用户名: 密码: 验证码:
壳聚糖季铵盐多功能靶向纳米微球的制备及在药物载体方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何使药物能够到达靶向(病灶)部位,并以预定的速率释放出来,提高治疗效果,减小副作用已成为当今药物学和药物制剂学的热点和难点。本论文的目的为开发一种高效多功能化的靶向纳米载药体系。通过O-羧甲基壳聚糖接枝二甲基十八烷基环氧丙基氯化铵,制备一种新型双亲性高分子材料O-羧甲基壳聚糖十八烷基季铵盐(OQCMC)。采用不同方法分别制备PEG和叶酸、PEG和跨膜肽TAT共修饰的OQCMC磁性高分子脂质体及叶酸修饰的OQCMC靶向缓释微球,并将其用于药物/基因载体。通过一系列体内外试验,探讨了该载体系统的细胞毒性和靶向缓释功能,及其在脊髓损伤动物模型中跨血脑屏障磁靶向定位功能和眼眶腺样囊性癌治疗方面的初步应用。
     具体研究内容如下:
     (1)制备了一系列不同取代度和分子量的OQCMC。结果表明:OQCMC可溶于水和有机溶剂,表面Zeta电位为正,具有较好的结晶性和热稳定性;其分子结构中羧酸盐和季铵盐两亲水基团对OQCMC吸湿保湿性的影响不具协同作用;其对小鼠成纤维细胞L929具有较低的细胞毒性,IC50>0.08±0.03 mg/ml。
     (2)采用透析法制备OQCMC胶束,并研究其结构和性能。结果表明:OQCMC(DS=85.1%)的临界胶束浓度(CAC)值为2.4 mg.ml-1,水溶液中的表面张力可达20.21±0.03 mN.m-1;其胶束在水溶液中分布均匀;并与质粒pEGFP-N1有较强的结合能力;其对盐酸米诺环素(MH)的最大载药率可达22.7% (w/w);具有较好的缓控释功能。
     (3)采用微乳液方法研究了OQCMC纳米微球的性质。结果表明:微乳液方法可制备包载水溶性药物长春新碱(VCR)、脂溶性药物消炎痛(IMC)或二者共载的OQCMC载药微球,微球粒径在20nm左右,分布均匀,Zeta电位可达+39.36mV;微乳液体系对VCR的最大载药率为22.7%,IMC的最大载药率为20.1%,并可实现对两种药物的共载和共释放;对药物的缓控释功能明显。
     (4) OQCMC可代替合成磷脂同胆固醇复合制备阳离子高分子脂质体(CPL)。结果表明:可采用薄膜分散法和反向蒸发法制备CPL,其水溶液中平均粒径分别为172.5±2.1nm和108.5±0.5nm;CPL形状为不规则的球形,具有明显的脂质双层膜结构和较好的热稳定性;CPL颗粒的Zeta电位可达+42.17mV。CPL即可包载水溶性物质,如水溶性磁流体和药物VCR,又可包载油溶性物质,如油溶性磁颗粒和量子点(QDs);QDs标记的CPL保持了QDs的荧光特性;CPL对VCR的包封率可达90.1%以上;具有长效缓控释功能。
     (5)制备并研究了OQCMC/Chol磁性高分子脂质体系统(MCPL)。MCPL在水溶液中可稳定存在,呈单分散分布,包载油溶性磁颗粒的MCPL水溶液中平均粒径为43.1nm;Zeta电位可达+45.4±3.4mV;具有超顺磁性,比饱和磁化强度可达39.96 emu/g。将MCPL分别或同时携载DNA和IMC,结果表明,其对抑癌基因p53质粒具有较强的结合能力和保护功能。采用层层包裹高分子脂质膜的方法,可以制备不同粒径的MCPL,水溶液中的粒径范围可为40-120nm。体系对IMC的包封率可达90%以上,平均粒径为69.2±0.5nm,多分散指数0.261,分散均匀;层层包裹方法可延长MCPL对IMC的缓释时间,降低突释现象。
     (6)成功制备了PEG改性的OQCMC(PEG-OQCMC)和叶酸改性的OQCMC(FA-OQCMC)。用合成的PEG-OQCMC和OQCMC、FA-OQCMC、油溶性磁颗粒、IMC,分别或同时构建多功能MCPL系统。结果表明:PEG和叶酸修饰的载药MCPL在水相中可以稳定存在,平均粒径为118±8.4nm,多分散指数为0.005,Zeta电位为4.5±1.6mV,比饱和磁化强度为28.6 emu/g,具有超顺磁性。对IMC的最大载药率可达16%;并具有很好的缓控释功能。成功构建PEG和TAT共修饰的MCPL系统,其在水溶液中粒径分布均匀,大小在30nm左右;表面Zeta电位可达+39.7±1.6mV。在初步的动物试验中,MRI和普鲁士蓝染色结果表明多功能MCPL可在磁场作用下通过脊髓损伤大鼠的血脑屏障进入脊髓损伤部位,为今后靶向治疗脊髓损伤奠定了基础。
     (7) OQCMC可作为乳化剂和表面修饰剂制备功能化PLGA/OQCMC缓释微球。结果表明:OQCMC可提高体系对药物VCR和MH的包封率,降低体系粒径。其对VCR和MH的包封率均大于90%,分散均匀。在此基础上成功构建了叶酸修饰的VCR靶向载药缓释微球。靶向微球细胞毒性较低,微球表面有叶酸存在,其对腺样囊性癌(ACC)细胞具有明显的靶向作用。靶向载药微球对ACC细胞有明显的抑制作用,抑制率可达96%,且具有长效抑制功能。裸鼠动物实验表明,靶向载药微球对眼眶腺样囊性癌有较好的治疗效果,抑瘤率高达90%;并有明显的药物缓释作用。
     总之,通过上述研究,本研究已成功构建了以OQCMC为基础材料的多功能纳米载药微球,并可分别或同时赋予微球体系磁靶向定位功能、叶酸的细胞靶向功能、PEG修饰的长循环或TAT修饰的跨血脑屏障功能,其可作为一种有效的靶向药物载体用于药物的跨血脑屏障输送和肿瘤的靶向治疗。
The design and construction of more effective drug delivery system are very important. Octadecyl quaternized carboxymethyl chitosan (OQCMC) was synthesized through carboxymethyl chitosan (CMC) grafting with glycidyl octadecyl dimethylammonium chloride. Multifunctional targeted drug delivery systems, such as magnetic cationic polymeric liposomes (MCPL), PEG and trans-activating transcriptional activator protein (TAT) conjugated MCPL, PEG and folate conjugated MCPL and folate conjugated PLGA NPs, were designed by using OQCMC and its derivatives, cholesterol or PLGA.
     OQCMC exhibited excellent solubility both in water and organic solvents. It also had a lower cytotoxic effect compared with PEI (25kDa). OQCMC had high degree of crystallinity with good thermal stabilization. Self-assembled OQCMC micelles were evaluated as carrier of lipophilic drug, minocycline hydrochloride (MH). MH was incorporated into cross-linked ionic cores of micelles with remarkably high efficiency (22.7% w/w). MH loaded OQCMC polymeric micelles exhibited slow steady release profile over one week period at 37°C. Three kinds of drug-loaded NPs formed from OQCMC were obtained by microemulsion method. These NPs had small size (20nm) and were suitable as drug-carrier for hydrophilic drug-vincristine (VCR), and hydrophobic drug-indomethacin (IMC). The maximal drug loading efficiency of VCR-loaded NPs was 22.7%, the IMC-loaded NPs was 20.1%, and the co-delivery NPs of VCR and IMC were 12.2% and 10.0%, respectively.
     OQCMC in combination with cholesterol (Chol) could form stable vesicles with structure similar to that of conventional liposomes prepared from phosphatidylcholine/cholesterol (PC/Chol). Using different preparation methods, OQCMC/Chol could easily be made into nanoscale particles by encapsulating both hydrophilic and hydrophobic components. VCR was also encapsulated in the polymeric liposomes with high drug encapsulation efficiency (90.1%).
     A simple and rapid method was introduced to prepare superparamagnetic, controlled size and monodispersed MCPL by OQCMC and cholesterol. These superparamagnetic CPL were stable in aqueous phase with small size 15.3nm, high Zeta potential +41.20mV and high saturation magnetization 39.96 emu/g at 300 K. IMC and VCR encapsulation efficiency of MCPL were both above 90% and drug-loaded MCPL exhibited slow steady release at 37℃in PBS solution (pH=7.4).
     Hydrophilic Fe3O4 ferrofluid (LM) and BM can be encapsulated into CPL, simultaneously or respectively. The size of these stable hydrophilic magnetic nanospheres with functional groups (COOH, NH2) and controlled size (layer by layer method) ranges from 10nm to 120nm. A model hydrophobic drug IMC can be successfully filled in MCPL with high drug loading capacity 22%. The drug encapsulated MCPL have a long and controlled sustained release profile. PEG-modified OQCMC (PEG-OQCMC) and folate-modified OQCMC
     (FA-OQCMC) were obtained by grafting reaction. Multifunctional MCPL were prepared with IMC encapsulating by using PEG-OQCMC, OQCMC, FA-OQCMC and BM. The results showed that the hydrodynamic diameter of this NPs was 118nm, with polydispersity index 0.005, high Zeta potential +41.20mV and high saturation magnetization 28.6 emu/g. PEG and TAT conjugated MCPL were prepared and approved to across the blood-brain-barrier(BBB) of spinal cord injury by magnetic force.
     By the solvent evaporation method, the drug delivery system was prepared based on OQCMC, PLGA and hydroxyethyl cellulose. The targeted FA-OQCMC/PLGA NPs(FA NPs) were also prepared successfully with encapsulating VCR for Adenoid Cystic Carcinoma(ACC). The targeting effect of FA NPs is very clear compared with NPs without folate. VCR-loaded NPs had a longer sustained release profile for 2 weeks and FA NPs group has a better therapy effect due to its targeting effect of folate. The FA-OQCMC/PLGA/HEC NPs could be potentially applied for cancer cell targeted sustained delivery of various therapeutic agents.
引文
[1]王国建,王公善主编,功能高分子,上海:同济大学出版社, 1996. 331~332
    [2] Gleiter H. On the structure of grain boundaries in metals [J]. Mater Sci & Eng, 1982, 52: 91~102
    [3]马国,邓盛齐.纳米技术在药学中的研究应用进展[J].国外医药抗生素分册,2004, 25(5): 233~137
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001. 25~26
    [5] Suryanayana C, Koch C. Nanocrystalline Materials-current Research and Duture Direction [J]. Hyperfine Interactions, 2000, 130: 5~44
    [6] M. Donbrow. Microcapsules and nanoparticles in medicine and pharmacy. CRC Press. 1992
    [7]许并杜主编.纳米材料及应用技术[M].北京:化学工业出版社,2004. 10~12
    [8] Fontana G, Htardesi G, Vincenzo Tomarchio, et al. Preparation. characterization and in vitro antimicrobial activity of ampiciilin-loaded pdyethylcyanoacrylate nanoparticles [J]. Biomaterials. 1998, 19: 1009~1017
    [9] Jiao Y, Ubrich N, Marchand A. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation, 2002, 105(2): 230~235
    [10] Mu L, Feng S S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxo1): PLGA nanopartlcles containing vitamin E TPGS. Control Release, 2003, 86: 33~48
    [11] Gregory L, Elias F. Nanoparticulate systems for the delivery of antisense oligonucleotides. Advanced Drug Delivery Review, 2001, 47(1): 99~112
    [12] Myriam B., Lyuba B., Eric A., et al. Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and their intracellular localization[J]. European Journal of Pharmaceutics and Biopharmaceutics. 1999. 47: 119~123
    [13] Win K, Feng S. Effects of particle size and surface coating on cellar uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials. 2005, 26: 2713~2722
    [14] Brem H, Domb A, Lenariz D.. Brain biocompatibility of a biodegradable controlled release polymer consisting of anhydride copolymer of fatty acid dimer and sebacic acid.[J]. Controlled Release. 1992, 19: 325~329
    [15]王仲妮,李千佐,张高勇.表面活性剂缔合结构作为药物载体的研究进展——微乳液、囊泡体系[J].自然科学进展,2004, 14(11): l209~l2l4
    [16] Langer R, Peppas N A. Advances in biomaterials, drug delivery and bionanotechnology [J]. AIChE journal, 2003, 49 (12): 2990~3006
    [17] Soppimatha K S, Aminabbavia T M, Kulkarnia A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Controlled Release, 2001, 70: 1~20
    [18] Saito N, MurakamiT N, Takahashi J, et al. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins[J]. Adv. Drug Deliv. Rev., 2005, 57: 1037~1048
    [19] James M. Anderson, Matthew S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Advanced Drug Delivery Rev, 1997, 28: 5~24
    [20] Hausberger A. G., DeLuca P, Characterization of biodegradable poly (d,l-lactide -co-glycolide) polymers and microspheres, Journal of Pharmaceutical and Biomedical Analysis, 1995, 13(6): 747~760
    [21] Hussain M, Beale G, Hughes M, et al. Co-delivery of an antisense oligonucleotide and 5-fluorouracil using sustained release poly(lactide-co-glycolide) microsphere formulations for potential combination therapy in cancer. International Journal of Pharmaceutics, 2002, 234: 129~138
    [22] Kim J, Lee J E, Lee J, et al. Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. J. AM. CHEM. SOC. 2006, 128: 688~689
    [23] Yi D K, Selvan S T, Lee S S, et al. Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots. J. AM. CHEM. SOC. 2005, 127: 4990~4991
    [24] Lu Y, Yin Y D, Mayers B T, et al. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach. Nano Letters, 2002, 2(3): 183~186
    [25] Zhao W R, Gu J L, Zhang L X, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure, J. AM. CHEM. SOC. 2005, 127, 8916~8917
    [26] Chen M H, Kim Y N, Li C C, et al. Preparation and Characterization of Magnetic Nanoparticles and Their Silica Egg-yolk-like Nanostructures: A Prospective Multifunctional Nanostructure Platform. J. Phys. Chem. C, 2008, 112, 6710~6716
    [27] Mykhaylyk O, Cherchenko A, llkin A, et al. Glial brain tumor targeting of magnetite nanoparticles in rats. J Mag Mag Mater, 2001, 225, 241~247
    [28] Zhao A J, Yao P, Kang C S, et al. Synthesis and characterization of Tat mediated O-CMC magnetic nanoparticles having anticancer function. Journal of Magnetism and Magnetic Materials, 2005, 295, 37~43
    [29]马光辉.高分子微球材料.化学工业出版社,2005
    [30] Weber W., Fussenegger M., Pharmacologic transgene control systems for gene therapy, J Gene Med., 2006, 8(5): 533~534
    [31] Buchschacher G L. Introduction to retroviruses and retroviral vectors, SomatCell Mol Genet, 2001, 26(1): 1~11
    [32]刁勇等.基因治疗研究进展.药学进展, 2001, 25(1): 12~16
    [33] K. K. Jain,基因治疗学,世界图书出版公司,2000
    [34] Smith J G, Walzem R L , German J B. Liposomes as agents of DNA transfer. Biophys, 1993, 1154: 327~340
    [35] Anderson W F, Humam gene therapy. Science, 1992, 256: 808~813
    [36] Mulligan R C. The basic science of gene therapy. Science, 1993, 260: 926~931
    [37] Smith L C, Gottschalk S, Hauer J, et al. Nonviral gene delivery using DNA: synthetic petide complexes. Kluwer Academic Pubisher, 1996: 337~345
    [38] Hodson C P. The vector void in gene therapy. Biotechnology, 1995, 13: 222~225
    [39] Wang C, Ge Q, Ting D, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. nature materials, 2004, 3, 190~196
    [40] Denis-Mize, K S. Dupuis M, MacKichan M L, et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. 2000, 7, 2105~2112
    [41] Tan Y, Huang L. Overcoming the inflammatory toxicity of cationic gene vectors. J. Drug Target. 2002, 10, 153~60
    [42] James B, Wechuck, Ozuer A, et a1. Effect of temperature, medium com- position and cell passage on production of herpes-based viral vectors. Biotech and Bioengin, 2002, 79(1): 112~119
    [43] Luo D ,Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface [J ] .Nat Biotechnol , 2000 ,18 :889 ~ 893
    [44] Feigner P, Gadek T, Holm M, et al. Lipofectin: A highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci, 1987, 84(21): 7413~7417
    [45] Holder A A. Malaria vaccines, Proc Natl Acad Sci USA, 1999,96(4): 1167~1169
    [46] Wolfert M A, Schact E H, Toneheva V, et a1. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block copolymers. Hum. Gene Ther., 1996, 7(4): 2123~2128
    [47] Kabanov A V, Vinogradov S V, Suzdaltseva Y Z, et a1. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjngate Chem,1995, 6(2): 639~643
    [48] Kataoka K, Togawa H, Harada A, et a1. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in Physiological saline. Macromolecules, 1996, 39: 8556~8557
    [49] Kim J S,Kim B I,Maruyama A,et a1. A new non-viral DNA delivery vector:terplex system. J Control Rel., 1998, 53: 175~182
    [50] Zaumer W, Brunner S, Busehle M, et a1, Diferential behavior of lipid based and polycation based gene transfer systems in transfecting primary human fibroblasts:a potential role of polylysine in nuclear transport, Biochim Biophys Acta, 1999, 1428(1): 57~61
    [51] Boussif D, Lezoualch F, Zant M A, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo, polyethylenimine. Proceedings National Academy of Sciences USA , 1995, 92: 7297~7301
    [52] Wike M, Fortunati E, Broek M, et al. Efficacy of peptide-based gene delivery system depends on mitotic activity. Gene Therapy, 1996, 3: 1133~1142
    [53] Thanou M F, lorea B., Geldof M., et a1. Quaternized chiston digomers as novel gene delivery vectors in epithelial cel lines. Biomaterials, 2002, 23(2): 152~159
    [54] Mumper R J, Wang J., Claspell J M, et al. Novel polymeric condensing carriers for gene delivery,proceedings of the international symposium controlled release [J]. Bioactive Materials, 1995, 22: 178~179
    [55] Mao H Q, Roy K, Walsh SM, et a1. DNA-chitosan nanospheres for gene delivery [J]. Proc Intern Symp Control Rel Bioact Mater, 1996, 23: 401~402
    [56] Erbacher P, Zou S, Bettinger T, et al. Chitosan-based vector/DNA Complexs for gene delivery: biophysical characteristics and transfection ability [J]. Pharm Res, 1998, 15: 1332~1339
    [57] Park Y K, Park Y H, Shin B A, et a1. Galactcsylated chistosan-graft dextran as hepatocyte—targeting DNA carrier. J Control Rel, 2000, 9: 97~108
    [58] Richardson S C W, Kolbe H J V, Duncan R. Potential of Low Molecular Mass Chitosan as A DNA Delivery System: Biocompatibility, Body Distribution and Ability to Complex and Protect DNA. Int J Pharm,1999,178 (2) :231~243
    [59] Sato T, Ishii T,Okahata Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency, Biomaterials, 2001, 22: 2075~2080
    [60] K?ping-H?gg?rd M, Melnikova Y S, V?rum K M, et a1, Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo, J Gene Med., 2003, 5: 130~141
    [61] Kiang T, Wen J, Jim H W, Leong K W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials, 2004, 25: 5293~5301
    [62] Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes, Biochim Biophys Acta, 2001, 1514(1): 51~64
    [63] Liu W G., Sun S J, Yao K D, et a1. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials, 2005, 26: 2705~2711
    [64] Roy K, Mao H Q, Huang S K, et a1, Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med, 1999, 5(4): 387~391
    [65]李惠,高荣,刘世贵,等.生物医学工程学杂志,2004, 21(6): 947~952
    [66]张阳德,阳离子脂质体及其在基因转移和基因治疗中的应用[J].中国现代医学杂志,2001,11:28~30
    [67] Kuznetsov A A, Filippov V I, Alyautdin R N, et al. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. Journal of Magnetism and Magnetic Materials 225 (2001) 95~100
    [68] Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics: a potential new class of pharmaceutical drugs. NATURE CHEMICAL BIOLOGY, 2006, 2(12): 711~719
    [69] Sun L P, Du Y M, Fan L H, et al. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer, 2006, 47, 1796~1804
    [70]赵文伟,于黎,钟晓光等,水溶性壳聚糖的制备与应用.化学通报, 1994, (4): 31~34
    [71] Jameela S R, Jayakrishnan A, Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials, 1995, 16(10): 769~775
    [72]杜春慧,医用功能纤维.现代纺织技术, 2008, (3): 58~60
    [73]沃兴德,洪行球,赵革平等,壳聚糖对低密度脂蛋白和脂蛋白代谢的影响.中国药理学通报, 2000, 16(5): 530~533
    [74] Thanou M, Florea B I, Geldof M, et al. Quaternized chitosan oligomers as novel gene delivery vectorsin epithelial cell lines. Biomaterials, 2002, 23, 153~159
    [75] Guo Z Y, Xing R, Liu S, et al. Synthesis and hydroxyl radicals scavenging activity of quaternized carboxymethyl chitosan. Carbohydrate Polymers, 2008, 73, 173~177
    [76] Putnam D. Polymers for gene delivery across length scales. nature materials, 2006, 5, 439~451
    [77] Zhu A P, Fang N, Chan-Park M B, et al. Interaction between O-carboxymethylchitosan and dipalmitoyl-sn-glycero-3-phosphocholine bilayer. Biomaterials, 2005, 26, 6873~6879
    [78] Sun L P, Du Y M, Shi X W, et al. A New Approach to Chemically Modified Carboxymethyl Chitosan and Study of its Moisture-Absorption and Moisture-Retention Abilities. Journal of Applied Polymer Science, 2006, 102, 1303~1309
    [79] Sun L P, Du Y M, Yang J H, et al. Conversion of crystal structure of the chitin to facilitate preparation of a 6-carboxychitin with moisture absorption–retention abilities. Carbohydrate Polymers, 2006, 66, 168~175
    [80] Kim T H, Ihm J E, Choi Y J, et al. Efficient gene delivery by urocanic acid-modified chitosan. Journal of Controlled Release, 2003, 93, 389~ 402
    [81] Li H B, Dua Y M, Wu X J, et al. Effect of molecular weight and degree of substitution of quaternary chitosan on its adsorption and flocculation properties for potential retention-aids in alkaline papermaking .Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 242, 1~8
    [82] Polnok A, Borchard G, Verhoef J C, et al. Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 77~83
    [83] Gao Q W, Shao Z Z, Sun Y Y, et al. Complex Formation of Silk Fibroin with Poly(acrylic acid), Polymer Journal, 2000, 32(3): 269~274
    [84] Qin C Q, Du Y M, Xiao L, Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polym Degrad Stab. 2002, 76, 211~218
    [85] Liu X D, Howard K A, Dong M D, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 2007, 28(6), 1280~1288.
    [86] Kunath K, Harpe A V, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Controlled Release, 2003, 89(1), 113~125.
    [87] Aliabadi H M, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opinion on Drug Delivery. 2006, 3(1): 139~162.
    [88] Torchilin V P. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharmaceutical Research, 2007, 24(1), 1~16
    [89] Arimura H, Ohya Y C, Ouchi T. Formation of Core-Shell Type Biodegradable Polymeric Micelles from Amphiphilic Poly(aspartic acid)-block-Polylactide Diblock Copolymer. Biomacromolecules, 2005, 6, 720~725
    [90] Fahr A, Liu X L. Drug delivery strategies for poorly water-soluble drugs. Expert opinion on drug delivery, 2007, 4(4): 403~416
    [91] Sui W P, Yin C Q, Chen Y J, et al.Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin. Colloids and Surfaces B: Biointerfaces. 2006, 48(1): 13~16
    [92] Nishikawa T, Akiyoshi K, Sunamoto J. Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregates of cholesterol-bearing pullulan andα-chymotrypsin. Macromolecules. 1994, 27, 7654~7659
    [93] Panmai S, Prudhomme R K, Peiffer D G, et al. Interaction between hydrophobically polymers and surfactants: a fluorescence study. Langmuir. 2002, 18: 3860~3864
    [94] Philippove O E, Volkov E V, Stinikova N L, et al. Two types of hydrophobicaggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules. 2001, 2: 483~490
    [95] Liu W G, Zhang X, Sun S J, et al. N-alkylated chitosan as a potential nonviral vector for gene transfection. Bioconjugate Chem. 2003, 14: 782~789
    [96] Zhang C, Ping Q, Zhang H, et al. Preparation of N-alky-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbo. Polymer. 2003, 54: 137~141
    [97] Lin W J, Chen M H. Synthesis of multifunctional chitosan with galactose as a targeting ligand for glycoprotein receptor.Carbohydrate Polymers, 2007, 67, 474~480
    [98] Li S L, Byrne B, Welsh J, et al. Self-Assembled Poly(butadiene)-b-poly(ethylene oxide) Polymersomes as Paclitaxel Carriers.Biotechnol. Prog. 2007, 23, 278~285
    [99] Kumar B A V, Varadaraj M C, Tharanathan R N, Low Molecular Weight Chitosans Preparation with the Aid of Pepsin, Characterization, and Its Bactericidal Activity. Biomacromolecules 2007, 8, 566~572
    [100] Tian L, Yam L, Zhou N, et al. Amphiphilic scorpion-like macromolecules: Design, synthesis, and characterization. Macromolecules, 2004, 37(2), 538~543 .
    [101] Bontha S, Kabanov A V, Bronich T K. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. Journal of Controlled Release, 2006, 114, 163~174
    [102] Park Y J, Lee J Y, Yeom H R, et al. Injectable polysaccharide microcapsules for prolonged release of minocycline for the treatment of periodontitis .Biotechnology Letters, 2005, 27, 1761~1766
    [103] Aoyagi S, Onishi H, Machida Y. Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds. International Journal of Pharmaceutics, 2007,330, 138~145
    [104] Chen L Y, Tian Z G., Du Y M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices Biomaterials, 2004, 25(17), 3725~3732
    [105] Lawrence M J, Rees G D. Microemulsion—based media as novel drug delivery systems[J]. Advance Drug Delivery Reviews, 2000, 45: 89—121
    [106]甘礼华,岳天仪,陈龙武等.微乳液法反应制备草酸铜均匀微粒.物理化学学报, 1998, 14(2): 97~101
    [107] Haram S K, Manadeshwar A R, Dixt S G. Synthesis and characterization of coper sulfide nanoparticles in triton-X.100 water-in-oil microemusions. J Phys Chem, 1996, 100, 5868~5873
    [108]贾世军,陈柳生,金熹高等.微乳液聚合和寡链高分子凝聚态研究进展.功能高分子学报, 1997, 10(2): 408~417
    [109] Zhang L, Zeng Z, Chen Y, et al. Photoinitiated copolymerization of acrylamide and styrene in oil-in water microemusion. J Appl Polym Sci., 1997,66: 2543~2549
    [110]徐相凌,张志成,吴欣等.苯乙烯微乳液种子聚合.高等化学学报, 1998, 19(7): 1166~1170
    [111]韩立新,李克安,童沈阳等. W/O型微乳液迁移和富集痕量金属离子Cd2+ ,Cr3+的研究.高等化学学报, 1998, 19(8): 1236~1238
    [112] Yang S C, Benita S. Enhanced Absorption and Drug Targeting by Positively Charged Submicron Emulsions. DRUG DEVELOPMENT RESEARCH, 2000, 50, 476~486
    [113] Shuai X T, Merdan T, Schaper A K, et al.Core-Cross-Linked Polymeric Micelles as Paclitaxel Carriers. Bioconjugate Chem. 2004, 15, 441~448
    [114]陈国华,江澎,陈颖,纪红.正己烷/海水微乳液形成的相图研究.海洋与湖沼, 1995, 26(6): 619~624
    [115]杨祝.水中微量有机群农药的气帽色谱测定[J] .上海环境科学, 1991, 10(4): 26
    [116]虞云龙,陈鹤鑫,樊德方等.快建净化法测定水、土壤中的有机磷和农药[J].矿物岩石地球化学通报, 1996, 15(4): 263~266
    [117] Cui F D, Shi K, Zhang L Q, et al. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. Journal of Controlled Release, 2006, 114: 242~250
    [118]陈国华,江澎,陈颖,等.海洋与湖沼(Oeeanologia et Limnologia Siniea), 1995, 26(6): 619
    [119]褚春莹,陈国华,范金石等.季铵盐型阳离子甲壳低聚糖表面活性剂的相图和微乳液结构.高分子材料科学与工程, 2003, 19(5): 154~156
    [120] Takeuchi H, Kojima H, Yamamoto H, et al. Passive Targeting of Doxorubicin with Polymer Coated Liposomes in Tumor Bearing Rats. Biol. Pharm. Bull. 2001, 24, 795—799.
    [121] Manconi M, Valenti D, Sinico C, et al. Niosomes as carriers for tretinoin: II. Influence of vesicular incorporation on tretinoin photostability. International Journal of Pharmaceutics. 2003, 260, 261~272
    [122] Zhdanov R I, Podobed O V, Vlassov V V, et al. Cationic lipid–DNA complexes—lipoplexes—for gene transfer and therapy. Bioelectrochemistry. 2002, 58, 53~ 64.
    [123] Hofland H,Huang L,Inhibition of human ovarian carcinoma cell proliferation by liposome-plasmid DNA complex.Biochem Biophys Res Commun,1995, 207(2): 492~496
    [124]卢大儒,邱信芳,薛京伦.基因治疗转移方法的研究进展.国外医学.遗传学分册,1996,19(1):1
    [125] Ruysschaert T, Paquereau L, Winterhalter M, et al. Stabilization of Liposomes through Enzymatic Polymerization of DNA. Nano Letters, 2006,6(12): 2755~2757
    [126] Zhang L F, Granick S. How to Stabilize Phospholipid Liposomes (Using Nanoparticles). Nano Letters, 2006, 6(4): 694~698
    [127] Graff A, Winterhalter M, Meier W. Nanoreactors from Polymer Stabilized Liposomes. Langmuir. 2001, 17, 919~923
    [128] Torchilin V P, Levchenko T S. TAT-Liposomes: A Novel Intracellular Drug Carrier. Current Protein and Peptide Science. 2003, 4, 133~140
    [129] Rezler E M, Khan D R, Lauer-Fields J, et al.Targeted Drug Delivery Utilizing Protein-Like Molecular Architecture.J. AM. CHEM. SOC. 2007, 129, 4961~4972
    [130] Souza E F, Teschke O. Liposome stability verification by atomic force microscopy. Rev.Adv.Mater.Sci. 2003, 5, 34~40
    [131] Zhigaltsev I V, Maurer N, Akhong Q F, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: A comparative study of drug loading and retention. Journal of Controlled Release, 2005, 104, 103~ 111
    [132] Bouwstra J A, van Hal D A, Hofland H E J, et al. Preparation and characterization of nonionic surfactant vesicles. Colloids and Surfaces A: Physiochemical and Engineering Aspects 1997; 123-124: 71~80
    [133] Grant J, Tomba J P, Lee H, et al. Relationship between composition and properties for stable chitosan films containing lipid microdomains, J. Appl. Polym. Sci. 2007, 103, 3453~3460
    [134] Feitosa E, Alves F R, Niemiec A, et al. Cationic Liposomes in Mixed Didodecyldimethylammonium Bromide and Dioctadecyldimethylammonium Bromide Aqueous Dispersions Studied by Differential Scanning Calorimetry, Nile Red Fluorescence, and Turbidity. Langmuir 2006, 22, 3579~3585
    [135] Zhu A P, Fang N, Chan-Park M B, et al. Interaction between O-carboxymethylchitosan and dipalmitoyl-sn-glycero-3-phosphocholine bilayer,Biomaterials, 2005, 26, 6873~6879
    [136] Chen C S, Yao J, Durst R A. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica Nanoparticles. Journal of Nanoparticle Research, 2006, 8:1033~1038
    [137]周卫,吕琦,翁帼英.紫杉醇脂质体在大鼠体内的药动学[J].山东中医杂志2000, 19(7): 37-41
    [138] Liu X Q, Kaminski M D, Chen H T, et al. Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres. Journal of Controlled Release, 2007, 119 , 52~58
    [139] Hu F X, Neoh K G, Kang E T. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles, Biomaterials, 2006, 27, 5725~5733
    [140] Hamoudeh M, Faraj A A, Canet-Soulas E, et al. Elaboration of PLLA-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study andin vitro relaxivity evaluation . International Journal of Pharmaceutics, 2007, 338, 248~257
    [141] Pradhan P, Giri J, Banerjee R, et al. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. Journal of Magnetism and Magnetic Materials, 2007, 311, 208~215
    [142] Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M ) Fe, Co, Mn) Nanoparticles. J. AM. CHEM. SOC. 2004, 126, 273~279
    [143] Cuyper M D,PM uller,Lueken H,et a1. Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipids coat. Condens Mater, 2003, 15: 1425
    [144] Martina M S,Fortin J P,Menager C,et a1. Generation of Superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc, 2005, 127: 10676
    [145] Kuznetsov A A,Filippo V I,Alyautdin R N,et a1. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti—cancer photodynamic drugs. Magn Magn Mater, 2001, 225: 95
    [146] Nawroth T,Rusp M,May R P.Magnetic 1iposomes and entrapping :time-resolved neutron scattering TR-SANS and electron microscopy. Physica , 2004, 350: 635
    [147] Martina M S,Fortin J P,Menager C,et a1. Generation Of Superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc, 2005, 127: 10676
    [148] Silvander M, Bergstrand N, Edwards K. Linkage identity is a major factor in determining the effect of PEGylated surfactants on permeability of phosphatidylcholine liposomes. Chemistry and Physics of Lipids. 2003;126:77~83
    [149] Xu H, Cui L L, Tong N H, et al. Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization. J. AM. CHEM. SOC. 2006, 128, 15582~15583
    [150] Podsiadlo P, Tang Z Y, Shim B S, et al. Counterintuitive Effect of Molecular Strength and Role of Molecular Rigidity on Mechanical Properties of Layer-by-Layer Assembled Nanocomposites. Nano Letters. 2007, 7(5): 1224~1231
    [151] Sadasivan S, Sukhorukov G B. Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method. Journal of Colloid and Interface Science, 2006, 304, 437~441
    [152] Xu Q G, Tanaka Y, Czernuszka J T. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials, 2007, 28, 2687~2694
    [153] Wang Q B, Liu Y, Lin C X, et al. Layer-by-layer growth of superparamagnetic, fluorescent barcode nanospheres. Nanotechnology, 2007, 18, 1~7
    [154] Manuel A., Marta G., Nuria N.,et al. Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications, Chem. Mater. 2006, 18, 1911~1919
    [155] Vestal C R, Zhang Z J. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticlesv, J. AM. CHEM. SOC. 2002, 124: 14312~14313
    [156] Fahr A, Liu X L. Drug delivery strategies for poorly water-soluble drugs. Expert opinion on drug delivery, 2007, 4(4): 403~416
    [157] Moo H K, Su M H, Cheon L S, et al. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J Control Release, 2008, 126(2): 122~129
    [158] WANG Y, GAO S, YE W H, et al. Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. nature materials. 2006, 5, 791~796
    [159] Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy, Biomaterials, 2006, 27, 2060~2065
    [160] Antony A.C. Folate receptors. Annu Rev Nutr, 1996, 16, 501~521
    [161] Rao K S, Reddy M K, Horning J L, et al. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 2008, 29, 4429~4438
    [162] Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. Journal of Controlled Release, 2005, 108, 84~ 96
    [163] Mao S R, Shuai X T, Unger F, et al. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials, 2005, 26, 6343~6356
    [164] Gabizon A, Shmeeda H, Horowitz A T, et al. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews, 2004, 56, 1177~ 1192
    [165] Germershaus O, Mao S R, Sitterberg J, et al. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure–activity relationships in vitro. Journal of Controlled Release, 2008, 125, 145~154
    [166] Yun Y H, Jiang H L, Chan R, Chen W L. Sustained release of PEG-g-chitosan complexed DNA from poly(lactide-co-glycolide), 2005, 16(11), 1359~1378
    [167] Liang B, He M L, Xiao Z P, et al. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochemical and Biophysical Research Communications, 2008, 367, 874~880
    [168] Ickenstein L M, Sandstr?m M C, Mayer L D, et al. Effects of phospholipid hydrolysis on the aggregate structure in DPPC/DSPE-PEG2000 liposome preparations after gel to liquid crystalline phase transition. Biochimica etBiophysica Acta, 2006, 1758, 171~180
    [169] tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J of Pharm Sci, 2000, 89, 1371~1388
    [170] Corr S A, Byrne S J, Tekoriute R, et al. Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. J. AM. CHEM. SOC. 2008, 130, 4214~4215
    [171] Dobson J. Magnetic Nanoparticles for Drug Delivery. DRUG DEVELOPMENT RESEARCH, 2006, 67, 55~60
    [172] Kim D H, Martin D C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials, 2006, 27, 3031~3037
    [173] Giannavola C, Bucolo C, Maltese A, et al. Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm. Res. 2003, 20, 584~590
    [174] Pan J, Feng S S. Targeted delivery of paclitaxel using folate-decorated poly(lactide)evitamin E TPGS nanoparticles. Biomaterials, 2008, 29, 2663~2672
    [175] Zhang Z P, Lee S H, Feng S S. Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials, 2007, 28, 1889~1899
    [176] Zhao H Z, Yung L Y L. Selectivity of folate conjugated polymer micelles against different tumor cells. International Journal of Pharmaceutics, 2008, 349, 256~268
    [177] Chan P, Kurisawa M, Chung J E, et al. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28, 540~549
    [178]胡云霞,原续波,张晓金等,聚乳酸载药纳米微粒的表面修饰及体外评价,中国生物医学工程学报,2004,23(1):30~36
    [179] Rapidis A D, Givalos N, Gakiopoulou H, et al, Adenoid cystic carcinoma of the head and neck, Clinicopathological analysis of 23 patients and review of the literature, Oral Oncol, 2005, 41: 328~335
    [180]刘新玲,李筱荣,常津,5-Fu纳米毫微粒的制备及体外对晶状体上皮细胞增生的抑制作用,眼科新进展,2005,8(4):293~295
    [181]韩媛媛,局部应用化疗药物治疗眼眶腺样囊性癌的实验研究:[硕士学位论文],天津:天津医科大学,2006
    [182]肖利华,泪腺上皮性肿瘤的外科治疗探讨,临床研究,2002,20(6):540~542
    [183] Gelse K, Aigner T, Development and characterization of PLGA nanospheres and nanocapsules, Advanced Drug Delivery Reviews, 2003, 55(10): 1531~1546
    [184]周晓冬,宋国祥,隋志方,人腺样囊性癌多药耐药细胞系的建立,国际眼科杂志,2007,7(2):417~419
    [185] Gregoriadis G, Senoir J, Poste G., Targeting of drugs with synthetic system,London: Plenum Press, 1996, 209~219
    [186] Tse D T, Benedetto P, Dubovy S, Clinical analysis of the effect of intraarterial cytoreductive chemotherapy in the treatment of lacrimalgland adenoid cystic carcinoma, Ophthalmol, 2006, 141(l): 44~53
    [187] Silverman D A, Carlson T P, Khuntia D, et al, Role for postoperative radiation therapy in adenoid cystic carcinoma of the head and neek, Laryngoseope, 2004, 114: 1194~1199
    [188] Kawaguchi O, Kunieda E, Fujii H, et al, Adenoid cystic carcinoma with hyperostosis after steerotactic radiosurgery, Radiat Med, 2004, 22: 198~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700