中非均匀应变与再结晶之间关系的研究[J].钢铁,2006,41(7):74-78.
    [1]刘东升,邹志文,岳重祥.采用控轧控冷技术(TMCP)生产合金减量型高强度船板[J].金属热处理,2012,37(2):57-64.
    [2]王根矶,李婧,何元春,等.低合金厚板的减量化轧制[J].钢铁,2009,44(8):60-63.
    [3]Xiao-Huai Xue, Yi-Yin Shan, Lei Zheng, et al. Microstructure characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process [J]. Materials Science and Engineering A,2006,438-440:285-287.
    [4]Yi Hai-long, Liu Zhen-yu, Wang Guo-dong, et al. Development of Ti-microalloyed 600 MPa hot rolled high strength steel [J]. Journal of Iron and Steel Research, International,2010,17(12):54-58.
    [5]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1993:5.
    [6]LI Long, DING Hua, DU Lin-xiu, et al. Influence of Mn content and hot deformation on transformation behavior of C-Mn steels [J]. Journal of Iron and Steel Research, International,2008,15(2):51-55.
    [7]许峰云,白秉哲,方鸿生,等.液压支架活柱用水淬贝氏体钢的开发[J].钢铁,2009,44(10):75-77.
    [8]Ming-Chun Zhao, Ke Yang, Fu-Ren Xiao, Yi-Yin Shan. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels [J]. Materials Science and Engineering A,2003,355(1-2):126-136.
    [9]李壮,王铁利,曹仁焕,等.硅、锰合金元素含量对TRIP结构钢力学性能的影响[J].东北大学学报(自然科学版),1999,20(3):301-304.
    [10]刘嘉禾.低合金高强度钢[M].北京,中国工业出版社,1963:9-10.
    [11]陈伟,施哲,赵宇,等.铌微合金化和控冷工艺开发HRB500抗震钢筋[J].材料热处理学报,2010,31(7):77-82.
    [12]雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:9-10.
    [13]胡巍,张轶.高速钢辊环成分与热处理工艺确定[J].重钢技术,2005,48(3):47-49.
    [14]樊晓雷,肖丰强.济钢微合金化HRB400E、HRB500E抗震钢筋的研制[J]. 昆明冶金高等专科学校学报,2009,25(3):51-55.
    [15]冯锐,李胜利,李贞顺,等.Nb-V-Ti微合金钢复合析出相的特征[J].材料热处理学报,2013,34(2):37-41.
    [16]Joonoh Moon, Changhee Lee. Pinning efficiency of austenite grain boundary by a cubic shaped TiN particle in hot rolled HSLA steel [J]. Materials Characterization,2012,73:31-36.
    [17]陈襄武.炼钢过程的脱氧[M].北京:冶金工业出版社,1991:266-270.
    [18]刘阳春,傅杰,吴华杰,等.薄板坯连铸连轧铝镇静钢中酸溶铝的作用研究[J].钢铁,2007,42(1):23-26.
    [19]李秉军,李晶,刘伟健,等.TMCP生产低碳贝氏体钢中微合金化元素的作用机理研究[J].钢铁钒钛,2013,34(3):1-8.
    [20]王克鲁,鲁世强,康永林,等.硼对高强度低碳贝氏体钢组织和性能的影响[J].金属热处理,2009,34(3):6-9.
    [21]颜慧成,曹慧泉,罗登,等.钛、铌、硼对低碳贝氏体钢组织与性能的影响[J].钢铁研究学报,2010,22(5):55-58.
    [22]Habu R, Miyata M, Sekino S, et al. Effect of boron on hardenability of Al-B-N low alloy steels [J]. Transactions ISIJ,1978,18:492-500.
    [23]吴化,刘姗姗.差示扫描量热法测定22Mn2SiVBS钢CCT曲线[J].理化检验-物理分册,2008,44(12):684-688.
    [24]D.V.Edmonds, R.C.Cochrane. Structure-property relationship in bainitic steels [J]. Metallurgical Transactions A,1990,21(6):1527-1540.
    [25]S.K.Liu, L.Yang, D.G.Zhu, et al. The influence of the transformation kinetics and morphologies of ferrite plates in alloy steels [J]. Metallurgical and Materials Transactions A,1994,25(9):1991-2000.
    [26]Eddy C.T, Marcotte R.J, Smith R.J. Time-temperature-transformation curves for use in the heat-treatment of cast steel [J]. Metals Technology,1945,12:90-99.
    [27]R.W.K.Honeycombe, R.F.Mehl. Transformation from austenite in alloy steels [J]. Metallurgical Transactions A,1976,7(7):915-936.
    [28]P.T.Moore. Anisothermal deposition of austenite in a medium-alloy steel [J]. Journal of Iron and Steel Institute,1954,177:305-311.
    [29]W.Steven, G.Mayer. Continuous-cooling transformation diagrams of steels [J]. Journal of Iron and Steel Institute,1953,174:33.
    [30]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling [J]. Metal Science,1979,13(3-4):187-194.
    [31]Hall E O. The deformation and ageing of mild steel:Discussion of results [J]. Proceedings of the Physical Society, Secion B,1951,64:747-753.
    [32]Petch N J. The cleavage strength of polycrystals [J]. Journal of Iron and Steel Institute,1953,174:25-28.
    [33]林大为,韩安昌,邱昱斌.微合金低碳铁素体-珠光体钢力学性能的预报[J].上海金属,2005,27(2):52-55.
    [34]彭宁琦.热轧带钢组织性能预报模型开发及超快冷工艺的初步探索[D].北京:钢铁研究总院,2012.
    [35]斯重遥.焊接手册(第二卷)[M].北京:机械工业出版社,1992:59-65.
    [36]尹长华,薛振奎,闫臣.Nb-Cr X80管线钢冷冽敏感性分析[J].焊管,2010,33(1):13-17.
    [37]Joonoh Moon, Jongbong Lee, Changhee Lee. Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel [J]. Materials Science and Engineering A,2007,459(1-2):40-46.
    [38]Fang Fang, Qi-long Yong, Cai-fu Yang, et al. Microstructure and precipitation behavior in HAZ of A and Ti microalloyed steel [J]. Journal of Iron and Steel Research International,2009,16(3):68-72.
    [39]K.Nishio, K.Tashima, M.Katoh, et al. Effect of Ti and N on notch toughness of synthetic weld heat affected zone [J]. Transactions of the Japan Welding Society, 1984,15(2):40-48.
    [40]余永宁,刘国权.体视学—组织定量分析的原理和应用[M].北京:冶金工业出版社,1989:60.
    [41]DeArdo J A, Ratz G A, Wray P J eds. Thermo-mechanical processing of microalloyed Austenite [C]. Warrendale, PA:TMS-AIME,1982:1-30.
    [42]J.G.Speer, J.R. Michael, S.S. Hansen. Carbonitride precipitation in niobium/vanadium microalloyed steels [J]. Metallurgical Transactions A,1987, 18(2):211-222.
    [43]R.M. Smith, D.P. Dunne. Structural aspects of alloy carbonitride precipitation in microalloyed steels [J]. Materials Forum,1988,11:166-181.
    [44]杜海军,赵德文,杜林秀,等.温度参数对铌微合金高强度结构钢组织性能 的影响[J].钢铁研究学报,2010,22(6):35-39.
    [45]刘文斌,康永林,牛涛,等.热连轧生产厚规格X80管线钢的静态再结晶行为及工艺优化[J].北京科技大学学报,2010,32(4):444-449.
    [46]Ma Bo, Peng Yan, Jia Bin, et al. Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B [J]. Journal of Iron and Steel Research International,2010,17(8):61-66.
    [47]苑少强,杨善武,聂文金,等.Fe-Ni-Nb-Ti-C合金变形后等温弛豫过程中位错与析出的相互作用[J].金属学报,2004,40(8):887-890.
    [48]S.F.Medina. Determination of precipitation-time-temperature (PPT) diagrams for Nb,V or Ti micro-alloyed steels [J]. Journal of Materials Science,1997,32(6): 1487-1492.
    [49]Fu-ren Xiao, Bo Liao, Yi-yin Shan, et al. Challenge of mechanical properties of an acicular ferrite pipeline steel [J]. Materials Science and Engineering A,2006, 431(1-2):41-52.
    [50]Antonio Augusto GORNI, Celso Gomes CAVALCANTI.7th International Conference on Steel Rolling 1998 [C].Chiba:The Iron and Steel Institute of Japan, 1998:629-633.
    [51]熊尚武.变形抗力数学模型研究[D].沈阳:东北工学院,1991.
    [52]刘勇.含钒低合金钢高温变形抗力研究及应用[J].钢铁钒钛,2012,33(5):60-65.
    [53]Lagneborg R, Siwecki T, Zajac S, et al. The role of vanadium in microalloyed steels [J]. Scandanavian Journal of Metallurgy,1999,28:186.
    [54]Jung Y C, Ueno H, Ohtsubo H, et al. Nb and Ti additions on nucleation and growth processes of intermediate transformation products in low carbon 3% Mn steels [J]. ISIJ International,1995,35(8):1001-1005.
    [55]S.F.Medina, J.E.Mancilla, C.A.Hernandez. Influence of vanadium on the static recrystallization of austenite in microalloyed steels [J]. Journal of Materials Science, 1993,28(19):5317-5324.
    [56]肖国华,王福明,李长荣,等.铌钒微合金化高强度船板钢的连续冷却转变规律[J].北京科技大学学报,2008,30(5):495-500.
    [57]Patricia M, Guillan B, Jonas J. Effect of finishing temperature on hot band textures in an IF steel [J].ISIJ International,1996,36(1):68-73.
    [58]Guo Wei-min, Wang Zuo-cheng, Liu Sheng, et al. Effects of finishing rolling temperature on microstructure and mechanical properties of ferrite-rolled P-added high strength interstitial-free steel sheets [J]. Journal of Iron and Steel Research International,2011,18(5):42-46.
    [59]黄山,高雅,负冰,等.终轧温度及轧后冷却速度对Q460C钢组织和相变的影响[J].武汉科技大学学报,2010,33(2):138-142.
    [60]W.M.Rainforth, M.P.Black, R.L.Higginson, et al. Precipitation of NbC in a model austenite steel [J]. Acta Materialia,2002,50(4):735-747.
    [61]张开华,叶晓瑜,刘勇,等.终轧温度对高强度工程机械用钢组织性能的影响[J].钢铁钒钛,2010,31(3):63-67.
    [62]邵媛媛,宋志超,张红梅.压下量和终轧温度对硅-锰系含铌热轧双相钢组织与性能的影响[J].机械工程材料,2010,34(4):22-25.
    [63]唐荻,高元军,徐洪庆.控轧控冷对DH36钢组织的影响及工艺参数优化[J].轧钢,2000,17(4):7-11.
    [64]胡贤磊,赵忠,矫志杰,等.中厚板控制轧制过程控温厚度的优化计算[J].轧钢,2005,22(2):16-19.
    [65]孔冠宏.Q460C钢的成分设计及控轧控冷工艺优化[D].济南:山东大学,2011.
    [66]A Kojima, Y Watanabe, Y Terada, et al. Ferrite grain refinement by large reduction per pass in non-recrystallization temperature region of austenite [J].ISIJ International,1996,36(5):603-610.
    [67]张红梅,刘相华,王国栋.变形工艺参数对铁素体相变行为的影响[J].钢铁研究,2000,7:36-39.
    [68]杨予,赵志毅,王连忠,等.控制轧制对含钒低碳钢板组织与性能的影响[J].轧钢,2003,20(6):16-18.
    [69]蓝慧芳,杜林秀,刘彦春,等.终冷温度对高强度工程机械用钢性能的影响[J].机械工程材料,2008,32(9):29-33.
    [70]兰勇军,黄成江,李殿中,等.热变形条件下C-Mn钢奥氏体→铁素体相变模拟[J].金属学报,2003,39(3):242-248.
    [1]Yi Hai-long, Du Lin-xiu, Wang Guo-dong, et al. Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening [J]. Journal of Iron and Steel Research, International,2009,16(4):72-77.
    [2]Charleux M, Poole W J, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel [J]. Metallurgical and Materials Transactions A,2001,32 (7):1635-1647.
    [3]黄杰,徐洲.V-Ti微合金钢的轧后冷却相变及第二相析出行为[J].上海金属,2005,27(1):14-17.
    [4]Gladman T. Precipitation hardening in metals [J].Materials Science and Technology,1999,15(1):30-36.
    [5]Gengwei Yang, Xinjun Sun, Zhaodong Li, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Materials and Design,2013,50:102-107.
    [6]E.Hurtado-Delgado, R.D.Morales. Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel [J]. Metallurgical and Materials Transactions B,2001,32(5): 919-927.
    [7]Medina S.F, Quisp A. Improved model for static recrystallization kinetics of hot deformed austenite in low alloy and Nb, V microalloyed steels [J]. ISIJ International,2001,41(7):774-781.
    [8]Wei Deng, Xiuhua Gao, Dewen Zhao, et al. Effects of Ti-enriched carbonitride on microstructure and mechanical properties of X80 pipeline steel [J]. Journal of Materials Science and Technology,2010,26(9):803-809.
    [9]M.Gomez, S.F.Medina, G.Caruana. Modelling of phase transformation kinetics by correction of dilatometry results for a ferritic Nb-microalloyed steel [J]. ISIJ International,2003,43(8):1228-1237.
    [10]雍岐龙,裴和中,田建国,等.铌在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10(2):66-69.
    [11]S.Matsuda, N.Okumura. Effect of distribution of TiN precipitate on the austenite grain size of low carbon low alloy steels [J]. ISIJ International,1978,18: 198-205.
    [12]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:7.
    [13]Kwan Hee Han. The microstructure and mechanical properties of an austenitic Nb-bearing Fe-Mn-Al-C alloy processed by controlled rolling [J]. Materials Science and Engineering A,2000,279(1-2):1-9.
    [14]Xiaohong Yang, Vanderschueren Dirk, Dilewijns Jozef, et al. Solubility products of titanium sulphide and carbonsulphide in ultra-low carbon steels [J]. ISIJ International,1996,36(10):1286-1294.
    [15]J.Kunze. Solubility of Titanium Nirtride in delta-iron [J]. Steel Research (Germany),1991,62(10):430-432.
    [16]张柯,刘峰,杨根仓,等.材料相变过程中的形核理论[J].西安工业大学学报,2012,32(12):947-958.
    [17]H.E Exner, H.L Lukas. The experimental verification of the stationary Wagner-Lifshitz distribution of coarse particles [J]. Metallography,1971,4(4): 325-338.
    [18]Kelvin Y. Xie, Tianxiao Zheng, Julie M. Cairney, et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel [J]. Scripta Materialia,2012,66(9): 710-713.
    [19]宋维锡.金属学[M].北京:冶金工业出版社,2007:256.
    [20]李永良,陈梦谪.微钛钢中TiN析出对奥氏体晶粒长大的影响[J].北京师范大学学报(自然科学版),1999,35(1):38-41.
    [21]雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:437-438.
    [22]J.H.Vander Merwe, G.J.Shiflet. The role of structural ledges at phase boundaries-III.F.C.C.-B.C.C. interfaces in Kurdjumov-Sachs orientation [J]. Acta Metallurgica et Materialia,1994,12(4):1199-1205.
    [23]Y.Tomita, N.Saito, T.Tsuzui, et al. Improvement in HAZ toughness of steel by TiN-MnS addition [J]. ISIJ International,1994,34(10):829-835.
    [24]G.K.Tirumalasetty, M.A. van Huis, C.M.Fang, et al. Characterization of NbC and (Nb,Ti)N nanoprecipitate in TRIP assisted multiphase steels [J]. Acta Materialia, 2011,59(19):7406-7415.
    [25]Strid J, Easterling K E. On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metallurgica,1985,33(11):2057-2074.
    [26]王福明,韩其勇,李长荣.钢中微合金碳氮化物复合相的形成机制[J].钢 铁,1995,30(3):50-52.
    [27]Craven A J, He K, J Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels-Ⅰ. (Ti,Nb)(C,N) particles [J]. Acta Materialia,2000,48(15):3857-3868.
    [28]G.Baker, J.Nutting. Precipitation Processed in Steels [M]. London:The Iron and Steel Institute,1959:1-21.
    [29]S.Gunduiiz, R.C.Cochrane. Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel [J].Materials and Design,2005,26:486-492.
    [30]Khalid F.A, Edmonds D.V. Interphase precipitation in microalloyed engineering steels and model alloy [J]. Materials Science and Technology,1993, 9(5):384-396.
    [31]Y.-J.Zhang, G.Miyamoto, K.Shinbo, et al. Effects of a/y orientation relationship on VC interphase precipitation in low-carbon steels [J]. Script Materialia,2013,69(1):17-20.
    [32]H.I.Aaronson, M.R.Plichta, GW.Franti, et al. Precipitation at interphase boundaries [J]. Metallurgical Transactions A,1978,9(3):363-371.
    [33]S.Shanmugam, R.D.K.Misra, T.Mannering, et al. Impact toughness and microstructure relationship in niobium- and vanadium-microalloyed steels processed with varied cooling rates to similar yield strength [J]. Materials Science and Engineering A,2006,437(2):436-445.
    [34]Y.Tomota, M.Umemoto, N.Komatsubara, et al. Prediction of mechanical properties of multi-phase steels based on stress-strain curves [J]. ISIJ International, 1992,32(3):343-349.
    [35]G.K.Tirumalasetty, M.A.van Huis, C.M.Fang, et al. Characterization of NbC and (Nb,Ti)N nanoprecipitates in TRIP assisted multiphase steels [J]. Acta Materialia,2011,59(19):7406-7415.
    [36]陆匠心,王国栋.一种Nb-Ti微合金钢微合金碳氮化物析出行为的研究[J].钢铁,2005,40(9):69-72.
    [37]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:372-378.
    [38]文建华,孙新军,刘清友,等.低碳高铌微合金钢的析出行为[J].机械工程材料,2007,31(9):23-25.
    [39]I.Gutierrez. Effect of microstructure on the impact toughness of Nb-microalloyed steel:Generalisation of existing relations from ferrite-pearlite to high strength microstructures [J]. Materials Science and Engineering A,2013,571: 57-67.
    [40]R.Kuziak, T.Bold, Yi-wen Cheng. Microstructure control of ferrite-pearlite high strength low alloy steels utilizing microalloying additions [J]. Journal of Materials Processing Technology,1995,53(1-2):255-262.
    [41]Jian-wen Fan, Xiao-li Dai, Rui-ping Xie, et al. Surface ferrite grain refinement and mechanical properties of low carbon steel plates [J]. Journal of Iron and Steel Research International,2006,13(4):35-39.
    [42]S.K.Dhua, P.P.Sarkar. Development of ultrafine grains in C-Mn steel plates through hot-rolling and air-cooling [J]. Materials Science and Engineering A,2013, 575:177-188.
    [43]Setsuo Takaki, Kenji Kawasaki, Yuji Kimura. Mechanical properties of ultra fine grained steels [J]. Journal of Materials Processing Technology,2001,117 (3):359-363.
    [44]K.Partin, K.O.Findley, C.J.Van Tyne. Microstructure and alloy influence on the low-temperature strengthening behavior of commercial used as plates [J]. Materials Science and Engineering A,2010,527(20):5143-5152.
    [45]刘文庆,朱晓勇,钟柳明,等.微合金钢中第二相临界转变尺寸的研究[J].金属学报,2011,47(8):1094-1098.
    [46]Glad T, Dulieu D, I.D.Mclvor. Structure-property relationships in high-strength microalloyed steels [C]. Microalloying'75, New York, Union Carbide Corp,1975: 32-55.
    [47]徐曼,孙新军,刘清友,等.高V钢中V(C,N)沉淀强化作用的研究[J].钢铁钒钛,2005,26(3):7-11.
    [48]雍岐龙,裴和中,田建国,等.铌在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10(2):66-69.
    [49]雍岐龙,阎生贡,裴和中,等.钒在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10(5):63-66.
    [50]M Niikura, M Fujioka, Y Adachi, et al. New concepts for ultra refinement of grain size in super metal project [J]. Journal of Materials Processing Technology, 2001,117(3):341-346.
    [1]G.Lesoult. Macrosegregation in steel and ingots:characterization, formation and consequences [J]. Materials Science and Engineering A,2005,413-414:19-29.
    [2]夏德银.连铸生产过程中铸坯质量预测研究[D].沈阳:东北大学,2009.
    [3]Chen Shu-ying, Chang Guo-wei, Yue Xu-dong, et al. Solute distribution in columnar crystal zone and influence of correlative factors for continuous casting slabs [J]. Journal of Iron and Steel Research International,2008,15(4):21-25.
    [4]G.Lesoult, Ch.-A.Gandin, N.T.Niane. Segregation during solidification with deformation of the mushy zone [J].Acta Materialia,2003,51(18):5263-5283.
    [5]程常桂,车芳,帅静,等.连铸坯中心偏析控制技术的发展[J].2009,6:39-42.
    [6]Ozbayraktar S, Koursaris A. Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel [J]. Metallurgical and Transactions B,1996, 27(4):287-296.
    [7]赵航,李铮.连铸钢坯上白亮带的形成机制[J].钢铁研究学报,2000,12(1):71-72.
    [8]R.M.C.De Keyser. Improved mould-level control in a continuous steel casting line [J]. Control Engineering Practice,1997,5(2):231-237.
    [9]P.Shanmugam, S.D.Pathak. Some studies on the impact behavior of banded microalloyed steel [J]. Engineering Fracture Mechanics,1996,53(6):991-1005.
    [10]蔡兆镇,朱苗勇.钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响[J].金属学报,2009,45(8):949-955.
    [11]Suzuki M, Nakada M. Formation mechanism of center segregation in continuously cast steel slab and its improvement by'soft Reduction'technique [C].2001年中国钢铁年会论文集.北京:中国钢铁工业协会,2001:624.
    [12]刘洋,王新华,张开钧.含铌钒钛微合金化钢连铸板坯中心偏析的影响因素[J].北京科技大学学报,2007,29(9):896-900.
    [13]韩志强,蔡开科.连铸坯中微观偏析的模型研究[J].金属学报,2000,36(8):869-873.
    [14]Sims C E, Dable F B. Effect of Aluminum on the properties of medium carbon cast steel [J]. Transactions of American Foundry Society,1938,46:65.
    [15]邓锋云,李国忠,涂益友,等.38MnVS5钢连铸坯中硫化物形貌及形成机制的研究[J].特殊钢,2008,29(1):54-56.
    [16]Yoichi Ito, Noriyuki Masumitsu, Kaichi Matsubara. Formation of manganese sulfide in steel [J]. Transactions ISIJ,1981,21:477-484.
    [17]王明林,杨春政,陶红标,等.微合金化钢连铸坯角部裂纹形成机制[J].钢铁,2012,47(10):27-33.
    [18]S.Nafisi, D.Emadi, M.T.Shehata, et al. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy [J]. Materials Science and Engineering A,2006,432(1-2):71-83.
    [19]Li Peisong, Lu Junhui, Qiu Shengtao, et al. Control of equiaxed crystal ratio of high carbon steel billets by circular seam cooling nozzle [J]. Journal of Iron and Steel Research International,2011,18(2):24-30.
    [20]Choudhary S. K., Ghosh A. Morphology and macrosegregation in continuously cast steel billets [J]. ISIJ International,1994,34(4):338-345.
    [21]Michele De Santis, Alessandro Ferreti. Thermo-fluid-dynamics modeling of the solidification process and behavior of non-metallic inclusions in the continuous casting slabs [J]. ISIJ International,1996,36(6):673.
    [22]冯科,陈登福,徐楚韶,等.连铸坯枝晶凝固的重要微观结构特征参数的研究进展[J].特殊钢,2004,25(3):1-5.
    [23]殷凤仕,孙晓峰,侯贵臣,等.熔体过热处理对M963合金凝固偏析的影响[J].稀有金属材料与工程,2004,33(6):659-661.
    [24]冯军,陈伟庆.高强度二冷对高碳钢小方坯凝固组织和中心碳偏析的影响[J].特殊钢,2006,27(4):42-44.
    [25]赖朝彬,辛博,陈伟庆,等.连铸板坯二次枝晶臂间距对中心碳偏析的影响[J].炼钢,2009,25(4):42-45.
    [26]Hoseon Yoo, R.Viskanta. Effect of anisotropic permeability on the transport process during solidification of binary a mixture [J]. International Journal of Heat and Mass Transfer,1992,35(10):2335-2346.
    [27]Li Jinfu, Lu Yili, Yang Gengcang, et al. Directional solidification of undercooled melt [J]. Progress in Natural Science,1997,6:736.
    [28]W.Kurz, C.Bezencon, M.Gaumann. Columnar to equiaxed transition in solidification processing [J]. Science and Technology of Advanced Materials,2001, 2(1):185-191.
    [29]Qingfeng Zhu, Zhihao Zhao, Jianzhong Cui, et al. Effect of casting speed on surface quality of horizontal direct chill 7075 aluminum alloy ingot [J]. Acta Metallurgica Sinica (English Letters),2011,24(5):399-404.
    [30]郭薇,张立峰,朱苗勇.碳钢连铸凝固过程的微观模拟[J].北京科技大学学报,2010,32(3):319-324.
    [31]薛正良,李正邦,张家雯.高碳钢连铸坯方坯中心偏析[J].炼钢,2000,16(1):56-59.
    [32]Chen Xing-run, Zhang Zhi-feng, Xu Jun. Effects of annular electromagnetic stirring processing parameters on semi-solid slurry production [J]. Transactions of Nonferrous Metals Society of China,2010,20(s3):873-877.
    [33]刘洋,王新华.二冷区电磁搅拌对连铸板坯中心偏析的影响[J].北京科技大学学报,2007,29(6):582-585.
    [34]C.Mapelli, A.Gruttadauria, M.Peroni. Application of electromagnetic stirring for the homogenization of aluminium billet cast in a semi-continuous machine [J]. Journal of Materials Processing Technology,2010,210(2):306-314.
    [35]张宏丽,王恩刚,贾光霖,等.影响线性电磁搅拌流场分布的电参数分析[J].东北大学学报(自然科学版),2002,23(8):773-775.
    [36]朱伦才,刘启龙,王志政,等.改善AH36钢板坯中心偏析的试验研究[J].钢铁,2012,47(7):36-39.
    [37]Flemings M C. Our understanding of macrosegregation:past and present [J]. ISIJ International,2000,49(9):833-841.
    [38]Suzuki K, Takahashi K. Mechanical properties of the slabbing mill roll materials at room and elevated temperatures [J]. Transactions of the Iron and Steel Institute of Japan,1975,61(3):371-387.
    [39]林启勇,蒋欢杰,朱苗勇.连铸坯动态轻压下的压下参数分析[J].材料与冶金学报,2004,3(4):261-265.
    [40]Wenjun Wang, Linxin Ning, Raimund Bulte, et al. Formation of internal cracks in steel billets during soft reduction [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2008,15(2):114-119.
    [1]Andrews K W. Empirical formulae for the calculation of some transformation temperature [J]. Journal of the Iron and Steel Institute,1965,203:721.
    [2]P.Shanmugam, S.D.Pathak. Some studies on the impact behavior of banded microalloyed steel [J]. Engineering Fracture Mechanics,1996,53(6):991-1005.
    [3]M.GMecozzi, J.Sietsma, S.van der Zwaag. Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modelling [J]. Acta Materialia,2006, 54(5):1431-1440.
    [4]严玲,唐荻,米振莉,等.汽车用TWIP钢的力学性能与微观组织[J].北京科技大学学报,2006,28(8):739-743.
    [5]李杰,王丽,李志,等.热处理对高Co-Ni超高强度钢冲击断口的影响[J].航空材料学报,2008,28(1):35-39.
    [6]Krauss G. Steels:Processing, Structure, and Performance [M].Materials Park, Ohio 44073-0002:ASM International,2005:201-204.
    [7]刘晓美,高峰.z向断面收缩率与塑性夹杂物级别的关系[J].物理测试,2006,24(3):26-28.
    [8]Rui Feng, Shengli Li, Zhenshun Li, et al. Variations of microstructure and properties of 690 MPa grade low carbon bainitic steel after tempering [J]. Materials Science and Engineering A,2012,558:205-210.
    [9]王艳丽,何明艳,范丽伟,等.低合金中厚板延伸率不合的原因分析.河南冶金,2009,17(6):13-14.
    [10]Mangonon P L. Effect of alloying elements on the microstructure and properties of a not-rolled low alloy bainitic steel [J]. Metallurgical Transactions A, 1976,9:1389.
    [11]陈方玉,邹德辉,陈吉清.Q345B钢板材拉伸断口分层的机理[J].钢铁研究,2010,38(5):21-25.
    [12]王倩,姜敏凤,冯勇,等.Q460C钢板的混晶组织特征和成因探讨[J].山东冶金,2011,33(1):34-35.
    [13]张超,宋畅,韩斌,等.CSP生产C-Mn钢薄带组织与表面裂纹研究[J].钢铁研究学报,2011,23(5):50-54.
    [14]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003:127.
    [15]F.B.Pickering. Physical metallurgy and design of steels [M]. London:Applied Science Publishers LTD,1978:50-63.
    [16]冯锐,李胜利,冯勇,等.Q460C钢板微观组织对拉伸断口特征的影响[J].金属热处理,2012,37(1):21-24.
    [17]武英,唐之秀,杨德庄,等.拉伸断裂行为显微分析[J].中国有色金属学报,1996,6(3):99-105.
    [18]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:90.
    [19]D.Brooksbank, K.W.Andrews. Stress fields around inclusions and their relation to mechanical properties [J]. Production and Application of Clean Steels,1972, 210(4):246-255.
    [20]潘涛,杨志刚,白秉哲,等.钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J].金属学报,2003,39(10):1037-1042.
    [21]Tresca H. On the flow of solid bodies subjected to high pressures [J]. Comptes Rendus de l'Academie des Sciences Paris,1864,59:754.
    [22]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995:366.
    [23]J.P.Wang, Z.-G.Yang, B.Z.Bai, et al. Grain refinement and microstructural evolution of grain boundary allotriomorphic ferrite/granular bainite steel after prior austenite deformation [J]. Materials Science and Engineering A,2004,369(1-2): 112-118.
    [24]Ueshma Yoshyuki, Mizoguchi Shozo, Matsumiya Tooru, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification [J]. Metallurgical Transactions,1986,17(4):845-859.
    [25]邹达基,邹宗树,孙健,等.板坯连铸中心偏析的模拟研究[J].连铸,2011(3):1-5.
    [26]M.C.Flemings. Solidification processing [J]. Metallurgical and Materials Transactions B,1974,5(10):2121-2134.
    [27]陈福义,介万奇.Al-Cu-Zn合金微观偏析的实验和Scheil模型研究[J].金属学报,2004,40(6):664-668.
    [28]Fihser P M, Speich G R, Cuddy L H, et al. Phase transformation during steel production[J]. Physical Chemistry in Metallurgy, U.S. Steel Research Lab., Monroeville, Pa,1976:463-488.
    [29]George Krauss. Solidification, segregation, and banding in carbon and alloy steels [J]. Metallurgical and Materials Transactions B,2003,34(6):781-792.
    [30]Liu Zhilin. C-Me segregating theory in solid alloys [J]. Chinese Science Bulletin,1989,34(23):2006-2010.
    [31]Lu Yupeng, Zhu Ruifu, Li Shitong, et al. C-Mn segregation and its effect on phase transformation in Fe-Mn-C allolys [J]. Progress in Natural Science,1999, 9(7):539-544.
    [32]D.C.Cook. Strain induced martensite formation in stainless steel [J]. Metallurgical and Materials Transactions A,1987,18(2):201.
    [33]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,1990:45.
    [34]朱瑞富,李士同,吕宇鹏,等.Fe-Mn-C合金中的C-Mn偏聚及其对相变的影响[J].自然科学进展,1999,9(6):558-563.
    [35]方鸿生,冯春,郑燕康,等.新型Mn系贝氏体钢的创制与发展[J].热处理,2008,23(3):2-19.
    [36]许峰云,白秉哲,方鸿生.低碳Mn系水淬贝氏体钢的组织和力学性能[J].材料热处理学报,2010,31(9):83-88.
    [37]杨柳,方鸿生,孟至和.Fe-C-Mn-B合金奥氏体等温分解动力学及Mn的再分配[J].金属学报,1992,28(1):16-20.
    [38]Ted F. Majka, David K.Matlock, George Krauss. Development of microstructural banding in low-alloy steel with simulated Mn segregation [J]. Metallurgical and Materials Transactions A,2002,33 (6):1627-1637.
    [39]巴虹,张艳,万书伟.船板拉伸试样断口分层缺陷分析[J].物理测试,2009,27(2):60-62.
    [40]肖丰强,唐国红,侯登义A131GrAH36船板钢拉伸断口分层原因及改善措施[J].物理测试,2009,27(2):52-57.
    [41]Hubert Preblinger, Sergiu Ilie, Peter Reisinger, et al. Methods for assessment of slab centre segregation as a tool to control slab continuous casting with soft reduction [J]. ISIJ International,2006,46(12):1845-1847.
    [42]饶添荣,李杰,成国光,等.DH36高强度船板拉伸断口分离缺陷分析[J].钢铁研究,2010,38(1):21-23.
    [43]A.Smith, S.E.Kruger, J.Sietsma, et al. Laser-ultrasonic monitoring of ferrite recovery in ultra low carbon steel [J]. Materials Science and Engineering A,2007, 458(1-2):391-401.
    [44]R.H.Larn, J.R.Yang. The effect of compressive deformation of austenite on the Widmanstatten ferrite transformation in Fe-Mn-Si-C steel [J]. Materials Science and Engineering A,1999,264(1-2):139-150.
    [45]尚德礼,吕春风.微合金钢中夹杂物诱导晶内铁素体析出行为[J].北京科技大学学报,2008,30(8):864-869.
    [46]J.Yang, T.S.Wang, B.Zhang, et al. Microstructure and mechanical properties of high-carbon Si-Al-rich steel by low-temperature austempering [J]. Materials and Design,2012,35:170-174.
    [47]杨瑞成,余世杰,赵丽美.12CrlMoV耐热钢高温加热过程中位错组态的TEM研究[J].兰州理工大学学报,2006,32(4):16-19.
    [48]F.Khodabakhshi, M.kazeminezhad. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel [J]. Materials and Design,2011,32:3280-3286.
    [49]Reiss G, Vancea J, Hoffmann H. Grain-boundary resistance in poly crystal line metals [J]. Physical Review Letters,1986,56(19):2100-2103.
    [50]刘禹门.结构钢的形变位错结构和强度[J].钢铁研究学报,2007,19(4):1-5.
    [51]王小勇,潘涛,王华,等.Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J].金属学报,2012,48(4):401-406.
    [52]Mandziej S T. Low-energy dislocation and ductility of ferritic steels [J]. Materials Science and Engineering A,1993,164(1-2):275-280.
    [53]Ayesha J.Haq, K.Muzaka, D.P.Dunne, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. International Journal of Hydrogen Energy,2013,38(5):2544-2556.
    [54]刘云旭.低碳合金钢中带状组织的成因、危害和消除[J].金属热处理,2000,12:1-3.
    [55]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2006:232.
    [56]李昭东,宫本吾郎,杨志刚,等.Mn和Si对Fe-0.6C钢中珠光体—奥氏体相变的影响[J].金属学报,2010,46(9):1066-1074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700