用户名: 密码: 验证码:
基于若干新型功能微结构的解复用接收器件的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的迅速发展,大容量、高速率的信息传输处理能力已成为信息网络的迫切需求。用光子载体替代电子载体实现高速互连,以光子技术或光电子技术替代微电子技术,发展光集成技术或光电子集成技术,将把信息技术推向一个全新的阶段。
     本论文研究工作主要围绕任晓敏教授担任首席科学家的国家重点基础研究发展规划(973计划)项目(No:2003CB314900)以及课题组承担的国家自然科学基金重点项目(No:90601002)、国家863计划项目(No:2003AA31g050、2003AA312020、2006AA032416、2007AA032418)、国际科技合作重点项目计划项目(No:2006DFB11110)展开。
     针对WDM系统中集成解复用接收器件及应用于其中的功能微结构进行了研究。制备了两种弧形微结构,初步探讨了弧形微结构在光探测器的应用;设计了几种基于微环谐振腔的光器件,并进行了比较详细的理论分析;对基于InGaNAs新材料的GaAs基单片集成长波长“一镜斜置三镜腔”光探测器进行了理论和实验上的初步研究。取得了以下主要研究成果:
     1.首次制备了两种弧形微结构:一种为空气隙型弧形微结构;另一种为实体弧形微结构。空气隙型弧形微结构是利用相邻两层半导体材料之间的晶格差异产生的切向应力来实现弧形结构。这种结构具有制作工艺简单的优点,但是空气隙型弧形微结构的接触倾角变化范围和曲率半径不具备完全可控性。实体弧形微结构采用本课题组独创的可控自推移动态掩膜湿法刻蚀技术制备,这种结构可以完全解决空气隙型弧形微结构中的可控性问题。通过调整腐蚀液中某几种组分的始末溶液浓度以及滴定溶液的滴定速度,可以完全的控制弧形微结构的角度变化范围和曲率半径。基于我们制备出的弧形微结构,初步探讨了弧形微结构在光探测器中的应用。
     2.设计了一种由三个微环谐振腔构成的波导反射镜,其中三个微环谐振腔呈“品”字形分布。采用传输矩阵方法,对该反射镜的反射光谱进行了分析,得到了解析表达式。分析结果表明由于耦合谐振腔的模式分裂,这种波导反射镜的反射光谱存在多峰结构,并且反射光谱中可以产生极窄的透射峰(FWHM~0.02nm),这种透射峰是三个微环谐振腔内的场相互干涉产生的耦合谐振诱导透射现象。这种极窄的透射峰有可能应用于需要极窄光谱的场合。当微环谐振腔之间的耦合系数κ和直波导与微环谐振腔之间的耦合系数κ_(in)满足一定条件时,可以得到平顶响应的反射谱,并获得实现平顶响应时κ和κ_(in)之间的函数关系。
     3.由于耦合微环谐振腔光波导(Coupled Microring ResonatorOptical Waveguide,CMROW)中包含的微环谐振腔的数目是有限的,因而导致了在透射谱和群时延谱中存在严重的震荡现象,这种震荡现象被称为CMROW的有限尺寸效应。我们对CMROW中的有限尺寸效应问题进行了研究。通过对称优化CMROW两端微环谐振腔之间的耦合系数,可以有效地抑制有限尺寸效应,从而获得了良好的平顶陡边透射谱和平坦的群时延谱。采用数值方法分别得到了弱耦合和强耦合情况下的优化交叉耦合系数,并得到了优化交叉耦合系数的拟合公式。该公式对制备实际的具有平坦透射谱和群时延谱的CMROW具有指导意义。
     4.提出了一种由不同尺寸微环谐振腔级联耦合构成的复合微环谐振腔光探测器。复合微环谐振腔系统通常用来实现Vernier效应,以拓宽单个微环谐振腔光谱的自由谱域(Free Spectrum Range,FSR)。我们发现复合微环谐振腔系统中的Vernier效应和谐振腔系统的结构对称性有关。在结构完全对称的谐振腔系统中,Vernier效应无法实现,此时的透射谱中会出现类似Fabry-Perot滤波器的透射峰。利用这一性质可以实现一种新型的复合微环谐振腔光探测器。这种新型光探测器可以有效地拓展单个微环谐振腔光探测器量子效率谱的FSR,同时还能具备更窄的光谱半高全宽(FWHM),有效的改善了单微环谐振腔型光探测器量子效率谱的FSR和FWHM的相互制约问题。
     5.实现了基于InGaNAs/GaAs多量子阱材料的单片集成GaAs基长波长“一镜斜置三镜腔”光探测器。我们和中科院半导体牛智川教授课题组合作生长了InGaNAs/GaAs多量子阱材料,并研制成功了1.3μm和1.55μm波段的GaAs基长波长“一镜斜置三镜腔”光探测器。其中1.3μm波段的InGaNAs/GaAs多量子阱“一镜斜置三镜腔”光探测器的峰值响应波长位于1298.4nm,FWHM为1nm,量子效率约3%。1.55μm波段的InGaNAs/GaAs多量子阱“一镜斜置三镜腔”光探测器的峰值响应波长位于1537nm,FWHM为1.5nm,量子效率约2.4%。器件的光谱线宽体现出了“一镜斜置三镜腔”结构的优越性,但是由于目前InGaNAs材料的生长质量还不够理想,因而器件的量子效率偏低。进一步改善材料质量后,将有可能实现高性能的单片集成GaAs基长波长“一镜斜置三镜腔”光探测器。
With the rapid development of information technology,it's becoming an urgent need for large capability,high speed transmission and management.Information technology will be push to a new stage by substituting photon technology or optoelectronic technology for micro-electronic technology,and developing optical integration or optoelectronic integration.
     The research in this thesis is supported by grants from The National Basic Research Program of China(No.2003CB314900),Key Program project of the National Natural Science Foundation of China(No: 90601002),the National High Technology Research and Development Program of China(No:2003AA31g050,2003AA312020, 2006AA03Z416,2007AA03Z418),and Program of Key International Science and Technology Cooperation Projects(No:2006DFB11110).
     In this thesis,a great deal of research work can be described as follow.Design and fabrication of arc microstructures;design and analysis of a new kind of photodetector with arc absorption cavity.Design and analysis of some new kinds of optical devices based on semiconductor microring resonators,which include coupled-microring waveguide reflector,coupled-microring resonator optical waveguide and compound coupled-microring photodetector.Design,analysis and fabrication of"one mirror inclined three mirror cavity"(OMITMiC) photodetector basing on InGaNAs/GaAs multi-quantum wells.The main achievements are listed as follows.
     1.Two different programs to achieve an arc absorption microstructure were proposed and studied in experiment.One is realized by air-gap technique,in which one of epitaxy layers is etched by selective chemical wet etching techniques.With the air-gap,the cantilever will bend for the tangential stress and an arc absorption cavity is obtained. The fabrication process of air-gap arc absorption cavity is very simple, but the controllability of angle range and the curvature radius of arc microstructure are not so good.The other is realized by dynamic etch mask technique.With this technique,the angle range of arc microstructure can be controlled by varying the initial and the final concentration of solutions,and the radius of arc microstructure can be controlled by varying the time of titration.A new kind of monolithically integrated photodetector with arc absorption cavity was proposed and demonstrated.
     2.An optical waveguide reflector based on coupled-triple-microring is designed and analyzed.The reflectivity of the reflector is analyzed and the analytical expression of reflectivity is obtained with transfer matrix method.The simulation results show that the reflection spectrum has multiple peaks,and transmission peaks with very narrow FWHM(~0.02nm) were found in this structure,which are named coupled resonator induced transparency.With suitableκandκ_(in),fiat response spectrum can be achieved in this waveguide reflector.
     3.Minimization of finite-size effects(FSE) in coupled-microring resonator optical waveguide(CMROW) is studied.There are fringes in the transmission spectrum and group delay spectrum for the finite number of resonators in CMROW,which is referred FSE.Finite-size effects can be minimized with the optimized cross-coupling coefficients at both ends of CMROW.The cross-coupling coefficients need to be optimized are obtained with numerical methods for weak coupling and strong coupling respectively.The fitting formulas of the optimized cross-coupling coefficients are obtained according to simulation results.
     4.A new kind of compound coupled-microring photodetector was proposed and demonstrated.Generally,compound coupled microrings are used to realize Vernier effect.But we found that Vernier effcect can not be achieved if the architecture of compound coupled microrings is symmetrical,and a special transmission spectrum is obtained which is similar to the transmission spectrum of Fabry-Perot filter.A compound coupled-microring photodetector is achieved based on the special spectrum.The response spectrum with larger FSR and smaller FWHM is obtained in this novel coupled-microring photodetector.The mutual restriction between the FSR and FWHM of quantum efficiency in a single-microring photodetector is effectively resolved.
     5.The monolithically integrated GaAs-based OMITMiC photodetectors, operating at 1.3 um and 1.5um respectively,were designed and fabricated successfully with InGaNAs/GaAs MQWs structure for the first time.At 1298.4nm,a quantum efficiency of 3%with a full width at half maximum of 1nm was obtained.At 1537.6nm,a quantum efficiency of 2.4%with a full width at half maximum of 1.5nm was obtained.
引文
[1]任晓敏,国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”申请书,2003
    [2]Mukherjee B."WDM optical communication networks:progress and challenges",Selected Areas in Communications,IEEE Journal on,2000,18(10):1810-1824
    [3]Mark Kuznetsov,Nan M.Froberg,"A Next-Generation Optical Regional Access Network".IEEE Communications Magazine,January,2000
    [4]P.Kaminow,C.R.Doerr,C.Dragone,et al,"A Wideband All-Optical WDM Network",IEEE Journal on Selected Areas in Communications,1996,14(5):780-799
    [5]H.Gnauck,G.Raybon,S.Chandrasekhar,et al."2.5 Tb/s(64~*42.7Gb/s)transmission over 40~*100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans," in OFC2002,2002,post-deadline paper FC-2.
    [6]Rasnussen,Y.Fjelde,J.Bennike,et al."DWDM 40G transmission over trans-Pacific distance(10000 km) using CSRZ-DPSK,enhanced FEC and all-Raman amplified 100 km ultrawave fiber spans," presented at the OFC2003,Atlanta,GA,2003.
    [7]S.Kawanishi,H.Takara,K.Uchiyama et al,"Tbit/s(160Gb/s 19ch) OTDM /WDM transmission experiment",in OFC'99,paper PD1-1.
    [8]韦乐平,光纤通信系统技术的发展与展望,电信网技术,2006,11:1-6.
    [9]Cem Ozturk,Andrew Huntington,Atilla Aydinli,et al,"Filtering Characteristics of Hybrid Integrated Polymer and Compound Semiconductor Waveguides",Journal of Lightwave Technology,2002,20(8):1530-1536.
    [10]Detlef Stoll,Patrick Leisching,Harald Bock,etc."Metropolitan DWD:a Dynamically Configurable Ring for the KomNet Field Trial in Berlin",IEEE Communications Magazine,2001,39:106-113.
    [11](U|¨)nl(u|¨) M.S,Strite S.,"Resonant Cavity Enhance Photonic Device",J.Appl.Phys.,1995,78:607-639.
    [12]Xiaomin Ren,Joe C.Campbell,"A Novel Structure:One Mirror Inclined Three-Mirror Cavity High Performance Photodetector".Technical Proceedings:International Topic Meeting On Photoelectronics(ITMPE'97),Beijing,Oct.,1997: 81-84
    [13]Hui Huang,Xiaomin Ren,Xinyan Wang,et al."Low-temperature InP/GaAs wafer bonding using sulfide-treated surface".Appl.Phys.Lett.,2006,88:061104
    [14]王文娟,“低温晶片键合技术及长波长可调谐WDM解复用光接收集成器件的研究”[博士学位论文],北京邮电大学,2007
    [15]Hui Huang,Yongqing Huang,Xingyan Wang,et al."Long Wavelength Resonant Cavity Photodetector Based on InP/Air-Gap Bragg Reflectors".IEEE PHOTONICS TECHNOLOGY LETTERS,2004,16(1):245-247
    [16]王兴妍,“长波长可调谐WDM解复用光接收集成器件及其关键制备工艺的研究”[博士学位论文],北京邮电大学,2006
    [17]熊德平,“通信光电子半导体材料异质兼容的理论与实验研究”[博士学位论文],北京邮电大学,2007
    [18]任爱光,“单片集成通信光电子器件中异质兼容问题的理论与实验研究”[博士学位论文],北京邮电大学,2006
    [19]顾培夫,白胜元,李海峰,“密集型波分复用薄膜干涉滤光片的设计”,光学学报,2002,7:794-797
    [20]A.Spisser,R.Ledantec,C.Seassal,et al."Highly Selective and Widely Tunable 1.55-um InP/Air-Gap Micromachined Fabry-Perot Filter for Optical Communications ".IEEE Photo.Tech.Lett.,1998,10(9):1259-1261
    [21]Sugita A,Kaneko A,Okamoto K,et al."Very low insertion loss arrayed waveguide grating with vertically tapered waveguides",IEEE Photo.Tech..Lett.,2002,12(9):1180-1182
    [22]Raman K,"Fiber Bragg Grating",Acadamic Press,1999
    [23]E A Marcatili."Bends in Optical Dielectric Guides".THE BELL SYSTEM TECHNICAL JOURNAL,1969,9:2103-2132
    [24]J.V.Hryniewicz,P.P.Absil,et.al,"Higher order filter response in coupled microring resonators," IEEE Photonics Technology Letters,12000,2:320-322.
    [25]P.P.Absil,J.V.Hryniewicz,B.E.Little,et.al,"Wavelength conversion in GaAs micro-ring resonators,"Optics Letters,2000,25:554-556.
    [26]P.P.Absil,J.V.Hryniewicz,B.E.Little,et.al,"Vertically coupled microring resonators using polymer wafer bonding," IEEE Photonics Technology Letters,2001,13:49-51.
    [27]G.Griffel,J.H.Abeles,R.J.Menna,et.al "Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching," IEEE Photonics Technology Letters,2000,12:146-148.
    [28]D.G.Rabus and M.Hamacher,"MMI-coupled ring resonators inGaInAsP-InP,"IEEE Photonics Technology Letters,2001,13:812-814
    [1]赵梓森.“世界光纤通信发展新动向”,全国第九次光纤通信暨第十届集成光学学术会议,秦皇岛.
    [2]Grace Murphy,"High Growth for DWDM Market","Dense Wavelength Division Multiplexing(DWDM) System Markets",market engineering consulting report,Frost & Sullivan,Mountain View,CA,1998
    [3]王光全,王海军,程保等,“40Gbit/s长途WDM系统及其应用前景”,电信科学,2003(6):48-50
    [4]韦乐平.光纤通信系统技术的发展与展望.电信网技术,2006,(11):1-6
    [5]黄章勇,“光纤通信用光电子器件和组件”,北京邮电大学出版社,2001
    [6]顾培夫,白胜元,李海峰,“密集型波分复用薄膜干涉滤光片的设计”,光学学报,2002年7月,pp.794-797
    [7]Takada K,Abe M,Shibata T,et al."10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWGs",Photonics Technology Letters,2001,13(6):577-578.
    [8]Takada K,Abe M,Shibata T,et al."A.2.5 GHz-spaced 1080-channel tandem multi/demultiplexer covering the.S-,C-,and L-bands using an arrayed-waveguide grating with Gaussian passbands as a primary filter",Photonics Technology Letters,2002,14(5):648-650.
    [9]Sugita A,Kaneko A,Okamoto K,et al."Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides",Photonics Technology Letters,2000,12(9):1180-1182
    [10]M.R.Mokhtar,M.Ibsen,P.C.Teh,et.al,"Simple dynamically reconfigurable OCDMA encoder/decoder based on a uniform fiber Bragg grating" Optical Fiber Communication Conference and Exhibit,2002:688-690
    [11]E A Marcatili."Bends in Optical Dielectric Guides".THE BELL SYSTEM TECHNICAL JOURNAL,1969,9:2103-2132
    [12]P.R Absil,J.V.Hryniewicz,B.E.Little,et.al"Wavelength conversion in GaAs micro-ring resonators" Optics Letters,2000,25:554-556.
    [13]J.V.Hryniewicz,P.P.Absil,B.E.Little,et.al,"Higher order filter response in coupled microring resonators" IEEE Photonics Technology Letters,2000,12: 320-322.
    [14]R.Grover,P.P.Absil,V.Van,et.al,“Vertically coupled GaInAsP-InP microring resonators,” Optics Letters,2001,26:506-508
    [15]张文化,薛媛,肖建康等,“光纤通信使用的高速光检测器特性研究”,甘肃科技,2004,20(1):54-55
    [16]Amann MC,“Analysis of a pin photodiode with integrated waveguide”[J],Electron.Lett.,1987,28:885-887.
    [17]Emeis N,Schier M,Hoffmann L,etal.“High speed waveguide integrated photodiodes grown by metal organic molecular beam epitaxy”[J].Electron.Lett.,1992,28:844-845.
    [18]刘家洲,李爱珍,张永刚,“光通信波段超高速PIN光电探测器的新进展”,半导体光电,2001,22(10):227-232
    [19]M.S.Unlu,S.Strite.“Resonant cavity enhanced photonic devices”,Journal of Appl.Phys.,1995,78(2):607-639
    [20]顾畹以,李国瑞.光纤通信系统[M],北京邮电大学出版社,1999年11月第一版
    [21]孙亚春,王庆康,“金属-半导体-金属光电探测器的瞬态特性分析”.光电子技术,2003,23(2):121-125
    [22]Yuxin Zhou,and Julian Cheng,“High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells”,IEEE Photonics Technology Letter,2000,12(2):122-124.
    [23]Jang Pyo Kim,A.M.Sarangan,“A novel design and simulation of resonant cavity enhanced(RCE) corrugated quantum well infrared photodetectors (C-QWIP) using the finite difference time domain(FDTD) method”,IEEE-NANO 2006.6th IEEE Conference on Nanotechnology,2006,1:35-38
    [24]A G Dentai,R Kuchibholta,J C Campbell.“High quantum efficiency,long wavelength InP/InGaAs microcavity Photodiode”.Electron.Lett.,1991,27(23):2125-2127
    [25]N.E.J.Hunt,E.F.Schubert,and G.J.Zydzik,“Resonant-cavity pin Photodetector utilizing an electron-beam evaporated Si/SiO2 microcavity”,Appl.Phys.Lett.,1993,63(3):391.
    [26]A.Salvador,B Sverdlov,T Lehner,et al.,“Resonant cavity enhanced InP/InGaAs Photdiode on Si using epitaxial liftoff',Appl.Phys.Lett.,1994,65(15):1880.
    [27]F.Y.Huang,A.Salvador,X.Gui,et al.,"Resonant-cavity GaAs/InGaAs/AlAs photodiodes with a periodic absorber structure",Appl.Phys.Lett.,63(2):141.
    [28]B.M.Onat,M.Gokkavas,E Ozbay,et al.,"100-GHz Resonant Cavity Enhanced Schottky Photodiodes",IEEE Photonics Technol.Lett.,1998,10(5):707.
    [29]E.Ozbay,M.S Islam,B Onat,et al.,"Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes",IEEE Photonics Technol.Lett.,1997,9(5):672.
    [30]M.Gokkavas,B.M.Onat,etal.,"Ultrafast Resonant Cavity Enhanced Schottky Photodiodes",Proc.IEEE Lasers and Electroptics Soc.,1997 annu.Meet.,San Fransisco Ca,1997,1:160-161
    [31]S.S.Murtaza,K.A.Anselm,C Hu,et al.,"Resonant-Cavity Enhanced(RCE)Separate Absorption and Multiplication(SAM) Avalanche Photodetector(APD)",IEEE Photonics Technol.Lett.,1995,7(12):1486.
    [32]R.Kuchibhotla,A.Srinivasan,J C Campbell,et al.,"Low-voltage high-gain resonant-cavity avalanche photodiode",IEEE Photon.Technol.Lett.,1991,3:354-356.
    [33]Xiaomin Ren,Joe C.Campbell,"Theory and Simulations of Tunable Two-Mirror and Three-Mirror Resonant-Cavity Photodetectors with a Built-In Liquid-Crystal Layer",IEEE J Quantum Elect.,1996,32(11):1903-1915
    [34]Kai Liu,Yongqing Huang,Xiaomin Ren,"Exact numerical analysis of Resonant-Cavity-Enhanced-Photodetectors with matrix simulation",SPIE's International Symposium on Photonics East'98,1-6 Nov.1998 at Boston,MA USA,Vol.3532,pp.197-202.
    [35]黄永清,黄辉等,“用于光波分复用(OWDM)系统的高性能解复用接收器件的研究”,中国有色金属学报,2004,14(S1):.409-413
    [36]王兴妍,黄辉,王琦等,“新型光电探测器的研究”,通信学报,2004,25(12):124-128
    [37]黄辉,王兴妍,王琦等,“基于InP/空气隙布拉格反射镜的长波长谐振腔光电探测器”,半导体学报,2004,2:51-54
    [38]Hui Huang,Yuan Zhong,Qi Wang etc."Theory and Experiments of the One-mirror-inclined Three-mirror-cavity Photodetectors".Vol.4580,APOC 2001,Beijing,China(2001)
    [1] H. Huang, K. Liu, Y.-Q. Huang, et al., "Novel wavelength-demultiplexing photodetectors: theory and experiment". Guangdianzi Jiguang/Joumal of Optoelectronics Laser, 2001. 12(8): 769-772.
    [2] H. Huang, R. Zhang, Q. Wang, et al., "Wavelength-selective photodetector with integrated vertical taper structure". Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002,2002: 714-715.
    [3] H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity". Electronics Letters, 2003. 39(1): 113-115.
    [4] Y. Huang, C. Huang, Q. Wang, et al., "Analysis of a one mirror inclined three-mirror cavity photodetector for high-speed application". Chinese Optics Letters, 2005. 3(1): 53-56.
    [5] H. Huang, X. Ren, X. Wang, et al., "Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity". Applied Optics, 2006.45(33): 8448-8453.
    [6] N Yoshimoto, K Magari, T Ito, et al.,"Spot-Size Converted Polarization-Insensitive SOA Gate with a Vertical Tapered Submicrometer Stripe Structure". Photonic Technology Letters, IEEE, 1998,10(4): 510-512.
    [7] R S Balmer, J M Heaton, J O Maclean,et al., "Vertically Tapered Epilayers for Low-Loss Waveguide-Fiber Coupling Achieved in a Single Epitaxial Growth Run",Journal of Lightwave Technology, 2003,21(1): 211-217.
    [8] H. Huang, X. Wang, Q. Wang, et al., "Long wavelength resonant cavity photodetectors with InP/air-gap Bragg mirrors". Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2004. 25(2): 170-173.
    [9] H. Huang, Y. Huang, X. Wang, et al., "Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors". Photonics Technology Letters, IEEE, 2004. 16(1): 245-247.
    [10]H. Huang, Y. Huang, and X. Ren, "Selective wet etching of AlGaAs in HF/CrO solutions: Application to vertical taper structures in integrated optoelectronic devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002. 20: 1107.
    [11]H. Huang, X. Wang, X. Ren, et al., "Selective wet etching of InGaAs/InGaAsP in HCl HF/ CrO solution: Application to vertical taper structures in integrated optoelectronic devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2005.23:1650.
    [12]K.Kishino,M.S.Unlu,J.-I.Chyi,et al.,"Resonant cavity-enhanced(RCE)photodetectors".IEEE Journal of Quantum Electronics,1991.27(8):2025-2034.
    [13]H.Bourdoucen and J.A.Jervase,"The design of resonant-cavity-enhanced photodetectors for a high bandwidth-efficiency product".Semiconductor Science and Technology,2001.16(7):581-583.
    [1] E.A. Marcatili, "Bends in Optical Dielectric Guides". THE BELL SYSTEM TECHNICAL JOURNAL, 1969, 9: 2103-2132.
    [2] B.E. Little and S.T. Chu, "Microring resonators for very large scale integrated photonics". Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1999, 2: 487-488.
    [3] B.E. Little, S.T. Chu, W. Pan, et al., "Microring resonator arrays for VLSI photonics". IEEE Photonics Technology Letters, 2000,12(3): 323-325.
    [4] B.E. Little, S.T. Chu, J.V. Hryniewicz, et al., "Filter synthesis for periodically coupled mieroring resonators". Optics Letters, 2000, 25(5): 344-346.
    [5] R. Grover, P.P. Absil, V. Van, et al., "Vertically coupled GaInAsP-InP mieroring resonators". Optics Letters, 2001, 26(8): 506-508.
    [6] S. Suzuki, Y. Hatakeyama, Y. Kokubun, et al., "Precise control of wavelength channel spacing of mieroring resonator add-drop filter array". Journal of Lightwave Technology, 2002, 20(4): 745-750.
    [7] E.J. Klein, D.H. Geuzebroek, H. Kelderman, et al. Wavelength-selective switch using thermally tunable mieroring resonators. 2003. TUCSON, AZ, United States: Institute of Electrical and Electronics Engineers Inc.
    [8] B.E. Little, S.T. Chu, P.P. Absil, et al., "Very high-order mieroring resonator filters the WDM applications". IEEE Photonics Technology Letters, 2004, 16(10): 2263-2265.
    [9] L. Zhang, J.-Y. Yang, M. Song, et al., "Microring-based modulation and demodulation of DPSK signal". Optics Express, 2007, 15(18): 11564-11569.
    [10]M.F. Yanik and S. Fan, "Stopping Light All Optically". Physical Review Letters, 2004, 92(8): 83901-1.
    
    [11] S. Longhi, "Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations". Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2): 026606.
    [12]A. Yariv, Y. Xu, R.K. Lee, et al., "Coupled-resonator optical waveguide: A proposal and analysis". Optics Letters, 1999, 24(11): 711-713.
    [13]Y. Xu, A. Yariv, C. Gunn, et al., "Tunable group velocity reduction in coupled-resonator optical waveguide (CROW)". Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000: 93-94.
    [14] S. Olivier, C. Smith, M. Rattier, et al., "Miniband transmission in a photonic crystal coupled-resonator optical waveguide". Optics Letters, 2001, 26(13): 1019-1021.
    [15]S. Mookherjea and A. Yariv, "Coupled resonator optical waveguides". IEEE Journal on Selected Topics in Quantum Electronics, 2002, 8(3): 448-456.
    [16] J.K.S. Poon, J. Scheuer, Y. Xu, et al., "Designing coupled-resonator optical waveguide delay lines". Journal of the Optical Society of America B: Optical Physics, 2004,21(9): 1665-1673.
    [17]J. Scheves, G.T. Poloczi, J.K.S. Poon, et al., "Coupled resonator optical waveguides toward the slowing and storage of light". Optics and Photonics News, 2005,16(2): 36-40.
    [18]F. Liu, Q. Li, Z. Zhang, et al., "Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect". IEEE Journal on Selected Topics in Quantum Electronics, 2008,14(3): 706-712.
    [19]F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip". Nature, 2007,1(1): 65-71.
    [20]Z. Bian, B. Liu, and A. Shakouri, "InP-based passive ring-resonator-coupled lasers". IEEE Journal of Quantum Electronics, 2003, 39(7): 859-865.
    [21]K.E. Chlouverakis, S. Mikroulis, I. Stamataki, et al., "Chaotic dynamics of semiconductor microring lasers". Optics Letters, 2007, 32(20): 2912-2914.
    [22]S.-Y. Cho and N.M. Jokerst, "Integrated thin film photodetectors with vertically coupled microring resonators for chip scale spectral analysis". Applied Physics Letters, 2007, 90(10): 101105.
    [23]H.-B. Chen, H. Huang, Y.-Q. Huang, et al., "Design and analysis of novel microring photodetectors based on microresonator". Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2008, 19(3): 312-314.
    [24] G Abaeiani, V. Ahmadi, and K. Saghafi, "Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications". Photonics Technology Letters, IEEE, 2006, 18(15): 1597-1599.
    [25] J. Scheuer, G.T. Paloczi, and A. Yariv, "All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators". Applied Physics Letters, 2005, 87(25): 251102.
    [26]X. Ou, L. Shaohua, F. Suchun, et al. Properties analysis for reflection-type filter composed of microring resonator array and MZI. 2007. Wuhan, China: SPIE, Bellingham WA, WA 98227-0010, United States.
    [27] D. Smith, H. Chang, and K. Fuller, "Whispering-gallery mode splitting in coupled microresonators". Journal of the Optical Society of America B, 2003, 20(9): 1967-1974.
    [28]D. Smith, H. Chang, K. Fuller, et al., "Coupled-resonator-induced transparency". Physical Review A, 2004, 69(6): 63804.
    [29]D. Smith, N. Lepeshkin, A. Schweinsberg, et al., "Coupled-resonator-induced transparency in a fiber system". Optics Communications, 2006, 264(1): 163-168.
    [30]J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures". Physical Review Letters, 2006, 96(5): 053901.
    [31]Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure". Nature Physics, 2007, 3(6): 406.
    [32]Q. Xu, S. Sandhu, M. Povinelli, et al., "Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency". Physical Review Letters, 2006, 96(12): 123901.
    [33] Y. Xu, R.K. Lee, and A. Yariv, "Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide". Journal of the Optical Society of America B: Optical Physics, 2000, 17(3): 387-400.
    [34] S. Mookherjea, D.S. Cohen, and A. Yariv, "Nonlinear dispersion in a coupled-resonator optical waveguide". Optics Letters, 2002, 27(11): 933-935.
    [35]J.K.S. Poon, J. Scheuer, S. Mookherjea, et al., "Matrix analysis of microring coupled-resonator optical waveguides". Optics Express, 2004, 12(1): 90-103.
    [36] P. Chak and J.E. Sipe, "Minimizing finite-size effects in artificial resonance tunneling structures". Optics Letters, 2006, 31(17): 2568-2570.
    [37]M. Sumetsky and B.J. Eggleton, "Modeling and optimization of complex photonic resonant cavity circuits". Optics Express, 2003, 11(4): 381-391.
    [38]J. Capmany, P. Munoz, J.D. Domenech, et al., "Apodized coupled resonator waveguides". Optics Express, 2007, 15(16): 10196-10206.
    [39]Y. Yanagase, S. Suzuki, Y. Kokubun, et al., "Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter". Journal of Lightwave Technology,2002,20(8):1525-1529.
    [40]O.Schwelb and I.Frigyes,"Vernier operation of series-coupled optical microring resonator filters".Microwave and Optical Technology Letters,2003,39(4):257-261.
    [41]Y.Goebuchi,T.Kato,and Y.Kokubun.Expansion of tuning range of wavelength selective switch using Vernier effect of series coupled microring resonator.2005.Sydney,Australia:Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States.
    [42]M.Qiu,"F2P:finite-difference time-domain 2D simulator for photonic devices".
    [43]M.Qiu,B Jaskorzynska,M.Swillo,et al.,"Time-domain 2D modeling of slab-waveguide based photonic-crystal devices in the presence of out-of-plane radiaton loss",microwave opti tech Lett,2002,34(5):387-393.
    [1] N R Das, M J Deen. "A model for the Performance Analysis and Design of Waveguide PIN Photodetectors". IEEE Transactions on Electron Devices, 2005, 52(4): 465-472
    [2] M Elkrudi, P Boucaud, S Sauvage, et al. "Near-infrared waveguide photodetector with Ge-Si self-assembled quantum dots". Appl. Phys. Lett., 2002, 80: 509-511
    [3] Y hirota, T hirono, T Ishibashi, et al. "Traveling-wave photodetector for 1550nm wavelength fabricated with unitraveling-carrier photodioes", Appl. Phys. Lett., 2001,78:3767-3769
    [4] G G Mekonnen, H G Bach, A Beling, et al. "80-Gb/s InP-Based Waveguide -Integrated Photoreceiver". IEEE J. Select. Topics. Quantum Electron., 2005, 11: 356-360
    [5] A Chin, T Chang. "Multilyaer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors". J. Vac. Sci. Technol. B, 1990, 8: 339
    [6] M S Unlu, S Strite. "Resonant cavity enhanced photonic devices". Journal of Appl. Phys., 1995, 78(2): 607-639
    [7] K Kishino, M Unlu, J Chyi, et al. "Resonant cavity-enhanced (RCE) photodetectors". IEEE J. Quantum Electronics, 1991, 27(8): 2025-2034
    [8] X M Ren, J C Campbell. "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer". IEEE Journal of Quantum Electronics 1996, 32(11):1903-1915
    [9] Liu Kai, Huang Yongqing, Ren Xiaomin. "Theory and experiments of a three-cavity wavelength-selective photodetector". Applied Optics, 2000, 39(24):4263-4269.
    [10] Xiaomin Ren, Joe C. Campbell, "A Novel Structure: One Mirror Inclined Three-Mirror Cavity High Performance Photodetector", Technical Proceedings: International Topic Meeting On Photoelectronics (ITMPE'97), Beijing, Oct., 1997, 81-84
    [11]Hui Huang, Ruikang Zhang, Qi Wang, etal. "Wavelength-selective photodetector with integrated vertical taper structure". OFC 2002.
    [12]Hui Huang, Yongqing Huang, Xiaomin Ren. "Ultra-narrow spectral linewidth photodetector based on taper cavity". IEEE Electron Lett., 2003,39(1): 113-114
    [13]Hui Huang, Xiaomin Ren, Xinyan Wang, et al. "Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity". Applid Optics, 2006,45(33): 8448-8453
    [14]M Kondow, K Uomi, A Niwa, et al. "GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance". Japanese Jounal of Applied Physics, 1996, 35: 1273
    [15]M Kondow, T Kitatani, S Nakatsuka, et al. "GaInNAs: a novel material for long-wavelength semiconductor lasers". IEEE Journal of selected topics in quantum electronics, 3(3): 719-730
    
    [16]W Shan, W Walukiewicz, J W Ager. "Band Anticrossing in GaInNAs Alloys". Phys. Rev. Lett. 1999, 82: 1221-1224
    [17] A G Dentai, R Kuchibholta, J C Campbell. "High quantum efficiency, long wavelength InP/InGaAs microcavity Photodiode". Electron. Lett., 1991, 27(23): 2125-2127
    [18]T Knodl, K H Choy, et al, "RCE photodetector based on VCSEL structure". IEEE Photonics Technology Letter, 1999, 11(10):1289-1291
    [19]Hui Huang, Xiaomin Ren, Xinyan Wang, et al. "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface". Appl. Phys. Lett., 2006, 88:061104
    [20]Lasky J. B. "Wafer bonding for silicon insulator technologies". Appl. Phys. Lett., 1986,48: 78-80
    [21]Bollmann D, Landesberger C, Ramm P, et al. "Analysis of wafer bonding by infrared transmission". Jpn. J. Appl. Phys., 1996, 35: 3807
    [22] Yae Okuno, Kazuhisa Uomi, Masahiro Aoki, et al. "Direct wafer bonding of III-V compound semiconductor for free-material and free-orientation integration". IEEE. J. Quantum Electronics, 1997, 33: 959-969
    [23]Radhakrishnan K, Yuan K, Hong Wang. "Characterization of InGaAs/InP single quantum well structure on GaAs substrate with metamorphic buffer grown by molecular beam epitaxy", J. Cryst. Growth, 2004, 261:16-21
    [24] Goldman R. S.; Kavanagh K. L., and H. H. Wieder, et al., "Correlation of buffer strain relaxation modes with transport properties of two-dimensional electron gases", J. Appl. Phys., 1996, 80: 6849-6854
    [25]Kimura Tatsuya, Kimura Tadashi, Eitaro Ishimura, et al., "Improvement of InP crystal quality grown on GaAs substrates and device applications", J. Cryst. Growth, 1991,107:827-831
    [26]M. K. Lee, D. S. Wuu, H. H. Tung, "Heteroepitaxial growth of InP on GaAs by low-pressure metalorganic chemical vapor deposition", J. Appl. Phys., 1987, 62(8): 3209-3211
    [27] K F YARN, W C CHIEN, C L LIN, et al, "Direct growth of high-quality InP layers on GaAs substrates by MOCVD", Active and Passive Elec. Comp, 2003,26: 71-79
    [28]Aiguang Ren, Xiaomin Ren, Qi Wang, et al, "Heteroepitaxy of Ino.53Gao.47As on GaAs substrate by low pressure metalorganic chemical vapor deposition for the OEIC applications", Microelectronic Journal, 2006, 37: 700-704
    [29]Hui Huang, Yongqing Huang, Xingyan Wang, et al. "Long Wavelength Resonant Cavity Photodetector Based on InP/Air-Gap Bragg Reflectors". IEEE PHOTONICS TECHNOLOGY LETTERS, 2004,16(1): 245-247
    [30] A. Spisser, R. Ledantec, C. Seassal, et al. "Highly Selective and Widely Tunable 1.55-μm InP/Air-Gap Micromachined Fabry-Perot Filter for Optical Communications". IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10(9): 1259-1261
    [31]R. Le Dantec, T. Benyattou, G. Guillot, et al. "Tunable Microcavity Based on InP-Air Bragg Mirrors". IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999,5(1): 111-114
    [32] Cornelia P, Friedhard R, Edwin O A, et al. "Modeling of Ultrawidely Tunable Vertical Cavity Air-Gap Filters and VCSELs". IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9(3): 918-928
    [33] A Hasse, S Irmer, J Daleiden, et al. "Wide continuous tuning range of 221 nm by InP/air-gap vertical-cavity filters". ELECTRONICS LETTERS, 2006, 42(17)
    [34] M. Reihardt, M. Fischer, M. Kamp, J. Hofmann, and A. Forchel, "1.3μm GaInNAs-AlGaAs distributed feedback lasers," IEEE Photon.Technol. Lett. 2000,12(3): 239-241
    [35]Z. Pan, L. H. Li, Y Du, et al. "High-temperature characteristics of GaInNAs/GaAs single-quantum-well lasers grown by plasma-assisted molecular beam epitaxy," Chinese Phys. Lett. 2001,18(5): 659-661
    [36]S.Sato,Y.Osawa,T.Saitoh,et al."Room-temperature pulsed operation of 1.3μm GaInNAs/GaAs laser diodes," Electron.Lett.1997,33(16):1386-1387
    [37]A.Rutz,V.Liverini,D.J.Maas,et al."Passively modelocked GaInNAs VECSEL at centre wavelength around 1.3μm".ELECTRONICS LETTERS,2006,42(16):926-927
    [38]J.B.Heroux,X.Yang,W.I.Wang."GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm".Appl.Phys.Lett.,1999,75(18):2176-2178
    [39]Q.Han,X.H.Yang,Z.C.Niu,et al."1.55 μm GalnNAs resonant cavity enhanced photodetector grown on GaAs".Appl.Phys.Lett.,2005,87:111105
    [40]B.S.Ma,W.J.Fan,Y.X.Dang,et al."GaInNAs double-barrier quantum well infrared photodetector with the photodetection at 1.24 μm".Appl.Phys.Lett.,2007,91:051102
    [41]Hui Huang,Xingyan Wang,Xiaomin Ren,et al,"Selective wet etching of InGaAs/InGaAsP in Hcl/HF/CrO_3 solution:Application to vertical taper structures in integrated optoelectronic devices",J.Vac.Sci.Technol.B 2005,23(4):1650-1653
    [42]Sadao Adachi,GaAs and related materials:bulk semiconducting and superlattice properties,Word Scientific,1994:69
    [43]徐应强,《1.3-1.55μm GaInNAs多量子阱共振腔增强型探测器》,博士论文,中科院半导体所,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700