用户名: 密码: 验证码:
子全域基函数法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍并研究了矩量法中一种近来提出的方法——子全域(sub-entiredomain)基函数法的原理及其应用。
     传统的矩量法中,内存需求和CPU时间分别与未知量数目的平方和立方成正比。因而它一般只能应用于分析电小尺寸以及中等尺寸的电磁问题。子全域基函数法利用了周期结构的物理特性,能够极大地降低未知量的数目,从而被用于分析大规模周期结构的电磁特性。
     第一章介绍了当前分析周期结构问题的较为流行的几类数值方法,如时域有限差分法、有限元法和矩量法,包括他们的优劣势也被介绍了。然后描述了本文的主要研究工作以及意义。
     第二章介绍了子全域基函数法并提出了几种改进技术。首先,介绍了矩量法的基本原理以及相关问题。然后利用子全域基函数法分析了一维周期结构,并证实了其精度。接着,提出了两类扩展子全域基函数法:扩展的精确子全域基函数法和扩展的简化子全域基函数法。最后提出了基于降维技术的子全域基函数法,它的精度也被数值算例加以验证。这些方法的优势是进一步降低了未知量的数目。
     第三章提出了子全域基函数中阻抗矩阵的快速填充技术。首先,将特征函数技术引入到阻抗矩阵的计算中。它的优点是避免了耗时的二重面积分。接着,提出了一维周期结构的阻抗矩阵快速填充。最后给出了二维问题的简化子全域基函数法中阻抗矩阵的快速填充。
     第四章将子全域基函数应用于分析混合周期结构(一维情形)、平板以及周期天线阵列。用该基函数得到的结果与传统矩量法得到的结果吻合很好。
     第五章对全文的主要工作进行总结,并展望了子全域基函数法中一些能够继续改进的地方以及进一步扩大其应用的领域。
In this dissertation, principle and applications of the sub-entire domain (SED) basis function method that has been recently proposed are introduced and studied.
     In conventional method of moments (MoM), memory and CPU time are proportional to N~2 and N~3, respectively, where N is the number of unknowns. Therefore, it is only suitable to analyzing electrically small and/or moderate electromagnetic problems. The sub-entire domain basis function method can dramatically reduce the number of unknowns because the physical properties of periodic structures are considered. And it has been used to analyze electromagnetic performance of large-scale periodic structures.
     In Chapter One, some numerical methods, such as the finite-difference time-domain method, finite element method, the MoM, that are popular in analyzing periodic structures are introduced. Advantages and disadvantages of these methods are also given. Then, main work and meaning of this dissertation are given.
     In Chapter Two, the SED basis function method is introduced and some improved techniques are proposed. Firstly, the basic principle and related problems of the MoM are introduced. Secondly, the SED basis function method is applied to analyze one-dimensional periodic structures. The accuracy of the SED basis function is validated. Thirdly, two extended SED basis function methods are proposed. They are extended accurate method and simplified SED basis function methods. Finally, dimension-reduction-based SED basis function method is presented. Its accuracy is also validated by several numerical examples. The number of unknowns can be further reduced by using the improved methods.
     In Chapter Three, several filling techniques of impedance matrix are presented. The characteristic function technique is introduced to computation of impedance matrix. Its advantage is that it can avoid the double surface integration, which is very time consuming. Then, fast fill-technique is proposed in the one-dimensional periodic structures. Finally, fast generation technique of moment matrices in the simplified SED basis function method for two-dimensional probelms is proposed.
     In Chapter Four, the SED basis function method is extended to analyze the hybrid periodic structures (1-D cases), planar plates, and periodic antenna arrays. Results obtained by using the SED basis function method and the conventional MoM are in good agreement.
     In Chapter Five, the dissertation is summarized. In addition, improvability and potential applications of the SED basis function method are forecasted.
引文
[1]K.Sarabandi and N.Behdad.A frequency selective surface with miniaturized elements.IEEE Trans.Antennas Propagat.,2007,55(5):1239 -1245
    [2]B.Monacelli,J.B.Pryor,B.A.Munk,et al.Infrared frequency selective surface based on circuit-analog square loop design.IEEE Trans.Antennas Propagat.,2005,53(2):745 -752
    [3]G.Q.Luo,W.Hong,H.J.Tang,et al.High performance frequency selective surface using cascading substrate integrated waveguide cavities.IEEE Microwave Wireless Component Lett.,2005,16(12):648 - 650
    [4]D.B.Davidson,A.G.Smith,J.J.V.Tonder.Measurement and design of frequency selective surfaces.10th International Conference on Antennas Propagat.,1997,1:156-160
    [5]W.M.Merrill,C.A.Kyriazidou,H.F.Contopanagos,et al.Electromagnetic scattering from a PBG material excited by an electric line source.IEEE Trans.Microwave Theory Tech.,1999,47(11):2105 - 2114
    [6]L.Li,B.Li,H.-X.Liu,et al.Locally resonant cavity cell model for electromagnetic band gap structures.IEEE Trans.Antennas Propagat.,2006,54(1):90 -100
    [7]M.Kafesaki and C.M.Soukoulis.Left-handed materials in microwave and infrared frequencies.9th International Conference on Transparent Optical Networks,2007,2:57-57
    [8]W.Xu,L.-W.Li,and Q.Wu.Design of left-handed materials with broad bandwidth and low loss using double resonant frequency structure.Proc.IEEE 2004 Antennas Propagat.Symp.,4:3792 -3795
    [9]J.-Q.Gong and Q.-X.Chu.Effective electromagnetic parameters extraction method for 1D left-handed material.2007 Asia-Pacific Microwave Conference Proceeding,1-4
    [10]V.G.Vesalago.The electrodynamics of substances with simultaneously negative values of ε and μ.Sov.Phys.Usp.,1968,10 (4):509-514
    [11]J.B.Pendry.Negative refraction makes a perfect lens.Phys.Rev.Lett.,2000,85(39):661-664
    [12]A.Grbic and G.V.Eleftheriades.Negative refraction,growing evanescent waves,and sub-diffraction imaging in loaded transmission-line metamaterials.IEEE Trans.Microwave Theory Tech.,2003,51(12):2297-2305
    [13]T.J.Cui,X.Q.Lin,Q.Cheng,et al,Experiments on evanescent-wave amplification and transmission using metamaterial structures.Phys.Rev.B,2006,73(24):51191
    [14]R.Liu,B.Zhao,X.Q.Lin,et al.Experiment observation of evanescent-wave amplification and propagation in microwave regime.Applied Physics Lett.,2006,89 (22):19191
    [15]S.Enoch,G Tayeb,P.Sabouroux,et al.A metamaterial for directive emission.Phys.Rev.Lett.,2002,89(21):3902
    [16]W.Tong and Z.R.Hu.Left-handed multilayer super compact bandpass filter.2005 Asia-Pacific Microwave Conference Proceedings,3:4
    [17]S.-G.Mao,M.-S.Wu,and Y.- Z.Chueh.Design of composite right/left-handed coplanar-waveguide bandpass and dual-passband filters.IEEE Trans.Microwave Theory Tech.,2006,54(9):3543-3549
    [18]M.Gil,J.Bonache,J.Garcia-Garcia,et al.Composite right/left-handed metamaterial transmission lines based on complementary split-tings resonators and their applications to very wideband and compact filter design.IEEE Trans.Microwave Theory Tech.,2007,55(6):1296-1304
    [19]J.-Y.Lee,D.-J.Kim,B.-C.Park,et al.High order bandpass filter using the first negative resonant mode of composite right/left-handed transmission line.Proc.IEEE 2008 Antennas Propagat.Symp.,1:1-4
    [20]M.Sun,W.Qin,H.Wang,et al.Resonator and bandpass filter using CRLH transmission line based on microstrip-coplanar-waveguide structure.2008 International Conference on Microwave and Millimeter Wave Technology,3:1590-1592
    [21]D.Kuylenstierna,A.Vorobiev,P.Linner,et al.Composite right/left handed transmission line phase shifter using ferroelectric varactors.IEEE Microwave Wireless Components Lett.,2006,16 (4):167-169
    [22]C.Caloz,A.Sanada,and T.Itoh.A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth.IEEE Trans.Microwave Theory Tech.,2004,52(3):980-992
    [23]S.-G.Mao and M.-S Wu.A novel 3-dB directional coupler with broad bandwidth and compact size using composite right/left-handed coplanar waveguides.IEEE Microwave Wireless Components Lett.,2007,17 (5):331-333
    [24]S.-I.Matsuzawa,K.Sato,Y.Inoe,et al.Steerable composite right/left-handed leaky wave antenna for automotive radar applications.36th European Microwave Conference Proceeding,2006:1155-1158
    [25]F.P.C.-Miranda,C.C.-Penalosa,and C.Caloz.High-gain active composite right/left-handed leaky-wave antenna.IEEE Trans.Antennas Propagat.,2006,54(8):2292-2300
    [26]J.A.Fladie and J.T.Bernhard.On the radiation characteristics of right- and left-handed microstrip patch antenna designs.IEEE Antennas Wireless Lett.,2006,5(1):563-565
    [27]S.N.Makarov.Antenna and EM modeling with MATLAB.New York:John Wiley and Sons,Inc
    [28]T.K.Wu.Frequency Selective Surface and Grid Array,New York:Wiley,1995
    [29]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropie media.IEEE Trans.Antennas Propagat.,1966,14(3):302-307
    [30]金建铭(王建国译).电磁场有限元方法.西安:西安电子科技大学出版社,1998
    [31]R.F.Harrington.Field Computation by Moment Methods.New York:McMillan,1968
    [32]A.Bayliss and E.Turkel.Radiation boundary conditions for wave-like equations.Comm.Pure Appl.Math.,1980,23:707-725
    [33]B.Engquist and A.Majda.Absorbing boundary conditions for the numerical simulation of waves.Mathematics of Computation,1977,31 (139):629-651
    [34]K.K.Mei and J.Y.Fang.Superabsorption:a method to improve absorbing boundary conditions.IEEE Trans.Antennas Propagat.,1992,40(9):1001-1010
    [35]J.-P.Berenger.Perfectly matched layer for the FDTD solution of wave-structure interaction problems.IEEE Trans.Antennas Propagat.,1996,44(1):110-117
    [36]S.D.Gedney.An isotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices.IEEE Trans.Antennas Propagat.,1996,44(12):1630-1639
    [37]T.Namiki.A new FDTD algorithm based on alternating-direction implicit method.IEEE Trans.Microwave Theory Tech.,1999,47(10):2003-2007
    [38]王秉中.计算电磁学.北京:科学出版社,2002
    [39]J.Fang and J.Ren.A locally conformed finite-difference time-domain algorithm of modeling arbitrary shape planar metal strips.IEEE Trans.Antennas Propagat.,1992,40(9):830-838
    [40]G.D.Kondylis,F.D.Flaviis,G.J.Pottie,et al.A memory-efficient formulation of the finitedifference time-domain method for the solution of Maxwell equations.IEEE Trans.Microwave Theory Tech.,2001,49(7):1310-1320
    [41]Z.Shao,Z.Shen,Q.He,et al.A generalized higher order finite-difference time-domain method and its application in guided-wave problems.IEEE Trans.Microwave Theory Tech.,2003,51 (3):856-861
    [42]Q.H.Liu.The PSTD algorithm:a time-domain method requring only two cells per wavelength.Microwave Opt.Tech.Lett.,1997,14(10):158-165
    [43]Q.H.Liu and J.Q.He.An efficient PSTD algorithm for cylindrical coordinates.IEEE Trans.Antennas Propagat.,2001,49(9):1349-1351
    [44]Z.Q.Zhang,Q.H.Liu,and X.M.Xu.RCS computation of large inhomogeneous objects using a fast integral equation solver.IEEE Trans.Antennas Propagat.,2003,51 (3):613-618
    [45]F.Xu and W.Hong.Analysis of two dimensional sparse-cylinders scattering problem using DD-FDTD.IEEE Trans.Antennas Propagat.,2004,52(10):2612-2617
    [46]P.Harms,R.Mittra,and W.Ko.Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures.IEEE Trans.Antennas Propagat.,1994,42(9):1317-1324
    [47]A.Aminian and Y.Rahmat-Samii.Spectral FDTD:a novel computational technique for the analysis of periodic structures.Proc.IEEE 2004 Antennas and Propagat.Symp.,3:3139-3142
    [48]Z.B.Ye,R.S.Chen,and Y.Yang.Analysis of finite periodic structure by FDTD and SOC technique.2005 Asia Pacific Microwave Conference Proceeding,3:3
    [49]R.T.Lee and G.S.Smith.An alternative approach for implementing periodic boundary conditions in the FDTD method using multiple unit cells.IEEE Trans.Antennas Propagat.,2006,54(2):698-705
    [50]M.Hano.Finite-element analysis of dielectric-loaded waveguides.IEEE Trans.Microwave Theory Tech.,1984,32(10):1275-1279
    [51]D.R.Tanner and A.E Peterson.Vector expansion functions for the numerical solution of Maxwell's equations.Microwave Opt.Tech.Lett.,1989,2(2):331-334
    [52]D.B.Davidson and M.M.Botha.Evaluation of a spherical PML for vector FEM Applications.IEEE Trans.Antennas Propagat.,2007,55(2):494-498
    [53]J.M.Jin and J.L.Volakis.A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures.IEEE Trans.Antennas Propagat.,1991,39( 1 ):97-104
    [54]T.F.Eibert,J.L.Volakis,D.R.Wilton,et al.Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation.IEEE Trans.Antennas Propag.,1999,47(5):843-850
    [55]X.-Q.Sheng and E.K.-N.Ynng.Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems.IEEE Trans.Antennas Propagat.,2002,50(2):163-167
    [56] M. Vouvakis, K. Zhao, and J. F. Lee. Modeling large almost periodic structures using a non-overlapping domain decomposition method. Proc. IEEE 2004 Antennas and Propagat.Symp., 1: 343-346
    [57] M. N. Vouvakis, Z. Cendes, and J.-F. Lee. A FEM domain decomposition method for photonic and electromagnetic band gap structures. IEEE Trans. Antennas Propagat., 2006, 54(2): 721-733
    [58] K. Zhao, V. Rawat, and J.-F. Lee. A domain decomposition method for electromagnetic radiation and scattering analysis of multi-target problems. IEEE Trans. Antennas Propagat., 2008,56(8): 2211-2221
    [59] Y.-J. Li and J.-M. Jin. A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems. IEEE Trans. Antennas Propagat., 2007,55(10): 2803-2810
    [60] K. Mao, J. Tan, and J.-M. Jin. A domain decomposition method for the finite element simulation of circuit board interconnects. IEEE Electrical Performance of Electronic Packaging, 2007:279-282
    [61] B. Stupfel. A fast-domain decomposition method for the solution of electromagnetic scattering by large objects. IEEE Trans. Antennas Propagat., 1996,44(10): 1375-1385
    [62] R. Chiniard, A. Barka, and O. Pascal. Hybrid FEM/Floquet modes/PO technique for multi-incidence RCS Prediction of array antennas. IEEE Trans. Antennas Propagat., 2008,56(6): 1679-1686
    [63] Z.-Q. Lii, X. An, and W. Hong. A fast domain decomposition method for solving three-dimensional large-scale electromagnetic problems. IEEE Trans. Antennas Propagat., 2008,56 (8): 2200-2210
    [64] P. Liu and Y.-Q. Jin. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface. IEEE Trans. Geosci. Remote Sens., 2004,42(5): 950-956
    [65] N. Engheta, W. D. Murphy, V. Rokhlin, et al. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Trans. Antennas Propagat., 1992,40(6): 634-641
    [66] J. M. Song and W. C. Chew. Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave Opt. Lett., 1995, 10(1): 14-19
    [67] J. M. Song, C. C. Lu, and W. C. Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propagat., 1997,45(10): 1488-1493
    [68] T. K. Sarkar, E. Arvas, and S. M. Rao. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation form electrically large and small conducting bodies.IEEE Trans.Antennas Propagat.,1986,34(5):635-640
    [69]Y.Zhuang,K.-L.Wu,C.Wu,et al.A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays.IEEE Trans.Antennas Propagat.,1996,44(1):102-109
    [70]E.Bleszynski,M.Bleszynski,and T.Jaroszewicz.A fast integral equation solver for electromagnetic scattering problems.Proc.IEEE 1994 Antennas Propagat.Symp.,1:416-419
    [71]E.Bleszynski,M.Bleszynski,and T.Jaroszewicz.AIM:adaptive integral method for solving large-scale electromagnetic scattering and radiation problems.Radio Sci.,1996,31(5):1225-1251
    [72]C.F.Wang,F.Ling,and J.M.Jin.Adaptive integral solution of combined field integral equation.Microw.Opt.Tech.Lett.,1998,19(5):321-328
    [73]W.-B.Ewe,L.-W.Li,Q.Wu,et al.AIM solution to electromagnetic scattering using parametic geometry.IEEE Trans.Antenna and Wireless Propagation Lett.,2005,4:107-111
    [74]W.-B.Ewe,E.-P.Li,H.-S.Chu,et al.AIM Analysis of Electromagnetic Scattering by Arbitrarily Shaped Magnetodielectric Object.IEEE Trans.Antennas Propagat.,2007,55(7):2073-2079
    [75]N.Yuan,T.S.Yeo,X.-C.Nie,et al.Analysis of probe-fed conformal microstrip antennas on finite grounded substrate.IEEE Trans Antennas Propagat.,2006,54(2):554-563
    [76]J.R.phillips and J.K.White.A precorrected-FFT method for electrostatic analysis of complicated 3-D structures.IEEE Trans.Computer-Aided Design Integr.Circuits Syst.,1997,16:1059-1072
    [77]X.-C.Nie,N.Yuan,L.-W.Li,et al.A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects.IEEE Trans.Antennas Propagat.,2005,53(2):818-824
    [78]K.Sertel and J.L.Volakis.Incomplete LU preconditioner for FMM implementation.Microw.Opt.Tech.Lett.,2000,26(4):265-267
    [79]B.Carpentieri,I.S.Duff,L.Griud,et al.Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations.SIAM J.Sci.Comput.,2005,27(3):774-792
    [80]P.Naenna and J.T.Johnson.A Physically-Based Preconditioner for Quasi-Planar Scattering Problems.IEEE Trans.Antennas Propagat.,2008,56(8):2421-2426
    [81]S.M.Rao,D.R.Wilton,and A.W.Glisson.Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat., 1982, 30(5): 409-418
    [82] E. H. Newman and P. Tulyatha. A surface patch model for polygonal plates. IEEE Trans.Antennas. Propagat., 1982, 30(4): 588-593
    [83] D. H. Schaubert, D. R. Wilton, and A. W. Glisson. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. IEEE Trans. Antennas. Propagat., 1984, 32(1): 77-585
    [84] E. Suter and J. Mosig. A subdomain multilevel approach for the MoM analysis of large planar antennas. Microwave Opt. Tech. Lett., 2000, 26: 270-277
    [85] I. Stevanovic and J. R. Mosig. Efficient evaluation of macro-basis function reaction terms in the subdomain multilevel approach. Microw. Opt. Tech. Lett., 2004,42(2): 138-143
    [86] L. Matekovits, G. Vecchi, G. Dassano, et al. Synthetic function analysis of large planar printed structures: the solution space sampling approach. Proc. IEEE 2001 Antennas Propagat. Symp.,1:568-571
    [87] V. Prakash and R. Mittra. Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw. Opt. Tech. Lett., 2003, 36(2): 95-100
    [88] G. Tiberi, A. Monorchio, G. Manara, et al. A spectral domain integral equation method utilizing analytically derived characteristic basis functions for the scattering from large faceted objects. IEEE Trans. Antennas. Propagat., 54(9): 2508-2514,2006
    [89] S. J. Kwon, K. Du, and R. Mittra. Characteristic basis function method: a numerically efficient technique for analyzing microwave and RF circuit. Microw. Opt. Tech. Lett., 2003, 38(6):444-448
    [90] J. Yeo, V. V. S. Prakash, and R. Mittra. Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw. Opt. Tech. Lett., 2003, 39(8):456-464
    [91] F. C(?)tedra, E. Garc(?)a, C. Delgado, et al. Development of an efficient rigorous technique based on the combination of CBFM and MLFMA to solve very large electromagnetic problems. Int. Conf. Electromagnetics in Advanced Applications, 2007: 579-582
    [92] T. J. Cui, W. B. Lu, Z. G. Qian, et al. Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method. Proc. IEEE 2004 Antennas Propagat. Symp., 4: 4459-4462
    [93] H. Zhao, G. Li, W. B. Lu, et al. An efficient algorithm for accurate simulation of split-ring resonators using a modified sub-entire domain basis function method. 2005 Asia Pacific Microwave Conference Proceeding, 3: 4-7
    [94] W. B. Lu, T. J. Cui, Z. G Qian, et al. Fast algorithms for large-scale periodic structures. Proc. IEEE 2004 Antennas Propagat. Symp., 4:4463-4466
    [95] W. B. Lu, T. J. Cui, and H. Zhao. Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions. IEEE Trans. Antennas Propagat., 2007, 55(2): 414-421
    [96] A. Qing and C. K. Lee. An improved model for full wave analysis of multilayered frequency selective surfaces with gridded square element. Progress in Electromag. Res., PIER, 2001,30:285-303
    [97] A. Qing. Vector spectral-domain method for the analysis of frequency selective surfaces.Progress in Electromag. Res., PIER, 2006, 65:201-232
    [98] A. K. Skrivervik and J. R. Mosig. Analysis of finite phased arrays of microstrip patches. IEEE Trans. Antennas Propagat, 1993,41(8): 1105-1114
    [99] O. Bakir, (?). A. (?)ivi, V. B. Ert(?)rk, et al. Efficient analysis of phased arrays of microstrip patches using a hybrid generalized forward backward method/Green's function technique with a DFT based acceleration algorithm. IEEE Trans. Antennas Propagat., 2008, 56(6): 1669-1678
    [100] A. Neto, S. Maci, G Vecchi, et al. A truncated Floquet wave diffraction method for the full-wave analysis of large phased arrays-part II: Generalization to 3-D cases. IEEE Trans. Antennas Propagat., 2000,48(4): 601-611
    [101] P. D. Vita, A. Freni, F. Vipiana, et al. Fast analysis of large finite arrays with a combined multiresolution-SM/AIM approach. IEEE Trans. Antennas Propagat., 2006, 54(12): 3827-3832
    [102] (?). Erg(?)l and L. G(?)rel. The use of curl-conforming basis functions for the magnetic-field integral equation. IEEE Trans. Antennas Propagat., 2006, 54(7): 1917-1926
    [103] R. J. Adams and N. J. Champagne. A numerical implementation of a modified form of the electric field integral equation. IEEE Trans. Antennas Propagat., 2004, 52(9): 2262-2266
    [104] J. Hu and Z. Nie. Improved electric field integral equation (IEFIE) for analysis of scattering form 3-D conducting structures. IEEE Trans. Electromag. Compat., 2007,49(3): 644-648
    [105] J. H. Lin and W. C. Chew. BiCG-FFT T-Matrix method for solving for the scattering solution from inhomogeneous bodies. IEEE Trans. Microwave Theory Tech., 1996, 56(1):178-186
    [106] K. Inan and V. B. Erturk. Application of iterative techniques for electromagnetic scattering from dielectric random and reentrant rough surfaces. IEEE Trans. Geosci. Remote Sens., 2006,44(11): 3320-3329
    [107] D. X. Wang, E. K. N. Yung, R. S. Chen, et al. An efficient volume integral equation solution to EM scattering by complex bodies with inhomogeneous bi-isotropy. IEEE Trans. Antennas Propagat., 2007, 55(7): 1970-1980
    [108] G. R. Cowper. Gaussian quadrature formulas for triangles. Int. J. Numer. Methods Eng., 1973,7: 405-408
    [109] J. Yeo, S. K(?)ksoy, V. V. Prakash, et al. Efficient generation of method of moments matrices using the characteristic function method. IEEE Trans. Antennas Propagat., 2004, 52(12):3405-3410
    [110] T. F. Eibert and V. Hansen. On the calculation of potential integrals for linear source distributions on triangular domains. IEEE Trans. Antennas Propagat., 1995,43(12): 1499-1995
    [111] H.-X. Zhou, W. Hong, and G. Hua. An accurate approach for the calculation of MoM matrix elements. IEEE Trans. Antennas Propagat. 2006, 54(4):1185-1191
    [112] J. S. Asvestas and H. J. Bilow. Line-integral approach to computing impedance matrix elements. IEEE Trans. Antennas Propagat., 2007, 55(10):2767-2772
    [113] J. X. Wan, J. Lei, and C. H. Liang. An efficient analysis of large-scale periodic microstrip antenna arrays using the characteristic basis function method. Progress in Eletromag. Res.,PIER, 2005, 50:61-81
    [114] C. Craeye and X. Dardenne. Element pattern analysis of wideband arrays with the help of a finite-by-infinite array approach. IEEE Trans. Antennas Propagat., 2006, 54 (2): 519-526
    [115] M. Davidovitz and Y. T. Lo. Rigorous analysis of circular patch antenna eexcited by a microstrip transmission line. IEEE Trans. Antennas Propagat., 1989, 37 (8): 949-958
    [116] C. J. Leat, N. V. Shuley, and G. F. Stickley. Triangular-patch modeling of bowtie antennas: validation against Brown and Woodward. IEE Proc. Microwave Antennas Propagat., 1998,145(6): 465-470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700