用户名: 密码: 验证码:
硫化矿石自燃特性及井下火源探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿石自燃是长期以来影响矿山安全生产的问题,已成为硫化矿床开采经常遇到的重大灾害之一。迄今,国内外学者对硫化矿石的自燃机理、自燃倾向性、预防以及控制方法等方面进行了大量研究,但由于硫化矿石自燃过程的复杂性和自燃火源的隐蔽性,使问题未能得到根本解决。‘随着我国矿产资源不断向深部开发的影响,深部开采面临的高温问题越发加剧了高硫矿石开采过程中自燃事故的频发,矿石自燃问题比以前显得更加突出。因此,研究硫化矿石自燃特性及其火源探测技术,对于深入了解井下矿石自燃过程,判定矿石堆燃烧状况和推断火源位置以及高效、快速地展开防灭火具有重大的理论意义和应用价值。
     论文在广泛查阅国内外相关文献和系统总结前人研究成果的基础上,采用理论研究、实验室模拟、数值分析和现场实验相结合的研究方法,对硫化矿石自燃的基础理论、矿石堆的聚热特性与自燃早期的发火规律、自燃矿石火源的红外热像探测方法及内火源定位技术等展开了系统深入的研究。论文的主要工作和获得的成果总结如下:
     (1)在已有的研究成果基础上,对典型硫化矿物的基础特性及硫化矿石自燃机理等方面相关研究的成果进行了综合分析、比较和总结,并就矿石与氧气复合作用生热的过程进行了系统探讨和分析,为探索硫化矿石自燃发火机理提供必要、可靠的理论基础和科学依据,把硫化矿石自燃发火的研究成果融汇成较完善、系统的基础理论体系。
     (2)揭示了氧气在硫化矿石堆内的流动方式主要为渗流流动和扩散流动;把矿堆堆体导热视为固体颗粒导热和矿堆内间隙气体的导热过程,并在此基础上推导了硫化矿石堆热量的积聚过程和聚热升温条件;采用理论和实验相结合的手段对硫化矿石堆热量积聚的影响因素进行了系统的研究,表明温度、空隙率、漏风强度、堆积体积、氧气浓度以及含水量和矿石粒度等是影响矿石升温的主要因素。
     (3)运用现代测试和分析技术对硫化矿矿样做TG/DSC分析,水溶液含量测定及电镜扫描等实验发现:①矿石升温过程有大量的热量释放;②氧化前后,矿样表面变得疏松多孔,呈疏松、破碎状,并伴有结块现象。③矿样中水溶性Fe2++Fe3+和SO42-离子的含量均有增加,特别是硫酸根SO42-含量,部分矿样增加幅度很大。研究表明这些现象为矿石氧化自燃过程的主要特征。
     (4)利用现场堆矿实验筛选了温度作为表征矿石自燃早期的最佳指标,并分析探讨了矿石堆内部的升温特性及其对矿堆表面温度的影响,获取了两者之间的关系,表明矿堆表面温度的变化,间接反映了硫化矿石氧化的本质和程度,且温度的变化在量的关系上与各阶段紧密相关,可以通过探测矿堆表面的温度变化来监测矿堆内部的自热、自燃情况,适宜作为早期监测矿石自燃的指标。
     (5)提出了用于探测硫化矿石堆自燃火源的红外热像方法。分析了红外测温仪的选择方法及矿用热像仪的选型;结合IRI-1011通用型热像仪对影响矿石自燃红外探测的因素进行了深入探讨,并提出了相应的校正措施。利用理论推导和数值模拟计算表明,现有的热像仪对于探测矿石堆10m内的火源均具有可行性;设计了探测工艺,获取了几组适应于IRI-1011型热像仪的探测距离与探测面积可选参数,并提出了大测面逐层划大为小的火源探测方法;在研究热传导反问题的基础上,探讨了自燃矿石火源的定位方法,并基于热像仪大面积扫描感温,提出了一种新的火源定位方法。
Spontaneous combustion of sulfide ores is always affecting the safety in mining for a long time, and has become one of the major hazards in safe mining of sulfurous ore deposits. Nowdays, the sulfide ores spontaneous combustion mechanism, spontaneous ignition tendency, prevention and control methods were carefully analyzed by many scholars over the world. However, the problem was not solved ultimately because of the complexities of sulfide ores self-igniting process and the elusive of fire source of spontaneous combustion.With the rapid development of underground mine toward the depth, the high temperature of deeply mining is gradually aggravating the spontaneous combustion accident in mining process, and the ores self-ignition problem is more significant than before.
     So that research on the characterization of sulfide ores and the detecting technology of its fire sources have significant and realistic significance and applied value for us to understand the self-igniting process, estimate the present situation of ore piles, deduce the fire resources position and carry out the prevention action.
     On the basis of reviewing the previous papers in and aboard, the research methods combining the theoretical research, laboratory simulation, numerical analysis and field application were used to systematically and deeply analyze the fundamental theory, the heat-concentration ability of ore piles, the early stage fire law, the infrared detection methods of self-ignition resources, and the positioning technique of inner sources of ignition. The main work and achievements of the thesis are as follows:
     (1) On the basis of research findings, the fundamental natures of sulfide minerals and the ore self-ignite mechanism were synthetically analyzed, compared, summarized. And the interactive process of ores and oxygen was carefully discussed to provide dependable theoretical foundation and scientific proof for explore the sulfide ores self-ignition mechanism to perfect the sulfide ores self-ignition research achievements.
     (2) Seepage flow and diffusion flow were revealed to be major flow patterns of oxygen inside sulfide ore dumps. The thermal conductivity process of solid particles and clearance gas was considered as the thermal conductivity of sulfide ore dumps. Based on this, heat build-up process and poly-thermal heating conditions of sulfide ore dumps was derived; and then a systematic study on heat heap factors of sulfide ores was carried out using the combination of theoretical and experimental methods. It indicated that the main factors affecting ore self-heating were temperature, porosity, air leakage intensity, accumulated volume, oxygen concentration, water content and mineral particle size.
     (3) The modern testing and analytical techniques, such as TG/DSC analysis, solution content determination and Scanning Electron Microscopy were used for doing mineral samples, and the results were found that:①The process of mineral heating release a large amount of heat;②Before and after oxidation, mineral samples surface becomes porous, loose, broken, accompanied by agglomeration.③In the ore, the content of some ions which are water-solubility Fe2++Fe3+ and SO42- were increased, especially the content of SO42-, and some ore increased tremendously. Studies have shown that the phenomena are the main features of the ore spontaneous combustion oxidation process.
     (4) Using the in-site experimental reactor as the best indicators of ore spontaneous combustion in the early stage, and discussed the characteristics of the temperature in the internal heap of ore and the impact on the surface temperature, the relationship between them was got,that indicted that the change of the surface temperature indirectly reflect the nature and extent of the oxidation of sulfide ores, and the change of temperature was closely quantify connected with every stage, through monitoring the change of surface temperature,the self-heating, spontaneous combustion within the ore heap was detected, and was suitable to be the indicator of ore spontaneous combustion in the early stage.
     (5) It was proposed that the methods of infrared thermography for detecting spontaneous fire of sulfide ores. The selection methods of infrared thermometer and mining thermal imager were analyzed, the factors that influence infrared detection of spontaneous fire of sulfide ores were studied using the IRI-1011 general-purpose thermal imager and put forward the corresponding corrective measures. The theoretical derivation and numerical simulation show that the existing thermal imager detecting of ore pile fire source within 10m is feasible. The detection process was designed, and several groups of optional parameters for the detection range and detection area adapted to IRI-1011 thermal imager were obtained. Also, it is proposed a fire detection method of dividing the large detection area into small ones layer by layer. Based on the study of the inverse problem of heat conduction, the method of spontaneous fire source location was discussed, and it is proposed a new fire source location method based on thermal imager with a large area scanning.
引文
[1]赵霄娥,蒋军成,王若菌.含硫油品储罐自燃机理及预防技术研究[J].油气储运,2006,25(3):51-54.
    [2]《采矿手册》编辑委员会编.采矿手册[M].北京:冶金工业出版社,1991:278-291.
    [3]吴超,孟廷让.高硫矿井内因火灾防治理论与技术[M].北京:冶金工业出版社,1995.
    [4]李孜军.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学,2007.
    [5]占丰林,蔡关峰.高硫矿山高温采场的成因及危害与防治措施[J].矿业研究与开发,2006,26(1):71-73.
    [6]吴世铨.硫化矿自燃和药包自爆的预防措施[J].云锡科技,1992,19(4):14-23.
    [7]赵国彦,古德生,吴超,硫化矿床内因火灾综合防治措施研究[J].矿业研究与开发,2001,21(1):17-19.
    [8]赵国彦,古德生,吴超.硫化矿床内因火灾灭火试验研究[J]中国矿业,2001,10(2):34-37.
    [9]新华网贵州频道[EB/OL]. http://www.gz.xinhuanet.com/ztpd/2009-04/17/content_16287851.htm
    [10]毛丹,陈沅江.硫化矿石堆氧化自燃全过程特征综述与分析[J].化工矿物与加工,2008,(1):34-38.
    [11]胡汉华.铜山铜矿采场防灭火试验研究[J].金属矿山,2001,9:48-52.
    [12]钱柏青.铜山铜矿井下采场硫化矿石自燃的机理探讨及预防措施[J].有色金属,2005,57(3):99-104.
    [13]阳富强.硫化矿石堆自燃预测预报技术研究[D].长沙:中南大学,2007.
    [14]关于东同矿业有限责任公司“2·8”重大硫化矿尘爆炸事故通报[EB/OL]http://www.jxsafety.gov.cn/Article.aspx?articleid=127.2004,3.29
    [15]中国消防视频网[EB/OL].http://119.cctv.com/news/35/1/200910/27-61720.html
    [16]叶红卫,王志国.高硫矿床开采的特殊灾害及其发生机理[J].有色矿冶,1995(4):38-41.
    [17]杨培章.国内外硫化矿床内因火灾的防治[J].化工矿物与加工,1982(4):57-61.
    [18]李杰林.矿井自燃火灾烟气流动及热环境的数值模拟分析与评价[硕士学位论文].长沙:中南大学,2007.
    [19]覃和醒.矿房矿石自燃治理措施的研究与应用[J].第六届全国采矿学术会议1999:245-246.
    [20]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [21]苏加德.矿井火灾防治技术的发展现状及趋势.鸡西大学学报,2005,5(1):52-53.
    [22]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003,22(4):455-459.
    [23]秦书玉,赵书田,张永吉.煤矿井下内因火灾防治技术[M].沈阳:东北大学出版社,1993.
    [24]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望.中国安全科学学报,2003,13(3):76-78.
    [25]Sasaki Kyuro, Hiroshi,Otsuka,Kazuo. Spontaneous combustion of coal in the low temperature range application of exposure equivalent time of numerical analysis [J].Journal of the Mining and Metallurgical Institute of Japan,1997,103(11):771-775.
    [26]Srinivasan Krishnaswamy, Saurabh Bhat,Robert D,Gunn,Pradeep K.Agarwal,low temperature oxidation of coal.A single particle reaction diffusion model[J],Fuel,1996,75(3):333-343.
    [27]Saurabh B,Pradeep K.The effect of moisture condensation on the spontaneous combustibility of coal[J].Fuel,1996,75(13):1523-1532.
    [28]刘辉,吴超,崔燕,等.硫化矿石氧化性的分形表征[J].安全与环境学报,2009,9(3):113-116.
    [29]WU Chao, LI Zi-jun, LI Ming. Chemical thermodynamic mechanism of sulfide ores during oxidization and self-heating process[C]//JING G, GAO J,ZHOU A, et al. Proceedings of the 2007 International Symposium on Mining Safety Science and Technology. Beijing:Science Press,2007: 2435-2439.
    [30]WU Chao, LI Zi-jun. A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient[J].Transaction of Mining and Metallurgy Institute,2005,112(2):125-128.
    [31]ROSENBLUM F, SPIRA P. Evaluation of hazard from self-heating of sulfide rock[J]. CIM Bull, 1995,88(989):44-49.
    [32]CRANNEY D H. Assessing the hazards of blasting in reactive sulfide ores and the application of products to mitigate these hazards [C]//Proceedings of 28th Annual Institute on Mining Health, Safety and Research. Salt Lake City:American Institute of Mining and Metallurgy,1997:111-117.
    [33]刘辉,吴超,潘伟,等.硫化矿石堆自燃早期指标优选及预测方法[J].科技导报,2009,27(3):46-50.
    [34]阳富强,吴超,吴国珉,等.硫化矿石堆自燃预测预报技术[J].中国安全科学学报,2007,17(5):90-95.
    [35]李孜军,吴超,李茂楠.阻化剂性能评价的氧化增重法研究[J].工业安全与防尘,2000,(11):29-32.
    [36]吴超,孟廷让,王坪龙等.硫化矿石自燃的化学热力学机理研究[J].中南矿冶学院学报,1994,25(2):156-161.
    [37]WU Chao,LI Zijun,ZHOU Bo,WANG Pinglong,LI Maonan.Investigation of chemical suppressants for inactivation of sulfide ores.J.of Central South University of Technology (English Edition),2001,8(3):180-184.
    [38]WU Chao,LI Zijun,ZHOU Bo.Correlations among factors of sulfide ores in oxidation process at ambient temperature.Transactions of Nonferrous Metals Society of China (English Edition),2004,14(1):175-179.
    [39]WU Chao,XIA Changnian & LI Zijun. Safety Assessment System for Evaluating Spontaneous Combustion of Sulfide Ores in Mining Stope.Proceedings of the 2006 International Symposium on Safety Science and Technology,Changsha,China,Oct.24-27,2006,1599-1604.
    [40]Wu Chao,Li Zijun Chemical Thermodynamic Mechanism of Sulfide Ores during Spontaneous Combustion.2007 International Symposium of Mining Science and Safety Technology,April,2007
    [41]Crundwell F.The formation of biofilms of iron oxidising bacteria on pyrite[J].Minerals Engineering,1996,9(10):1081.
    [42]Sand W,Gerke T,Hallmann R et al. Sulfur chemistry,biofilm and the indirect attack mechanism-a critical evaluation of bacterial leaching [J].Appl Microbiol Biotechnol,1995,(43):961.
    [43]奥尔松G J.金属硫化矿物的生物氧化基本原理[J].国外金属矿选矿,2004,(12):34-38.
    [44]吴超,孟廷让,王坪龙等.水对硫化矿石氧化速度的影响研究[J].西部探矿工程,1994,6(2):59-62.
    [45]MENG Tingrang,WU Chao,WANG Pinglong. Study of mine spontaneous combustion of sulphide ores [A] In:Ragula B ed.Proceedings of the US Mine Ventilation Symposium [C].Salt Lake City,UT:SME,1993.203-207.
    [46]岳梅,赵峰华,朱银凤等.硫化物矿物氧化反应动力学实验研究[J].地球科学进
    展,2004,19(1):49-54.
    [47]仇勇海,陈白珍.金属硫化矿体自燃的电化学机理[J].中国有色金属学报,1995,5(4):1-4.
    [48]Jones J C.A new and more reliable test for the propensity of coals and carbons to spontaneous heating[J] Journal of Loss Prevention in the Process Industries,2000,(13):69-71.
    [49]Pratt A R,Muir I J,Nesbitt H W.X-ray photo electron and Auger spectroscopy studies of pyrrhotite and mechanism of air oxidation [J].Geochim Cosmochim Acta,1994,58(2):827-841.
    [50]磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J].环境污染与防治,2006,28(1):58-61.
    [51]Woods R.Recent advances in electrochemistry of sulfide mineral flotation[J].Trans Nonferrous Met Soc China,2000,10 (Special Issu):26.
    [52].李海燕,张世红.黄铁矿加热过程中的矿相变化研究[J].地球物理学报,2005,48(6):1384-1391
    [53]卢龙,王汝成,薛纪越.黄铁矿氧化速率的实验研究[J].中国科学D辑地球科学,2005,35(5):434-440.
    [54]Williamson M A,Rimstdt J D.The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J].Geochim Coschim Acta,1994,58 (3):471-482.
    [55]Evangeloe V P.Pyrite Oxidation and Its Control [J].Boca Raton:CRC Press,1995,293.
    [56]Holling P,Hendry M J,Nicholson R V,et al.Quantification of oxygen consumption and sulphate release rates for waste rock piles using kinetic cells:Cluff lake uranium mine,Northern Saskatchewan,Canada.Applied Geochemistry,2001,16 (3):1215-1230.
    [57]Holmes P R,Crundwell F K.The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen[J]:An electrochemical study.Geochim Coschim Acta,2000,64 (2):263-274.
    [58]Banerjel S C.Spontaneous combustion of coal and mine fires [M].A.A.Balkoma,Rotferdam,1985
    [59]T.X.Rena,J.S.Edwards,D.Clarke.Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[J].Fuel 1999,(78):1611-1620.
    [60]Steis T E W.Sulfide ore/explosives exothermic reactions[J].CIM Bull,1995,87(987):54-57.
    [61]William H.Spontaneous combustion fire detection for metal mines [R].Information Circular 9144,USA:Bureau of Mines,1987.1-25.
    [62]YANG Fuqiang, WU Chao, HU Hanhua, et al. Fire-Extinguishing Techniques Research on Spontaneous Combustion of a Sulfide Iron Ore Dump in Mining Stope. Proceedings of the 2008 International Symposium on Safety Science and Technology, Beijing, China, Sep:869-874.
    [63]WU Chao,WANG Pinglong,MENG Tingrang.In situ measurement of breeding-fire of sulphide ore dumps[J]. Transactions of Nonferrous Metals Society of China (English Edition),1997,7(1):33-37.
    [64]WU Chao,MENG Tingrang. Safety assessment technique for the spontaneous detonation of explosives in the mining of sulphide ore deposits [J].Mining Technology,1996,78(902):285-288.
    [65]WU Chao,LI Zijun,ZHOU Bo,et al.Investigation of chemical suppressants for inactivation of sulfide ores[J].Journal of Central South University of Technology (English Edition),2001,8(3): 180-184.
    [66]WU Chao.Test of chemical suppressants for fire prevention in mines with sulfide ores[J].Mineral Resources Engineering,2000,9(2):255-264.
    [67]Davis J D,Byrne J F.An adiabatic method for studying spontaneous heating of coal[J].Journal of A m Ceram Soc,1924,(7):809-816.
    [68]Pahlman J E,Reimers G W.Thermal gravimetric analysis of pyrite oxidation at low temperature [R].Report of Investigations 9059,USA:Bureau of Mines,1986.1-15.
    [69]Jones J C.Low-Temperature Oxidation of Coal Studied Using Wire-Mesh Reators With Both Steady-State and Transient Methods[J],Fuel,2000,(98):646-650.
    [70]宋学义,吴超,谢永铜.硫化矿石氧化自热量的测定方法研究[J].湖南冶金,1991,19(6):5-8.
    [71]程卫民,王振平,辛嵩,等.矿井煤炭自燃红外探测仪的选择及应用方法[J].煤矿安全,2003,34(10):23-25.
    [72]王振平,程卫民,辛嵩,等.煤巷近距离自燃火源位置的红外探测与反演[J].煤炭学报,2003,28(6):603-607.
    [73]CHENG Wei-min. Study of infrared detecting technology of the spontaneous fire position at the coal road on mines [A]. Progress in Safety Science and Technology [C]. Beijing:Chemical Industry Press,2000.586-590.
    [74]王德明著.矿井火灾学[M].中国矿业大学出版社,2008.
    [75]卢炳.中国硫铁矿地质[M].北京:地质出版社,1984.
    [76]Ninteman D J.Spontaneous oxidation and combustion of sulfide ores in underground mines [R].Information Circular 8775,USA:Bureau of Mines,1978,1-40.
    [77]杨娟娟.基于神经网络的含硫矿石自燃预测技术研究[D].西安:西安科技大学,2008.
    [78]杨松荣,邱冠周,胡岳华.硫化矿生物氧化机理的探讨.有色金属,2003,55(3):80-82.
    [79]李萍,叶威,张振华.硫化亚铁自然氧化倾向性的研究[J].燃烧科学与技术,2004,10(2):168-170.
    [80]Zhou F B,Wang D M.Directory of recent testing methods for coals to spontaneous combustion[J]. Journal of Fire Sciences,2004,22(2):91-96.
    [81]Pahlman J E,Reimers G W.Thermal gravimetric analysis of pyrite oxidation at low temperature [R].Report of Investigations 9059,USA:Bureau of Mines,1986:1-15.
    [82]Rosenblum F,Spira P.Evaluation of hazard from self-heating of sulfide rock [J].CIM Bull,1995, 88(989):44-49.
    [83]Miron Y,Ruhe T C,Watson R W.Reactivity of ANFO with pyrite containing weathering products [R].Report of Investigation 8373,USA:Bureau of Mines,1979.1-24.
    [84]孟廷让,吴超,谢永铜,等.高硫矿床开采中炸药自爆危险性及安全装药评价法研究[J].中南矿冶学院学报,1994,25(1):19-23.
    [85]吴超.硫化矿床开采中炸药自爆事故树分析及其试验方法[J].矿冶工程,1995,15(1):17-20.
    [86]刘剑,赵凤杰.升温速率对煤的自燃倾向性表征影响的研究[J].煤矿安全,2005,(5):4-6.
    [87]陆伟,王德明,仲晓星.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报,2006,35(2):·201-205.
    [88]Nugroho Y S,Mcintosh A C,Gibbs B M.Low-temperature oxidation of single and blended coals[J].Fuel,2000(97):1951-1961.
    [89]陈文胜,刘剑,吴强.基于活化能指标的煤自燃倾向性及发火期研究[J].中国安全科学学报,2005,15(11):19-22.
    [90]陆伟,王德明,周福宝.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [91]Davis J D,Byrne J F.An adiabatic method for studying spontaneous heating of coal[J].Journal of Am Ceram Soc,1924,(7):809-816.
    [92]Beamis B B,Barakat M A. Spontaneous-combustion propensity of NewZealand coals under adiabatic conditions[J].International Journal of Coal Geology,2001,(45):217-224.
    [93]刘剑,赵凤杰.粒度对煤的自燃倾向性表征影响[J].辽宁工程技术大学学报,2006,25(1):1-3.
    [94]万兵.硫化矿床自燃发火可能性的鉴别[J].世界采矿快报,1998,14(11):27-30.
    [95]李济吾.硫化矿石氧化速度的实验测定研究[J].江西有色金属,1990,(2):54-58.
    [96]贺兵红,吴超.硫化矿石自燃倾向性的实验室测定方法与应用[J].安全与环境工程,2006,13(1):92-95.
    [97]朱挺廷.硫化矿床自燃倾向性的实验研究[J].金属矿山,1989(8):25-27.
    [98]王少芬,方正.硫化矿阳极氧化的交流阻抗[J].中南大学学报(自然科学版),2006,37(2):274-279.
    [99]黄富贵,王城.硫化矿氧化率测定问题的研究[J].冶金分析,1994,14(3):21-24.
    [100]陈文胜,吴强.煤的自燃倾向性及自然发火期与活化能关系的探讨[J].煤矿安全,2005,36(12):53-55.
    [101]周勃,吴超,李茂楠等.硫化矿石氧化前后自燃倾向性的比较研究[J].中国矿业,1998,5(7):77-79.
    [102]周勃,吴爱祥.金属矿山内因火灾综合因素预报法的应用[J].有色矿山,1999,(2):18-21.
    [103]夏长念,吴超.采场硫化矿石爆堆自燃危险性评价研究[J].火灾科学,2005,15(2):106-110.
    [104]李孜军,吴超,周勃.硫化矿石氧化性的实验室综合评判[J].铜业工程,2003,(1):40-43.
    [105]宋学义,文艳.硫化矿岩自燃倾向性的研究[J].湖南冶金,1991,(3):10-15.
    [106]李孜军,古德生,吴超.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,2004(5):57-59.
    [107]李鸿业,陈希廉,刘立民等.硫化矿床矿岩自燃的地质调查[J].化工矿山技术.1979,(4):1-7.
    [108]张虹,张春生.黄铁矿自燃机理及其预防[J].铜业工程,2004(3):53-54,68.
    [109]黄跃军.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿冶,2000,16(1):13-15.
    [110]李济吾,宋学义.矿岩氧化自燃数学模型的研究[J].南方冶金学院学,1990,11(1):7-17.
    [111]李明,吴超,李孜军.多因素耦合条件下硫化矿自燃神经网络动态预测模型研究[J].中国安全科学学报,2007,17(8):32-36.
    [112]许春明,吴超,陈沅江.硫化矿石堆自燃的灰色预测研究[J].安全与环境学报,2008,8(4):125-127.
    [113]余明高,岳超平.采矿区火源位置探测技术现状及发展方向[J].中国安全科学学报,1998,8(5):14-18.
    [114]李金良,张友谊.浅谈煤矿火源探测技术[J].煤矿开采,2006,11(4):86-87.
    [115]戚颖敏.采矿区遗煤自燃火源探测技术的发展与应用[J].煤炭企业管理,1998,12:11-13.
    [116]戴广龙.双元示踪技术探测煤炭自燃火源的研究[J].西安矿业学院学报,1996,16(3):216-219.
    [117]邓军,徐精彩等.综方面采空区自燃危险区域判定技术研究[J].淮南矿业学院学报,2000,10:88-90.
    [118]崔洪义.煤炭自燃早期预测预报与火源探测技术[M].煤炭工业出版社,2002.
    [119]Brooks Kevin,Svanas Nicoloas,Glasser David.Critical temperatures of some Turkish coals due to spontaneous combustion.Journal of Mines, Metals&Fuels,1988,36(9):434-436.
    [120]Ann GKim. Locating fires in abandoned underground coal mines[J]. International Journal of Coal Geology,2004(59):49-62.
    [121]杨华.测氡技术和激发极化法在地下多层煤层火区探测中的尝试[J].山西煤炭,2005,25(3):14-16.
    [122]金智新,白希军,王爱国.煤矿地下多层火区探测技术研究与应用[J].华北科技学院学报,2006,3(1):9-13.
    [123]隋涛,潘跃飞,邬剑明.同位素测氡法探测火源位置在柴里煤矿火区治理中的应用[J];山西煤炭;2006,26(3):46-48.
    [124]邬剑明,刘艳,周春山.同位素测氡法在柳湾矿自燃火源位置探测中的应用[J].中国煤炭,2006(9):37-39.
    [125]邬剑明,高尚青.煤层自燃火区温度检测技术的研究与应用[J].中国安全科学学报,2004,14(10):109-112.
    [126]赵耀江,邬剑明.测氡探火机理的研究[J].煤炭学报,2003,28(3):260-263.
    [127]赵耀江,邬剑明.氡与自燃发火关系的研究[J].太原理工大学学报,2002,33(4):389-392.
    [128]煤炭科学研究总院抚顺分院.利用磁感应及远距离测定作出煤层火灾区域地图.国外煤矿安全信息,1996(7).
    [129]王连成,高克德.地质雷达探测采空区隐蔽火源[J].煤炭科学技术,1998,26(2):7-9.
    [130]祁明星,万兆昌.陕北煤田火区磁探工作方法及效果[J].煤炭科学技术1987(8):291-297.
    [131]周心权,方裕璋.矿井火灾防治[M].徐州:中国矿业大学出版社,2002.
    [132]马明.煤层隐蔽火源红外成像探测技术的应用研究[D].西安:西安科技大学,2009.
    [133]张建民,管海晏,A. Rosema.煤田火区遥感四层空间探测方法[J].国土资源遥感,2004(4):50-53.
    [134]李珞铭,吴超,阳富强等.红外测温法测定硫化矿石堆自热温度的影响因素研究[J].火灾科学,2008,17(1):49-53.
    [135]刘辉,吴超.红外热像技术应用于安全科学的研究进展[J].激光与红外,2009,39(10):1022-1027.
    [136]麦绿波.焦平面热像仪的发展与应用综述[J].红外技术,2006,28(9):497-502.
    [137]李国华,吴立新,吴淼等.红外热成像技术及其应用的研究进展[J].激光与红外.2004,33(3):227-230.
    [138]彭焕良.热成像技术发展综述[J].激光与红外.1997,6:131-136.
    [139]陈衡.我国红外诊断技术的现状与展望[J].激光与红外,1998,28(5):292-296.
    [140]Xavier P V Maldague. Nondestructive evaluation of materials by infrared thermography [M]. Berlin, London:Springer-Verlag Limited,1993:224.
    [141]红外诊断技术在电力设备中的应用[M].北京:机械工业出版社,1998:58.
    [142]田裕鹏.红外检测与诊断技术[M].北京:化学工业出版社,2006:318-319.
    [143]孙晓刚,李云红.红外热像仪测温技术发展综述[J].激光与红外,2008,38(2):101-104.
    [144]Merry man, Stephen A, Nelms, R.M. Diagnostic technique for power systems utilizing infrared thermal imaging. IEEE Transactions on Industrial Electronics,1995,42(6):615-628.
    [145]袁宏永,赵建华,范维澄.基于热像技术的电缆火险隐患诊断研究[J].中国科学技术大学学报,2000,30(1):108-112.
    [146]刘新业,常大定,欧阳伦多.红外热成像在电气设备维护中的应用[J].红外与激光工程,2002,31(3):220-224.
    [147]仲蛴生,李春诚,任迅.红外热像技术应用于石化设备的检测诊断[J].激光与红外,1999,29(5):310-314.
    [148]Smith, Tony. Thermal imaging's key role in corrosion investigation at chemical processing plant [J]. Anti-Corrosion Methods and Materials,1993,40(6):12-22.
    [149]Imgram A G, McCandless J B. Infrared thermal imaging of refinery equipment [J]. Proceedings of SPIE,1983,371:47-54.
    [150]Norda, Torkel. Use infrared scanning to find equipment hot spots [J]. Hydrocarbon Processing, 1977,56(1):109-110.
    [151]雷玉堂.红外热成像技术及在智能视频监控中的应用[J].中国公共安全,2007,8:114-120.
    [152]Roberts C C Jr. The application of infrared thermography in fire and explosion investigation [J]. Proceedings of the SPIE.1988,934:2-9.
    [153]Melendez J, Castro A J, Lopez F. Forest fire studies by medium infrared and thermal infrared thermography [J]. Proceedings of the SPIE,2001,4360:161-168.
    [154]Bryner Nelson, Hamins Anthony. Evaluation of thermal imaging cameras used in fire fighting applications [J]. Proceedings of SPIE,2004,5407:44-53.
    [155]Olmo F J, Alados-Arboledas L. Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels [J]. Remote Sensing of Environment, 1997,60(2):111-120.
    [156]Moropoulou A, Koui M, Avdelidis N P. Infrared thermography as an NDT tool in the evaluation of materials and techniques for the protection of historic monuments methods in the assessment of concrete and masonry structures [J]. Insight,2000,42(6):379-383.
    [157]杜红秀,张雄,乔俊莲.红外热像用于水泥砂浆火灾损伤的检测与评定[J].同济大学学报,1999,27(4):499-502.
    [158]黄荣华.红外技术及其在工业生产中的应用[M].北京:水利电力出版社,1987:122-123.
    [159]Zhao-ming, Zeng; Fu-zhen, Zhou. Yong-fang, Huang. Detection and investigation of underground coal fire in coal field by using airborne infrared scanning technology [J]. Proceedings of the International Symposium on Remote Sensing of Environment,1990,1:623-627.
    [160]Prakash A, Gens R, Vekerdy Z. Monitoring coal fires using multi-temporal night-time thermal images in a coalfield in north-west China [J]. International Journal of Remote Sensing,1999, 20(14):2883-2888.
    [161]Mansor S B, Cracknell A P, Shilin B V, Gornyi V I. Monitoring of underground coal fires using thermal infrared data [J]. International Journal of Remote Sensing,1994,15(8):1675-1685.
    [162]孙继平,李迎春.红外诊断技术在突出工作面预测中的应用[J].煤矿安全,2006,37(11):17-20.
    [163]吴立新,李国华,吴焕萍.热红外成像用于固体撞击瞬态过程监测的实验探索[J].科学通报,2001,46(2):172-176.
    [164]程文楷,刘永平.矿用红外辐射测温技术的研究[J].煤炭学报,1995,20(6):578-582.
    [165]J. Deans, J. Gerhard, L.J. Carter. An alysis of a thermal imaging method for landmine detection, using infrared heating of the sand surface [J].Infrared Physics & Technology,2006(48):202-216
    [166]J. Deans, G. Schmithals, L.J. Carter, An analysis of a thermal imaging method for landmine detection, using microwave heating[J]. J. Appl. Geophys.2001(1297):123-134.
    [167]J.R. Simard. Improved landmine detection capability(ILDC):systematic approach to the detection of buried mines using passive IR imaging. [C]//Proc. SPIE.1996(2765):489-500.
    [168]Peter Dennis, Tim J. Phillips,Dave Huckridge. Developments in thermal imaging technology[J].Sensor Review.2003,23(1):15-19
    [169]Francine Amon, Nelson Bryner. Advances in thermal imaging technology in the first responder arena. [C]//Infrared Imaging Systems:Design, Analysis, Modeling, and Testing XVII, edited by Gerald C. Holst, Proc. Of SPIE 2006(6207).
    [170]蔡爱莉.矿物学[M].北京:地质出版业,1999.
    [171]秦善,王长秋.矿物学基础[M].北京:北京大学出版社,2006.
    [172]Schaufuss A G, Nesbitt H W, Kartiol. Reactivity of surface chemical states on fractured pyrite. Surface Science,1998,411:321-328.
    [173]张平,陈永亨,刘娟,等.黄铁矿氧化的原位衰减全反射红外光谱表征[J].光谱学与光谱分析,2008,28(11):2554-2556.
    [174]胡熙庚等编著.浮选理论与工艺[M].长沙:中南工业大学出版社,1991.
    [175]关晓辉,赵以恒,刘海宁.硫化物(矿石)的生物氧化机制研究[J].东北电力学院学报,1999,(19),2:1-9.
    [176]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995.
    [177]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社,1994.
    [178]李林.煤自燃活化机理及自燃过程试实验研究[D].重庆:重庆大学,2008.
    [179]陈代殉.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2001,34(1):96-100.
    [180]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [181]何学秋,聂百胜孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):l-4.
    [182]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J],煤炭学报,200027(5):14-16.
    [183]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J],中国安全科学学报,200010(6):24-28.
    [184]文虎,许满贵,李莉等.煤自燃的热量积聚过程及影响因素分析[J].辽宁工程技术大学学报,2003,22(2):151-154.
    [185]林瑞泰.热传导理论与方法[M].北京:科学出版社,1992
    [186]徐精彩.空气在煤堆中的渗透规律探讨[J].西安矿业学院学报,1995,15(4):8-12
    [187]徐精彩,文虎,邓军等.煤自燃极限参数研究[J].火灾科学,2000,9(2):14-18
    [188]徐精彩,文虎,邓军等.煤自燃过程中极限参数的研究[J].西安交通大学学报,2001,35(7):682-686.
    [189]万鑫,赵杉林,李萍等.氧气浓度对铁的硫化物自燃性的影响[J].腐蚀与防护,2005,26(12):512-515.
    [190]邓军,徐精彩,张辛亥等.煤的粒度与低温自燃性关系的研究[J].煤,1994,8(5):13-15.
    [191]刘剑,赵凤杰.粒度对煤的自然倾向性表征影响[J].辽宁工程技术大学学报,2006,25(1):1-3.
    [192]冯自宇,翟小伟.粒度对煤自燃氧化性能影响规律的热重实验研究[J].西北煤炭,2008,6(3):48-50.
    [193]PieterA.Jacobs.地面目标和背景的红外热特性[M].国防工业出版社,2004.
    [194]夔中羽.从空中探测地下热管道成像机理[J].影像技术,1997,3:1-5.
    [195]徐科军,马修水,李晓林等.传感器与检测技术[M].北京:电子工业出版社,2003:172-203.
    [196]晏敏,楚武,永红等.红外测温原理及误差分析[J].湖南大学学报(自然科学版),2004,31(5):110-112.
    [197]周晓冬,邓志华,陈晓军等.数字红外热像测温技术的应用和局限[J].火灾科学,1999,8(4):60-69.
    [198]张亚琴,郁标.红外成像检测技术基本原理及其应用范围[J].上海地质,2002(4):49-50.
    [199]林瑶,张德欣.如何正确选择红外测温仪[J].仪表技术与传感器,1999,10:40-42.
    [200]姚学军.红外测温原理与测温技术[J].中国仪器仪表,1999(1):10-13.
    [201]王致春.我国应用红外测温仪概况[J].激光与红外,1990,20(6):32-37.
    [202]孔庆云.Raytek红外测温仪及应用.传感世界,1997(4)32-35.
    [203]李晓萍,江洪喜.红外测温及其应用[J].煤炭技术,2003,22(10).
    [204]郑兆平,曾汉生,丁翠娇,等.红外热成像测温技术及其应用[J].红外技术,2003,25(1):
    96-98.
    [205]刘辉,吴超,阳富强,等.红外热像技术硫化矿石自燃火源的影响因素及其解决方法[J].科技导报,2010,28(2):91-95.
    [206]刘永平.红外技术在煤矿井下测温和测气中的应用[J].红外技术,2000,22(4):59-63.
    [207]O.Carpentier, D.Defer, E.Antczak, B.Duthoit. The use of infrared thermographic and GPS topographic surveys to monitor spontaneous combustion of coal tips[J]. Applied Thermal Engineering,2005(25):2677-2686.
    [208]李云红,孙晓刚,杨幸芳,等.红外热像仪测温精度的理论分析[J].西安工程科技学院学报,2007,21(5):635-639.
    [209]许俊芬,王树根.矿物的热辐射性质及其应用[J].四川有色金属,1996(1):31-34.
    [210]盛耀彬,汪云甲,束立勇.煤矸石山自燃深度测算方法研究与应用[J].中国矿业大学学报,2008,37(4):545-549.
    [211]毛丹,陈沅江,吴超.热线法测定散体硫化矿石导热系数[J].金属矿山,2009(4):65-69.
    [212]魏臻.利用红外热像诊断人体内部病灶机理的研究[D].天津理工大学,2007.
    [213]关荣华.红外热诊断与导热反问题计算[J].红外技术,2002,24(5):49-51.
    [214]杨文采.地球物理反演得理论与方法[M].地质出版社,1997.
    [215]GAO Chunfang, LI Kaiyang, ZHANG Shaoping. A novel approach of analyzing the relation between the inner heat source and the surface temperature distribution in Thermal Texture Maps[J]. Proceedings of the 2005 IEEE Engineer in Medicine and Biology 27th Annual Conference, Shanghai, China,2005:623-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700