用户名: 密码: 验证码:
分布式光纤传感与信息处理技术的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感技术是20世纪70年代伴随着光纤通信技术的发展而迅速发展起来的,以光波为载体,光纤为媒介,感知和传输外界被测量信号的新型传感技术。分布式光纤传感技术可以在整个光纤长度上对沿光纤分布的环境参量进行连续测量,同时获得被测量的空间分布状态,在民用和军事上具备广泛的应用前景,因此成为目前国内外研究的热点。
     本论文从长距离、高精度、多信道及信号解调简单等研究角度,针对全分布式、准分布式光纤传感和信息处理技术进行了深入的理论和实验研究,并探讨其应用价值。主要研究成果如下:
     (1)提出全分布式长程马赫-泽德干涉(MZI)及直流光环路定位两项创新技术,研究直线型和环型结构的两种新型MZI分布式光纤振动传感器,分别适合于长距离管线监测和周界监测,并实现了多点振动的高精度检测和准确定位。
     (2)提出一种环路反馈型非平衡MZI传感技术。通过无源或有源光纤反馈环路,在MZI中引入多光束干涉。相比传统MZI,其相位检测灵敏度提高2~3个数量级。
     (3)提出一种连续内刻高密度全同弱布拉格反射周期结构的新型传感光纤以及一种基于时间域和频率(波长)域二维空间数据分析的“光波长时域反射”的创新技术,可同步实现精密传感与准确定位,并由此构建大容量、长距离、精密测量、准确定位的准分布式光纤传感系统。
     (4)提出一种多信道的温度异常报警传感技术。利用多波长啁啾取样光栅的多信道波长反射特性,每个信道波长对应一个温度监测点,通过波长比对检测,结合时分复用技术实现超温报警与定位位置。这种传感器不需要波长解调,不同位置温度报警阈值可灵活设计,响应速率较高,非常适合于火灾探测报警。
     (5)提出一种基于线性啁啾光栅(LCFBG)的光波时延调制型光纤传感创新技术。利用LCFBG的线性群延时谱,通过测量单色脉冲光波经过光栅后引起的光时延变化确定待测参量大小。其优点是结构简单,在时域解调信号,从而省去波长解调器。这种传感器单元在准分布式传感中有很好的应用价值。
Optical fiber sensing technology has been expanding rapidly along with the development of fiber communication technology from 1970’s, which employs the light wave as carrier and the fiber as medium to sense and transmit the measured external signals. The distributed sensing technology is able to continuously detect the environment parameters along the whole fiber, and obtains their spatial distribution. Therefore, the distributed sensing technology has broad application prospect in the civil and military fields, and becomes the investigation hotspot both in domestic and foreign countries.
     In this dissertation, the full-distributed and quasi-distributed fiber-optic sensing and information processing technologies are comprehensively investigated both in theories and experiments, according to the research points of view such as long distance, high precision, multi-channel, and easy signal demodulation. Also, their application value is discussed. The main research achievements are as follows:
     Firstly, the novel full-distributed vibration sensing technique which adopts the long distance Mach-Zehnder interferometer (MZI), and the novel direct current light and fiber loop based real-time and dynamic locating technique are proposed. Moreover, two full distributed vibration sensing systems, which are respectively based on the linear MZI and the ring MZI structure, are discussed and demonstrated. The two sensors can be used to achieve the long distance pipe-line and perimeter monitoring, respectively, by exploiting only one MZI. It should be noted that the ring MZI based sensor is capable of precisely detecting and exactly locating the multiple vibrations.
     Secondly, the new interferometric sensor with ring feedback non-balanced MZI is proposed and analyzed. By introducing the passive or active ring feedback, the multi-light-wave interference is generated in MZI. Compared with the conventional MZI, such sensor is able to boost the phase sensitivity by two to three orders.
     Thirdly, the novel distributed fiber in which high density identical periodic structures with low Bragg reflective are written, and the detecting technique named“Optical Wavelength Time Domain Reflection (OWTDR)”which utilizes the two dimension data analysis method of time domain and frequency (wavelength) domain are presented. Combined with the detecting technique, the special fiber is able to precisely sense and exactly locate the external signals simultaneously. As a result, the new quasi-distributed fiber sensing system of large capacity, long distance, precise measurement and exact locating is constructed.
     Fourthly, the multi-channel temperature abnormal warning sensing technique is presented. Based on the multi-channel wavelength reflection characteristic of the multi-wavelength chirped sampled fiber Bragg grating (FBG), each reflective channel wavelength corresponds to one different monitoring positions. The sensor examines whether the temperature exceeds the tolerable value by comparing the nominal wavelength of the sensing FBG to the corresponding channel wavelength, and locates the abnormal temperature with the time-division-multiplexed (TDM) technique. Due to the reasons of no need of wavelength demodulation, flexible setting of the tolerable temperature at different positions, and quick response, such sensor is very suitable for fire detecting.
     Finally, the novel optic time-delay modulation based sensing technique is presented. The key sensing principle is the linear group delay of the chirped FBG (LCFBG). When a pulsed monochromatic light is injected to the LCFBG, the resultant time-delay of the reflected pulse light varies with the value of the measured parameter. The sensor has several advantages, such as simple structure and no need of wavelength demodulation, to be well applied in the quasi-distributed sensing network.
引文
[1]赵仲刚.光纤通信与光纤传感.上海:上海科学技术文献出版社, 1993. 8-15
    [2]王惠文,江先进,赵长明等.光纤传感技术与应用.北京:国防工业出版社, 2001. 2-68
    [3]郭风珍,于长泰.光纤传感技术与应用.杭州:浙江大学出版设, 1992. 33-45
    [4]刘德明,向清,黄德修.光纤传感器及其应用.成都:电子科技大学出版社, 1994. 96-127
    [5]安毓英,曾小东.光学传感与测量.北京:电子工业出版社, 1995. 143-147
    [6] Kersey A. D. Distributed and multiplexed fiber optic sensors. in: Eric Udd. Fiber Optic Sensors: An Introduction for Engineers and Scientists. New York: Wiley, 1991. 200-248
    [7] Kersey A. D, Davis M. A. Fiber grating sensors. Journal of Lightwave Technol., 1997, 15(8): 1442-1463
    [8] Darkin J. P. Distributed optical fiber sensors. Proceeding of SPIE, 1992, 1797: 76-108
    [9]刘德明,向清,黄德修.光纤光学.北京:国防工业出版社, 1995. 187-190
    [10]胡晓东,刘文晖,胡小唐.分布式光纤传感技术的特点与研究现状.航空精密制造技术, 1999, 35(1): 28-31
    [11]倪玉婷,吕辰刚,葛春风等.基于ORDT的分布式光纤传感器原理及其应用.光纤与光缆及其应用技术, 2006, 1: 1-4
    [12]欧进萍,周智.光纤光栅传感器及其在大型结构工程健康监测领域的应用.见:光纤传感器的发展与产业化国际论坛.中国平湖, 2005. 4-30
    [13]徐惠彬.智能复合材料的发展现状及应用前景.航空精密制造技术, 1997, 4: 11-14
    [14]唐明光.光纤技术在灵敏结构和皮肤中的应用.电子科技大学学报, 1992, 21: 58-64
    [15]李尚俊,刘永智.分布式光纤应力、应变传感技术.半导体光电, 1999, 20(6): 377-381
    [16]胡志新,张陵.分布式光纤布拉格光栅在油气管道检测中的应用.应用光学, 2000, 21(4): 35-37
    [17] Zhang Jun, Xu Ling. Real Time pipeline leak detection on Shell’s North Western Ethylene pipeline. Technical Paper from REL Instrumentation Limited, 1999, 14(5): 36-38
    [18] Zhang X. J. Statistical leak detection in gas and liquid pipelines. Pipes &Pipelines International, 1993, 38(4): 26-29
    [19] Zhang Jun. Designing a cost-effective and reliable pipeline leak-detection system. Pipes &Pipelines International, 1997, 26(3): 68-72
    [20] Mel C M, Jeremy K W. Fiber optic fence sensor developments. IEEE AESS System Magazine, 2004. 8-13
    [21] Juan C J, Eric W M, Kyoo N C, et al. Distributed Fiber-Optic Intrusion Sensor System. Journal of Lightwave Technol., 2005, 23(6): 2081-2087
    [22]孙琪真,刘德明,徐恩波等.新型分布式光纤振动传感周边警戒系统.光电子与信息技术全国博士生学术论坛,中国武汉, 2006. 32-33
    [23] Ohmachi T, Matsumot H. Sea water pressure induced by seismic ground motions and tsunami. Proceeding of International Tsunami Symposium, 2001. 595-609
    [24] Rogers A J. Distributed sensors: a review. Proceeding of SPIE, Fiber Optics Sensors, 1987, 798: 26-35
    [25] Udd E. Sagnac Distributed Sensor Concepts. Proceedings of SPIE, 1991, 1586: 46-78
    [26] Frebele E J, Askins C G, Putnam M A, et al. Distribution strain sensing with fiber Bragg grating arrays embedded in CRTM composite. Electron Lett., 1994, 30(21): 1783-1784
    [27] Davis M A, Bellmore D G, Putna M A, et al. A 60 element fiber grating sensor system. Proceeding of 12th Optical Fiber Sensor, 1997, 16: 100-103
    [28] Berkoff T A, Kersey A D. Fiber Bragg grating array sensor system using a band-pass wavelength division multiplexer and interferometric detection. IEEE photonics technology Letters, 1996, 8(11): 1522-1524
    [29]姜德生,梅加纯.一种编码式光纤光栅温度传感检测系统的研制.武汉理工大学学报, 2004, 26(10): 21- 23
    [30] Davis M A, Kersey A D. Matched filter interrogation technique for fiber Bragg grating arrays. Electronics Lett., 1995, 31(10): 822-823
    [31] Chi Chiu Chan, Wei Jin, Ho H L, et al. Performance analysis of a time-division-multiplexed fiber Bragg grating sensor by use of a tunable laser source. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(5): 741-749
    [32] Chen P K C, Wei Jin, Gong J M, et al. Multiplexing of fiber Bragg Grating sensors using a FMCW technique. IEEE photonics technology Letters, 1999, 11(11): 1470-1472
    [33] Koo K P, Tveten A B, Volua S T. Dense wavelength division multiplexing of fiber Bragg grating sensors using CDMA. Electron Lett., 1999, 35(7): 165-167
    [34] A. J. Rogers. A technique for the measurement of field distribution. Appl. Opt., 1981, 20: 1060-1074
    [35] Horiguchi T, Shimizu K, Kurashima T. Advances in distributed sensing techniques using Brillouin scattering. Proceeding of SPIE, 1995, 2507: 126-135
    [36]董贤子,吴重庆,付松年等.基于P-OTDR分布式光纤传感中信息提取的研究.北方交通大学学报, 2003, 27(6): 106-110
    [37] Juan C J, Eric W M, Kyoo N C, et al. Distributed Fiber-Optic Intrusion Sensor System. Journal of Lightwave Technol., 2005, 23(6): 2081-2087
    [38]耿军平,许家栋,韦高等.基于布里渊散射的分布式光纤传感器的进展.测试技术学报, 2004, 16(2): 87-91
    [39] Hotate K, Tanaka M. Distributed Fiber Brillouin Strain Sensing With1-cm Spatial Resolution by Correlation-Based Continuous-Wave Technique. IEEE Photon. Technol. Lett., 2002, 14(2): 179-181
    [40] Anthony W B, Bruce G C, Kellie B. Distributed Sensor Based on Dark-Pluse Brillouin Scattering. IEEE Photon. Technol. Lett., 2005, 17(7): 1501-1503
    [41] Chtcherbakov A A, Swart P L, Spammer S J. A fibre optic disturbance location sensor using modified Sagnac and Mach-Zehnder interferometers. Proceeding of 12th Optical Fiber Sensor, 1997, 16: 516-519
    [42] Spammer S J, Swart P L, Chtcherbakov A A. Merged Sagnac-Michelson interferometer for distributed disturbance detection. Journal of Lightwave Technol., 1997, 15: 972-976
    [43] Fang X. A variable-loop Sagnac interferometer for distributed impact sensing. Journal of Lightwave Technol., 1996, 35(22): 4522-4525
    [44] Russell S J, Brady K R C, Darkin J P. Real-time location of multiple time-varing strain disturbances, acting over a 40km Fiber section, using a novel dual-Sagnacinterferometer. Journal of Lightwave Technol., 2001, 19(2): 205-213
    [45] Chtcherbakov A A, Swart P L, Spammer S J. Fiber optic distributed sensors for industrial applications. Proceeding of IEEE, 1998. 267-270
    [46] Spammer S J, Chtcherbakov A A, Swart P L. Interferometric distributed fiber optical sensor. Appl. Opt., 1996, 35(22): 4522-4523
    [47] Chojnacki M, Szustakowski M, Zyczkowski M. Unbalanced Michelson’s interferometer as a fiber optic distributed sensor of external signals. Proceeding of SPIE, Optical Sensing for Public Safety, Health, and Security, 2001, 4535: 205-212
    [48]周小群,陈抗生,饭山洪一.干涉型长距离分布式光纤传感系统.光学学报, 1998, 18(2): 253-255
    [49] Lin W W. Novel distributed fiber optic leak detection system. Opt. Eng., 2004, 43(2): 278-279
    [50]孙尧,贾波,张天照.基于反馈环全光纤干涉的定位系统.传感器与微系统, 2006, 25(1): 44-46
    [51]李斌祥,戴文瑞,李杰等.全光纤零差式Mach-Zehnder干涉仪的数学模型.传感器技术, 1994, 5: 18-21
    [52] Charles B C, Robert M K, Steven L G . A symmetric analogue demodulator for optical fiber interferometric sensors. Proceeding of the 34th Midwest Symposium on Circuits and Systems, 1991, 2: 666 -671
    [53]赵玉成,王琥,简水生. Mach-Zehnder光纤干涉仪零差检测方案.光通信技术, 1994, 18(3): 187-191
    [54]唐晓琪,唐继. Mach-Zehnder光纤干涉仪相位载波调制及解调方案的研制.计量学报, 2002, 23(1): 10-12
    [55] John R B, Joseph M K. Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying. Journal of Lightwave Technol., 1992, 10(12): 1939-1951
    [56] Charles B C, Robert M K, Steven L G. A symmetric analogue demodulator for optical fiber interferometric sensors. Proceeding of IEEE, 1992. 666-671
    [57] James S S, Yu L L. Simultaneous Measurement of Two Strain Components Using 3×3 and 2×2 Coupler-Based Passive Demodulation of Optical Fiber Sensors. Journal of Lightwave Technol., 1994, 12(12): 2153-2161
    [58] Hill K O. Photosensitivity in optical fibers. Annual Reviews in Material Science,1993, 23: 12-157
    [59] Lam D K W, Garside B K. Characterization of single-mode optical fiber filters. Applied Optics, 1981, 20: 440-445
    [60] Meltz G, Morey W W, Glenn W H. Formation of Bragg grating in optical fibers by a transverse holographic method. Optics Lett., 1989, 14: 823-825
    [61] Hill K O. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letter, 1978, 32: 647-649
    [62] Kawasaki B S. Narrow-band Bragg reflectors in optical fibers. Optics Lett., 1978, 3: 66-68
    [63] Albert J. Photosensitivity in Ge-doped silica optical waveguides and fibers with 193 nm light from ArF axcimer laser. Optics Lett., 1994, 19: 387-389
    [64] Bilodeau F. Photosensitivity of optical fiber and silica-on-silicaon/silica waveguides. Optics Lett., 1993, 18: 953-955
    [65] Atkins R M, Espindola R P. Photosensitivity and grating writing in hydrogen loaded germanosilicate core optical fibers at 325 nm and 351 nm. Applied Physics Letters, 1997, 70: 1068-1069
    [66] Dockney M L, James J W, Tatam R P. Fiber Bragg grating fabricated using a wavelength tunable source and a phase-mask based interferometer. Measurements Science and Technology, 1996, 7: 445
    [67] Hill K O. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure thorough a phase mask. Applied Physics Letters, 1993, 62: 1035-1037
    [68] Kashyap R. All-fiber narrow band reflection grating at 1550 nm. Electronics Letters, 1990, 26: 730-732
    [69] Malo B. Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques. Electronics Letters, 1993, 29: 1668-1669
    [70] Limberger H G. Photosensitivity and self-organization in optical fibers and waveguides. Proceeding of SPIE, 1993, 19: 877-880
    [71] Archambaut J L, Reekie L, Russek P St J. High reflectivity and narrow band fiber gratings written by single excimer pulse. Electronics Letters, 1993, 29: 28-29
    [72] Archambaut J L, Reekie L, Russek P St J. 100% reflectivity Bragg reflectors produced in optical fibers by single excimer laser pulses. Electronics Letters, 1993, 29: 453-454
    [73] Dong L. Singlepulse Bragg gratings written during incubated damage using a 193 nm ArF lasers. Electronics Letters, 1993, 29: 1577-1578
    [74] Espindola R P, Atkins R M. Fiber Bragg written through a fiber coating. Proceeding of Optical Fiber Communication Conference, 1997. PD4
    [75] Lu Chao, Laureence Reekie. Grating writing through the fiber coating using a 248nm execimer laser. Proceeding of Optical Fiber Communication Conference, 1998. ThD5
    [76] Melle S M, Liu K, Measures R M. A passive grating high-magnetic-field probe. Proceeding of 10th Optical Fiber Sensor Conference, 1994. 53-56
    [77] Davis M A, Kersey A D. All fiber Bragg grating strain-sensor demodulation technique using a wavelength division couple. Electron. Lett., 1994, 30: 75-77
    [78] Zhang Q. Use of highly overcoupled couplers to detect shifts in Bragg wavelength. Electron. Lett., 1995, 31: 480-481
    [79] Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg graing strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Lett., 1993, 18: 1370-1372
    [80] Xu M G. Novel interrogation system for fiber Bragg grating sensors using an acousto-optic tunable filter. Electron. Lett., 1993, 29: 1510-1511
    [81] Jackson D A. Simple multiplexing scheme for fiber-optic grating sensor network. Optics Lett.18, 1993. 1192-1194
    [82] Brady G P. Demultiplexing of fiber Bragg grating temperature and strain sensors. Optics Communication, 1994, 111: 51-54
    [83] Davis M A, Kersey A D. Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett., 1995, 31: 1393-1394
    [84] Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Technol., 1994, 12: 700-703
    [85] Coroy T. Peak detection demodulation of a Bragg fiber optic sensor using a gain-coupled distributed feedback tunable laser. Procedding of the 12th Optical Fiber Sensors Conference, USA, 1997. 21-212
    [86] Chen S. Digital spatial and wavelength domain multiplexing of fiber Bragg grating based sensors. Procedding of the 12th Optical Fiber Sensors Conference, USA, 1997. 546-549
    [87] Kersey A D, Berkoff T A, Morey W W. High resolution fiber Bragg grating based strain sensor with interferometeric wavelength-shift detection. Electron. Lett., 1992,28: 1081-1083
    [88] Kersey A D, Berkoff T A, Morey W W. Fiber optic Bragg grating stain sensor with drift- compensated high-resolution interferometric wavelength detection. Optics Lett., 1993, 18: 72-74
    [89]赵玉成,王琥,简水生. Mach-Zehnder光纤干涉仪可见度分析.光通信技术, 1994, 18(2): 91-93
    [90] Kersey A D, Marrone M J, Dandridge A, et al. Optimization and stabilization of visibility in interferometeric fiber-optic sensors using input-polarization control. Journal of Lightwave Technol., 1988, 6(10): 1599-1609
    [91]李东,张晓辉,黄俊斌等.非平衡光纤Mach-Zehnder干涉仪偏振衰落及相位噪声分析.激光与红外, 2005, 35(3): 217-220
    [92]廖延彪.偏振光学. (第2版).北京:科学出版社, 2003. 58-76
    [93]杨乐平,李海涛,杨磊. LabVIEW程序设计与应用.北京:电子工业出版社, 2005. 384-392
    [94] Zhao Z P, Demokan M S, Macalphine Mark. Improved demodulation scheme for fiber optic interferometers using an asymmetric 3×3 coupler. Journal of Lightwave Technol., 1997, 15(11): 2059-2068
    [95]孙琪真,刘德明,王健.基于环结构的新型分布式光纤振动传感系统.物理学报, 2007, 56 (10): 5903-5908
    [96] Benesty J, Chen J D, Huang Y T. Time-delay estimation via linear interpolation and cross correlation. IEEE Transactions on speech and audio processing, 2004, 12(5): 509-519
    [97] Sun Q Z, Liu D M, Liu H R, et al. Distributed disturbance sensor based on a novel Mach-Zehnder interferometer with a fiber-loop. Proceeding of SPIE, Advanced Laser Technologies (ALT), 2005, 6344: 0k1-0k7
    [98] Sun Q Z, Liu D M, Wang J, et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Optics Communications, 2008, 281(6): 1538-1544
    [99] Sun Q Z, Liu D M, Liu H R, et al. Distributed fiber-optic sensor with a ring Mach-Zehnder interferometer. Proceeding of SPIE, Asia Pacific Optical Communications(APOC), 2007, 6781: 4D1-4D8
    [100]孙琪真,刘德明,徐恩波等.新型分布式光纤振动传感周边警戒系统.光电子与信息技术全国博士生学术论坛,武汉, 2006. 32-33
    [101] Agrawal G P. Contemporary Nonlinear Optics. San Diego: CA, 1992. 36-69
    [102] Agrawal G P. Nonlinear Fiber Optics. San Diego: CA, 1995. 204-231
    [103]鲍振武,刘钊,刘晶.传感器用特殊光纤.光纤与电缆极其应用技术, 2000, 1: 78-81
    [104]杨军,刘志海,裴雅鹏等.双涂层光纤应变传感器的理论与实验研究.光子学报, 2006, 35(6): 842-845
    [105]周广,赵春柳,黄勇林等.光纤环对非平衡马赫-曾德尔干涉仪型波长交错滤波器性能的改善.光学学报, 2002, 22(6): 702-705
    [106] Chao C Y and Guo L J. A new interferometric sensor with ring-feedback MZI. Proceeding of IEEE, 2003: 569-572
    [107]武林,潘文娜,殷宗敏等.光纤光栅的应用研究.光纤与电缆及其应用技术, 2005, 1: 6-10
    [108] Turan E. Fiber grating spectra. Journal of Lightwave Technol., 1997, 15(8): 1277-1294
    [109] Pan J J, Shi Y. Steep skirt fiber Bragg grating fabrication using a new apodised phase mask. Electron Lett, 1997, 33(22): 1895-1896
    [110] Bai B H, Qian Y, Sun Y Z. Fabrication techniques of chirped and apodised fiber gratings. Journal of Changchun Post and Telecommunication Institute, 2000, 18(4): 37-42
    [111] Li X H, Xia L, Liu J W, et al. A novel method for fabrication adjustable apodized and chirped gratinga by UV light scanning writing technology. Semiconductor Optoelectronics, 2001, 22(1): 15-17
    [112] Cortes P Y, Quellette F. Intrinsic apodisation of Bragg grating written using UV-pulse interferometry. Electron. Letters, 1998, 34(4): 396-397
    [113] Yang C C, Lai Y C. Apodised fiber grating fabricated with a uniform phase mask using Gaussian beam laser. Optics & Laser Technology, 2000, 32: 307-310
    [114] Ibsen M, Durkin M K, Cole M J, et al. Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation. IEEE Photon. Technol. Lett., 1998, 10(6): 842-844
    [115] Rothenberg J, Babian F, Brodzeli Z, et al. Phase-only sampling for fabrication and design of high channel-count fiber Bragg gratings. Proceeding of Optical Fiber Communication, 2003. ThL3
    [116] Chen X F, Fan C C, Luo Y, et al. Novel flat multichannel filter based on strongly chirped sampled fiber Bragg grating. IEEE Photon. Technol. Lett., 2000, 12(11): 1501-1503
    [117] Dai Y T, Chen X F, Xu M M, et al. High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift. IEEE Photon. Technol. Lett., 2005, 17(5): 1040-1042
    [118] Andreas O, Kyriacos K. Fiber Bragg Gratings——Fundamentals and Applications in Telecommunications and Sensings. Boston London: Artech House INC, 1999. 52-52
    [119] Liaw S K, Tzeng S L, Yu J H. Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems. Optics Communication, 2001, 188: 63-67
    [120] Marquez-Borbon I, Shlyagin M G, Esteban O, et al. Remote sensing with ultra-low- reflective Bragg gratings written in standard telecommunication fiber. Optical Engineering, 2003, 42(5): 1182-1183
    [121] Cooper D J F, Coroy T, Smith P W E. Time division multiplexing of large serial fiber-optic Bragg grating sensor arrays. Appl. Opt., 2001, 40: 2643-2654
    [122] Lloyd G D, Everall L A, Sugden K, et al. Resonant cavity time-devision-multiplexed fiber Bragg grating sensor interrogator. IEEE Photon. Technol. Lett., 2004, 16(10): 2323-2325
    [123] Dong B, He S Y, Hu S Y, et al. Time-division multiplexing fiber grating sensor with a tunable pulsed laser. IEEE Photon. Technol. Lett., 2006, 18(24): 2620-2622
    [124] Sun Q Z, Liu D M, Liu H R, et al. Multi-point temperature warning sensor using a multi-channel matched fiber Bragg grating. Proceeding of IEEE, Optical Fiber Communication Conference and Exposition, 2008. JWA27
    [125] Sun Q Z, Liu D M, Xia L, et al. Experimental Demonstration of Multi-Point Temperature Warning Sensor Using a Multi-channel Matched Fiber Bragg Grating. IEEE Photonics Technology Letters, 2008, 20(11): 933-935
    [126] Marco P, Stefania C, Antonello C, et al. Continuously variable optical delay line based on a chirped fiber Bragg grating. IEEE Photon. Technol. Lett., 2006, 18(24): 2551-2553
    [127] Sun Q Z, Liu D M, Liu H R, et al. Chirped fiber Bragg grating sensor based on phase delay. Proceeding of SPIE, Asia Pacific Optical Communications, 2007, 6781: 2k1-2k8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700