用户名: 密码: 验证码:
dsRNAs上调若干肿瘤抑制基因及其对膀胱癌治疗作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来研究发现序列特异性靶向某些靶基因启动子区的双链小RNAs(dsRNAs)能引起人肿瘤细胞内靶基因转录水平的表达上调,并将此现象命名为RNA诱导的基因激活(RNAa),称这样的dsRNAs为小激活RNAs (saRNAs).随后关于RNAa发生机制方面的研究显示表观遗传学修饰和反义转录产物与RNAa的发生密切相关。然而,目前对RNAa的普遍性、作用机制以及设计原则的了解仍较肤浅,且在RNAa的发生机制方面存在一些争议。
     本研究旨在探讨RNAa现象的普遍性、明确其具体发生机制、完善saRNAs的设计规律以及评估其治疗应用的可行性,主要研究内容及成果如下:
     1)本文针对肿瘤抑制基因p21、par-4、KAI1和NKX3-1基因启动子区设计了若干对双链小RNAs,利用RT-PCR反应和蛋白印迹验证及挑选了能有效上调靶基因表达的功能性saRNAs:dsP21-306和dsPar4-435;并发现功能性saRNAs的有效性是由dsRNAs的设计位点和细胞本身的遗传背景及特征共同决定的。
     2)比较功能性saRNAs邻近位点的dsRNAs与功能性saRNAs在调节靶基因表达方面的异同,发现功能性saRNAs的靶点沿基因启动子区序列向上游或下游位移1~2个碱基能获得1~2对新的功能性saRNAs。同时,结合以往发现的功能性saRNAs,分析总结它们的序列特征,发现其正义链3’端碱基具有一定的规律,可能与其功能有关。
     3)利用染色质免疫共沉淀探讨功能性saRNAs对par-4启动子区表观遗传学修饰的影响,发现dsPar4-435作用靶点附近的染色质H3K9二甲基化减少和H3K4二甲基化增加,而H3K9的乙酰化状态无明显改变,提示表观遗传学修饰的变化趋势虽与RNAa现象一致,但是其具体改变可能因基因的不同而存在一定的差异。利用PCR检测提示各种细胞中par-4基因启动子区均存在转录产物,以反义RNA为主,它在dsPar4-435作用后表达略有上升,但确切的作用机制仍需进一步研究探索。
     4)利用MTT法、流式细胞术以及蛋白印迹等评估功能性saRNAs对膀胱癌细胞的体外治疗作用和效果,发现dsP21-306和dsPar-435上调靶基因表达后均能有效诱导T24细胞的凋亡,dsP21-306还能诱导G1期细胞周期阻滞,从而抑制膀胱癌细胞的生长,说明saRNAs上调基因表达对膀胱癌具有一定的治疗效果和应用前景。
     总之,RNAa现象具有一定的普遍性,其作用机制与表观遗传学修饰和反义转录产物有一定的联系;同时,saRNAs对膀胱癌细胞的体外治疗效果明显,为将来恶性肿瘤及其他疾病的临床治疗应用提供了理论依据。但是,RNAa现象的确切机制、设计规律以及治疗应用的体内实验等工作还需进一步研究完善。
Very recent studies have reported that chemically synthesized small duplex RNAs complementary to the promoters of target genes can up-regulate gene expression in different cancer cell lines and have named this phenomenon as RNA-induced gene activation (RNAa) and such dsRNA molecules as small activating RNAs (saRNAs). Following mechanistic studies on RNAa indicated that epigenetics and antisense transcripts are associated with RNAa. However, it's still confused about the prevalence, exact mechanisms and design rules of RNAa, and there are also some disputations on the mechanisms of RNAa to be solved.
     This paper focused on discussing the prevalence of RNAa, identifying its exact mechanisms, improving its design rules, and evaluating its therapeutic potential. The main investigations and results are as follows:
     1) Several dsRNAs were designed to target the promoters of p21, par-4, KAI1 and NKX3-1 respectively. The functional saRNAs, dsP21-306 and dsPar4-435, were picked out according to their abilities to induce the target gene expression to more than two times detected by PCR and Western blot. It was suggested that the efficacy of functional saRNAs was dependent on both the target site and the genetic background of target cells.
     2) We synthesized several dsRNAs whose target sites were adjacent to the target site of the functional saRNAs and then compared these dsRNAs with the functional saRNAs in regulation of target genes. It was suggested that one or two new functional saRNAs can be obtained by shifting the original target sites to one or two bases nearby along the gene promoters. Meanwhile, all the functional saRNAs including the former ones were analyzed and found that the bases in 3'ends of their sense strands had regularity which might be important to their functions.
     3) We discussed the relationship between RNAa and the epigenetic changes in par-4 gene promoter by ChIP, and found that H3K9 di-methylation decreased and H3K4 di-methylation increased in the chromatin around the target site after dsPar4-435 transfection, but H3K9 acetylation didn't have evident changes. These results suggested that although the trends of the epigenetic changes were consistent with RNAa, the concrete changes might be different in different genes. Then we detected transcripts existing in par-4 gene promoter in several cells. The transcripts were mainly antisense RNAs and increased when par-4 mRNA was up-regulated by dsPar4-435. The exact mechanisms still need to be investigated in the future.
     4) We evaluated the in vitro therapeutics of functional saRNAs on bladder cancer cells by MTT, flow cytometry and Western blot. Both dsP21-306 and dsPar-435 could induce apoptosis in T24 cells effectively and dsP21-306 could also induce G1-phase cell cycle arrest in these cells. Therefore, they could inhibit the growth of bladder cancer cells, suggesting that up-regulation of TSGs expression by saRNAs have therapeutic potential and promise for bladder cancer.
     In conclusion, RNAa phenomenon occurs in some genes, and its mechanisms are associated with epigenetics and antisense transcripts. Meanwhile, the in vitro therapeutics of functional saRNAs on bladder cancer cells was effective and provided evidence and basis for the future clinical application in the treatment of cancer or other diseases. However, there are still a lot of problems need to be investigated and improved, including the exact mechanisms, design rules and in vivo therapeutic experiments of RNAa.
引文
1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998; 391:806-11.
    2. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.2001; 411:494-8.
    3. Tolia NH, Joshua-Tor L. Slicer and the Argonautes. Nat Chem Biol.2007; 3(1): 36-43.
    4. Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature.2003; 425:415-9.
    5. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J.2002; 21:4663-70.
    6. Zeng Y, Cullen BR. Sequence requirements for microRNA processing and function in human cells. RNA.2003; 9:112-3.
    7. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science.2004; 303:95-8.
    8. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.2003; 17:3011-6.
    9. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell.2001; 106:23-34.
    10. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science.2001; 293:834-8.
    11. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell.2009; 136: 215-33.
    12. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell.2009; 136:642-55.
    13. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science.1999; 286:950-2.
    14. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature.2000; 404:293-6.
    15. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.2001; 15:2654-9.
    16. Knight SW, Bass BL. A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science.2001; 293: 2269-71.
    17. Parrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000; 6:1077-87.
    18. Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000; 101: 25-33.
    19. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev.2001; 15:188-200.
    20. Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001; 20:6877-88.
    21. Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell.2002; 110:563-74.
    22. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell.2001; 107:309-21.
    23. Schwarz DS, Hutvagner G., Haley B, et al. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell.2002; 10:537-48.
    24. Janowski BA, Huffman KE, Schwartz JC, et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol.2006,13:787-92.
    25. Kim DH, Villeneuve LM, Morris KV, et al. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol.2006,13:793-7.
    26. Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006; 103:17337-42.
    27. Janowski BA, Younger ST, Hardy DB, et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007; 3: 166-73.
    28. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science.2007; 318:1931-4.
    29. Place RF, Li LC, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A.2008; 105: 1608-13.
    30. Rosok O, Sioud M. Systematic identification of sense-antisense transcripts in mammalian cells. Nature Biotechnol.2004,22:104-8.
    31. Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome. Science,2005,309:1564-6.
    32. Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature,2008,451:202-6.
    33. Schwartz JC, Younger ST, Nguyen NB, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol.2008; 15:842-8.
    34. Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet.2008; 4:e1000258.
    35. Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics:a potential new class of pharmaceutical drugs. Nat Chem Biol.2006; 2(12):711-9.
    36. Niculescu AB, Chen X, Smeets M, et al. Effects of p21 (Cipl/Wafl) at both the G1/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol.1998; 18: 629-43.
    37. Ogryzko VV, Wong P, Howard BH. WAF1 retards Sphase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol.1997; 17:4877-82.
    38. Sells SF, Wood DP, Jr., et al. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and-independent prostate cells. Cell Growth Differ.1994; 5:457-66.
    39. Gurumurthy S, Goswami A, Vasudevan KM, et al. Phosphorylation of Par-4 by protein kinase A is critical for apoptosis. Mol Cell Biol.2005; 25:1146-61.
    40. El-Guendy N, Zhao Y, Gurumurthy S, et al. Identification of a unique core domain of Par-4 sufficient for selective apoptosis-induction in cancer cells. Mol. Cell Biol. 2003,23:5516-25.
    41. Dong JT, Lamb PW, Rinker-Schaeffer CW, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science.1995; 268: 884-6.
    42. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, et al. Roles for Nkx3.1 in prostate development and cancer. Genes Dev.1999; 13:966-77.
    43. Morris KV, Chan SW, Jacobsen SE, et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science.2004; 305(5688):1289-92.
    44. Ting AH, Schuebel KE, Herman JG, et al. Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet.2005; 37(8):906-10.
    45. Castanotto D, Tommasi S, Li M, et al. Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1A gene promoter in HeLa cells. Mol Ther.2005; 12(1): 179-83.
    46. Huang V, Qin Y, Wang J, et al. RNAa is conserved in mammalian cells. PLoS One. 2010; 5(1):e8848.
    47. Vakoc CR, Sachdeva MM, Wang H, et al. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol.2006; 26(24):9185-95.
    48. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J Clin. 2005; 55:74-108.
    49. Feldman AR, Kessler L, Myers MH, et al. The prevalence of cancer. Estimates based on the Connecticut Tumor Registry. N Engl J Med.1986; 315:1394-7.
    50. Rubben H, Lutzeyer H, Fischer N, et al. Natural history and treatment of low and high risk superfi cial bladder tumors. J Urol.1988; 139:283-5.
    51. Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N
    Engl J Med.2003; 349:859-66.
    52. Splinter TA, Scher HI, Denis L, et al. European Organization for Research on Treatment of Cancer-Genitourinary Group. The prognostic value of the pathological response to combination chemotherapy before cystectomy in patients with invasive bladder cancer. J Urol.1992; 147:606-8.
    53. Vaughn DJ. Review and outlook for the role of paclitaxel in urothelial carcinoma. Semin Oncol.1999; 26:117-22.
    54. Dulic'V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell.1994; 76:1013-23.
    55. Deng C, Zhang P, Harper JW, et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell.1995; 82:675-84.
    56. Brugarolas J, Chadrasekaran C, Gordon J, et al. Radiation-induced cell cycle arrest compromised by p21deficiency. Nature.1995; 377:552-7.
    57. Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther.2002; 1(8):639-49.
    58. Johnstone RW, Tommerup N, Hansen C, et al. Mapping of the Human PAWR (par-4) Gene to Chromosome 12q21. Genomics.1998; 53:241-3.
    59. El-Guendy N, Rangnekar VM. Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res.2003; 283:51-66.
    60. Chakraborty M, Qiu SG, Vasudevan KM, et al. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res.2001; 61:7255-63.
    61. Liu S, Bishop WR, Liu M. Differential effects of cell cycle regulatory protein p21WAF/Cipl on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat.2003; 6:183-95.
    62. Tsao YP, Huang SJ, Chang JL, et al. Adenovirus-mediated p21 (WAF1/SDII/CIP1) gene transfer induces apoptosis of human cervical cancer cell lines. J Virol.1999; 73:4983-90.
    63. Shibata MA, Yoshidome K, Shibata E, et al. Suppression of mammary carcinoma growth in vitro and in vivo by inducible expression of the Cdk inhibitor p21. Cancer Gene Ther.2001; 8:23-35.
    64. Decaudin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-xL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res.1997; 57(1):62-7.
    65. Vander Heiden MG, Chandel NS, Williamson EK, et al. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell.1997; 91(5): 627-37.
    66. Gautschi O, Tschopp S, Olie RA, et al. Activity of a novel bcl-2/bcl-xL bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst.2001; 93(6):463-71.
    67. Fennell DA, Corbo MV, Dean NM, et al. In vivo suppression of Bcl-xL expression facilitates chemotherapyinduced leukaemia cell death in a SCID/NOD-Hu model. Br J Haematol.2001; 112(3):706-13.
    68. Salvesen GS, Dixit VM. Caspase activation:the inducedproximity model. Proc Natl Acad Sci USA.1999; 96:10964-7.
    69. Germain M, Affar EB, D'Amours D, et al. Cleavage of automodified poly (ADP-ribose) polymerase during apoptosis:evidence for involvement of caspase-7. J Biol Chem.1999; 274:28379-84.
    70. Ivana Scovassi A, Diederich M. Modulation of poly (ADPribosylation) in apoptotic cells. Biochem Pharmacol.2004; 68:1041-7.
    1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002. CA Cancer J Clin. 2005; 55:74-108.
    2. Feldman AR, Kessler L, Myers MH, et al. The prevalence of cancer. Estimates based on the Connecticut Tumor Registry. N Engl J Med.1986; 315:1394-7.
    3. Rubben H, Lutzeyer H, Fischer N, et al. Natural history and treatment of low and high risk superfi cial bladder tumors. J Urol.1988; 139:283-5.
    4. Sylvester RJ, Oosterlinck W, van der Meijden AP. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer:a meta-analysis of published results of randomized clinical trials. J Urol.2004; 171:2186-90.
    5. Fagg SL, Dawson-Edwards P, Hughes MA, et al. cis-Diamminedichloroplatinum (DDP) as initial treatment of invasive bladder cancer. Br J Urol.1984; 56:296-300.
    6. Raghavan D, Pearson B, Coorey G, et al. Intravenous cis-platinum for invasive bladder cancer. Safety and feasibility of a new approach. Med J Aust.1984; 140: 276-8.
    7. Pectasides D, Pectasides M, Nikolaou M. Adjuvant and neoadjuvant chemotherapy in muscle invasive bladder cancer:literature review. Eur Urol.2005; 48:60-8.
    8. Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med.2003; 349:859-66.
    9. Splinter TA, Scher HI, Denis L, et al. European Organization for Research on Treatment of Cancer-Genitourinary Group. The prognostic value of the pathological response to combination chemotherapy before cystectomy in patients with invasive bladder cancer. J Urol.1992; 147:606-8.
    10. Vaughn DJ. Review and outlook for the role of paclitaxel in urothelial carcinoma. Semin Oncol.1999; 26:117-22.
    11. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998; 391:806-11.
    12. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature.2001; 411:494-8.
    13. Tolia NH, Joshua-Tor L. Slicer and the Argonautes. Nat Chem Biol.2007; 3(1): 36-43.
    14. Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature.2003; 425:415-9.
    15. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization. EMBO J.2002; 21:4663-70.
    16. Zeng Y, Cullen BR. Sequence requirements for microRNA processing and function in human cells. RNA.2003; 9:112-3.
    17. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science.2004; 303:95-8.
    18. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.2003; 17:3011-6.
    19. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell.2001; 106:23-34.
    20. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science.2001; 293:834-8.
    21. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell.2009; 136: 215-33.
    22. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell.2009; 136:642-55.
    23. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science.1999; 286:950-2.
    24. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature.2000; 404:293-6.
    25. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.2001; 15:2654-9.
    26. Knight SW, Bass BL. A role for the RNase Ⅲ enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science.2001; 293: 2269-71.
    27. Parrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000; 6:1077-87.
    28. Zamore PD, Tuschl T, Sharp PA, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell.2000; 101: 25-33.
    29. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev.2001; 15:188-200.
    30. Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001; 20:6877-88.
    31. Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell.2002; 110:563-74.
    32. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell.2001;107:309-21.
    33. Schwarz DS, Hutvagner G., Haley B, et al. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell.2002; 10:537-48.
    34. Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A.2006; 103:17337-42.
    35. Janowski BA, Younger ST, Hardy DB, et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol.2007; 3: 166-73.
    36. Schwartz JC, Younger ST, Nguyen NB, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol.2008; 15:842-8.
    37. Morris KV, Santoso S, Turner AM, et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet.2008; 4:e1000258.
    38. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science.2007; 318:1931-4.
    39. Place RF, Li LC, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A.2008; 105: 1608-13.
    40. Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics:a potential new class of pharmaceutical drugs. Nat Chem Biol.2006; 2(12):711-9.
    41. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001; 93:1062-74.
    42. WuXR. Urothelial tumorigenesis:a tale of divergent pathways. Nat Rev Cancer. 2005; 5:713-25.
    43. Li C, Teng RH, Tsai YC, et al. H-Ras oncogene counteracts the growth-inhibitory effect of genistein in T24 bladder carcinoma cells. Br J Cancer.2005; 92:80-8.
    44. Kim IA, Bae SS, Fernandes A, et al. Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res 2005; 65:7902-10.
    45. Bos JL. Ras-like GTPases. Biochim Biophys Acta.1997; 1333:M19-31.
    46. Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 2003; 4:800-6.
    47. Gildea JJ, Harding MA, Seraj MJ, et al. The role of Ral A in epidermal growth factor receptor-regulated cell motility. Cancer Res.2002; 62:982-5.
    48. Oxford G, Owens CR, Titus BJ, et al. RalA and RalB:antagonistic relatives in cancer cell migration. Cancer Res.2005; 65(16):7111-20.
    49. Smith SC, Oxford G, Wu Z, et al. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res.2006; 66(4):1917-22.
    50. Kristiansen G, Sammar M, Altevogt P. Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol.2004; 35:255-62.
    51. Friederichs J, Zeller Y, Hafezi-Moghadam A, et al. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res. 2000; 60:6714-22.
    52. Sammar M, Gulbins E, Hilbert K, et al. Mouse CD24 as a signaling molecule for integrinmediated cell binding:functional and physical association with src-kinases. Biochem Biophys Res Commun.1997; 234:330-4.
    53. Suzuki T, Kiyokawa N, Taguchi T, et al. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J Immunol.2001; 166:5567-77.
    54. Kadmon G, Eckert M, Sammar M, et al. Nectadrin, the heat-stable antigen, is a cell adhesion molecule. J Cell Biol.1992; 118:1245-58.
    55. Engelman JA. Targeting PI3K signalling in cancer:opportunities, challenges and limitations. Nat Rev Cancer.2009; 9(8):550-62.
    56. Xia G, Kumar SR, Stein JP, et al. EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene.2006; 25:769-80.
    57. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res.1993; 60:1-41.
    58. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis.2006; 27(4): 740-7.
    59. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol.2005; 23:2445-59.
    60. Nguyen PL, Swanson PE, Jaszcz W, et al. Expression of epidermal growth factor receptor in invasive transitional cell carcinoma of the urinary bladder. A multivariate survival analysis. Am J Clin Pathol.1994; 101:166-76.
    61. Kramer C, Klasmeyer K, Bojar H, et al. Heparin-binding epidermal growth factor-like growth factor isoforms and epidermal growth factor receptor/ErbB 1 expression in bladder cancer and their relation to clinical outcome. Cancer.2007; 109:2016-24.
    62. Lo HW, Xia W, Wei Y, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res.2005; 65:338-48.
    63. Kim J, Jahng WJ, Di Vizio D, et al. The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus. Cancer Res.2007; 67(19):9229-37.
    64. D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003; 1:23-34.
    65. Chirnomas D, Taniguchi T, de la Vega M, et al. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther.2006; 4: 952-61.
    66. Lyakhovich A, Surralles J. FANCD2 depletion sensitizes cancer cells repopulation ability in vitro. Cancer Lett.2007; 256(2):186-95.
    67. Sundaresan M, Yu ZX, Ferrans VJ, et al. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science.1995; 270:296-9.
    68. Shibanuma M, Arata S, Murata M, et al. Activation of DNA synthesis and expression of the JE gene by catalase in mouse osteoblastic cells:possible involvement of hydrogen peroxide in negative growth regulation. Exp Cell Res. 1995; 218:132-6.
    69. Babior BM. The respiratory burst oxidase. Curr Opin Hematol.1995; 2:55-60.
    70. Segal AW, Shatwell KP. The NADPH oxidase of phagocytic leukocytes. Ann N Y Acad Sci.1997; 832:215-22.
    71. Shimada K, Nakamura M, Anai S, et al. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res.2009; 69(7):3157-64.
    72. Hess RA, Gist DH, Bunick D, et al. Estrogen receptor (alpha and beta) expression in the excurrent ducts of the adult male rat reproductive tract. J Androl.1997; 18: 602-11.
    73. Makela S, Strauss L, Kuiper G, et al. Differential expression of estrogen receptors alpha and beta in adult rat accessory sex glands and lower urinary tract. Mol Cell Endocrinol.2000; 164:109-16.
    74. Kaufmann O, Baume H, Dietel M. Detection of oestrogen receptors in non-invasive and invasive transitional cell carcinomas of the urinary bladder using both conventional immunohistochemistry and the tyramide staining amplification (TSA) technique. J Pathol.1998; 186:165-8.
    75. Teng J, Wang ZY, Jarrard DF, et al. Roles of estrogen receptor alpha and beta in modulating urothelial cell proliferation. Endocr Relat Cancer.2008; 15(1):351-64.
    76. Miyamoto H, Yang Z, Chen YT, et al. Promotion of bladder cancer development and progression by androgen receptor signals. J Natl Cancer Inst.2007; 99:558-68.
    77. Debes JD, Sebo TJ, Lohse CM, et al. p300 in prostate cancer proliferation and progression. Cancer Res.2003; 63:7638-40.
    78. Agoulnik IU, Vaid A, Bingman WE Ⅲ, et al. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res.2005; 65:7959-67.
    79. Agoulnik IU, Vaid A, Nakka M, et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res.2006; 66:10594-602.
    80. Zhou HJ, Yan J, Luo W, et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res.2005; 65:7976-83.
    81. Boorjian SA, Heemers HV, Frank I, et al. Expression and significance of androgen receptor coactivators in urothelial carcinoma of the bladder. Endocr Relat Cancer. 2009; 16(1):123-37.
    82. Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science.1997; 277:955-9.
    83. Melissourgos N, Kastrinakis NG, Davilas I, et al. Detection of human telomerase reverse transcriptase mRNA in urine of patients with bladder cancer:evaluation of an emerging tumor marker. Urology.2003; 62:362-7.
    84. Kraemer K, Schmidt U, Fuessel S, et al. Microarray analyses in bladder cancer cells: inhibition of hTERT expression down-regulates EGFR. Int J Cancer.2006; 119(6): 1276-84.
    85. Zou L, Zhang P, Luo C, et al. shRNA-targeted hTERT suppress cell proliferation of bladder cancer by inhibiting telomerase activity. Cancer Chemother Pharmacol. 2006; 57(3):328-34.
    86. Kunze D, Wuttig D, Kausch I, et al. Antisense-mediated inhibition of survivin, hTERT and VEGF in bladder cancer cells in vitro and in vivo.Int J Oncol.2008; 32(5):1049-56.
    87. Barr FA, Sillje HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol.2004; 5:429-40.
    88. Nogawa M, Yuasa T, Kimura S, et al. Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest.2005; 115(4):978-85.
    89. Hiebert SW, Chellappan SP, Horowitz JM, et al. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev.1992; 6:177-85.
    90. Qian Y, Luckey C, Horton L, et al. Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Mol Cell Biol.1992; 12:5363-72.
    91. Oeggerli M, Tomovska S, Schraml P, et al. E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene.2004; 23:5616-23.
    92. Oeggerli M, Schraml P, Ruiz C, et al. E2F3 is the main target gene of the 6p22 amplicon with high specificity for human bladder cancer. Oncogene.2006; 25(49): 6538-43.
    93. Kanehira M, Katagiri T, Shimo A, et al. Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. Cancer Res.2007; 67(7): 3276-85.
    94. Mollinari C, Kleman JP, Jiang W, et al. PRC1 is a micro tubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol. 2002; 157:1175-86.
    95. Jiang W, Jimenez G, Wells JN, et al. PRC1:a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell.1998; 2:877-85.
    96. Tang Y, Simoneau AR, Liao WX, et al. WTF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther.2009; 8(2):458-68.
    97. Li F, Ambrosini G., Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature.1998; 396:580-4.
    98. Beltrami E, Plescia J, Wilkinson JC, et al. Acute ablation of survivin uncovers p53-dependent mitotic checkpoint functions and control of mitochondrial apoptosis. J Biol Chem.2004; 279:2077-84.
    99. Ambrosini G., Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med.1997; 3:917-21.
    100.Weikert S, Christoph F, Schrader M, et al. Quantitative analysis of survivin mRNA expression in urine and tumor tissue of bladder cancer patients and its potential relevance for disease detection and prognosis. Int J Cancer.2005; 116:100-4.
    101.Wu Y, Wang G, Wei J, et al. Survivin protein expression positively correlated with proliferative activity of cancer cell in bladder cancer. Indian J Med Sci.2005; 59: 235-42.
    102.Ku JH, Kwak C, Lee HS, et al. Expression of survivin, a novel inhibitor of apoptosis, in superficial transitional cell carcinoma of the bladder. J Urol.2004; 171: 631-5.
    103.Ning S, Fuessel S, Kotzsch M, et al. siRNA-mediated down-regulation of survivin inhibits bladder cancer cell growth. Int J Oncol.2004; 25(4):1065-71.
    104.Fuessel S, Herrmann J, Ning S, et al. Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA. Cancer Lett.2006; 232(2):243-54.
    105.Wuttig D, Kunze D, Fuessel S, et al. Are overexpressed alternative survivin transcripts in human bladder cancer suitable targets for siRNA-mediated in vitro inhibition? Int J Oncol.2007; 30(6):1317-24.
    106.Hou JQ, He J, Wang XL, et al:Effect of small interfering RNA targeting survivin gene on biological behaviour of bladder cancer. Chin Med J (Engl).2006; 119(20): 1734-9.
    107.Takizawa BT, Uchio EM, Cohen JJ, et al. Downregulation of survivin is associated with reductions in TNF receptors'mRNA and protein and alterations in nuclear factor kappa B signaling in urothelial cancer cells. Cancer Invest.2007; 25(8): 678-84.
    108.Schimmer AD, Dalili S, Batey RA, et al. Targeting XIAP for the treatment of malignancy. Cell Death Differ.2006; 13:179-88.
    109.Hong JH, Lee E, Hong J, et al. Antisense Bcl2 oligonucleotide in cisplatin-resistant bladder cancer cell lines. BJU Int.2002; 90:113-7.
    110.Lebedeva I, Raffo A, Rando R, et al. Chemosensitization of bladder carcinoma cells by bcl-xL antisense oligonucleotides. J Urol.2001; 166:461-9.
    111.Korkolopoulou P, Lazaris A, Konstantinidou AE, et al. Differential expression of bcl-2 family proteins in bladder carcinomas. Relationship with apoptotic rate and survival. Eur Urol.2002; 41:274-83.
    112.Duggan BJ, Gray S, Johnston SR, et al. The role of antisense oligonucleotides in the treatment of bladder cancer. Urol Res 2002; 30:137-47.
    113.Kunze D, Wuttig D, Fuessel S, et al. Multitarget siRNA inhibition of antiapoptotic genes (XIAP, BCL2, BCL-X(L)) in bladder cancer cells. Anticancer Res.2008; 28(4B):2259-63.
    114.Crew JP, O'Brien T, Bicknell R, et al. Urinary vascular endothelial growth factor and its correlation with bladder cancer recurrence rates. J Urol.1999; 161:799-804.
    115.Slaton JW, Millikan R, Inoue K, et al. Correlation of metastasis related gene expression and relapse-free survival in patients with locally advanced bladder cancer treated with cystectomy and chemotherapy. J Urol.2004; 171:570-4.
    116.Ling MT, Wang X, Lee DT, et al. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R). Carcinogenesis.2004; 25:517-25.
    117.Ding Y, Wang G, Ling MT, et al. Significance of Id-1 up-regulation and its association with EGFR in bladder cancer cell invasion, Int J Oncol.2006; 28(4): 847-54.
    118.Ohkubo T, Ozawa M. p120(ctn) binds to the membrane-proximal region of the Ecadherin cytoplasmic domain and is involved in modulation of adhesion activity. J Biol Chem.1999; 274:21409-15.
    119.Aono S, Nakagawa S, Reynolds AB, et al. p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J Cell Biol.1999; 145:551-62.
    120.Thoreson MA, Anastasiadis PZ, Daniel JM, et al. Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol.2000; 148:189-202.
    121.Anastasiadis PZ, Reynolds AB. The p120 catenin family:complex roles in adhesion, signaling and cancer. J Cell Sci.2000; 113:1319-34.
    122.Bellovin DI, Bates RC, Muzikansky A, et al. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 2005; 65:10938-45.
    123.Wang EH, Liu Y, Xu HT, et al. Abnormal expression and clinicopathologic significance of p120-catenin in lung cancer. Histol Histopathol.2006; 21:841-7.
    124.van Hengel J, Van Roy F. Diverse functions of p120ctn in tumors. Biochim Biophy Acta.2007; 1773:78-88.
    125.Silva Neto B, Smith GL, Mandeville JA, et al. Prognostic significance of altered p120 ctn expression in bladder cancer. BJU Int.2008; 101(6):746-52.
    126.Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature.1994; 370:61-5.
    127.Zhou Z, Apte SS, Soininen R, et al. Impaired eridochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA.2000; 97:4052-7.
    128.Sabeh F, Ota I, Holmbeck K, et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol. 2004; 167:769-81.
    129.Itoh Y, Seiki M. MT1-MMP:a potent modifier of pericellular microenvironment. J Cell Physiol.2006; 206:1-8.
    130.Saeb-Parsy K, Veerakumarasivam A, Wallard MJ, et al. MT1-MMP regulates urothelial cell invasion via transcriptional regulation of Dickkopf-3. Br J Cancer. 2008; 99(4):663-9.
    131.Wu Y, Siadaty MS, Berens ME, et al. Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration. Oncogene.2008; 27(52):6679-89.
    132.Raine CS, Wu E, Ivanyi J, et al. Multiple sclerosis:a protective or a pathogenic role for heat shock protein 60 in the central nervous system? Lab Invest.1996; 75: 109-23.
    133.Takashi M, Katsuno S, Sakata T, et al. Different concentrations of two small stress proteins, a B crystallin and Hsp27 in human urological tumor tissues. Urol Res. 1998; 26:395-9.
    134.Lebret T, Watson RW, Molinie V, et al. Heat shock proteins Hsp27, Hsp60, Hsp70, and Hsp90:expression in bladder carcinoma. Cancer.2003; 98:970-7.
    135.Ciocca DR, Oesterreich S, Chamness GC, et al. Biological and clinical implications of heat shock protein 27,000 (Hsp27):a review. J Natl Cancer Inst.1993; 85: 1558-70.
    136.Tomei LD, Kiecolt-Glaser JK, Kennedy S, et al. Psychological stress and phorbol ester inhibition of radiation-induced apoptosis in human peripheral blood leukocytes. Psychiatry Res.1990; 33:59-71.
    137.Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature.1991; 351:453-6.
    138.Kamada M, So A, Muramaki M, et al. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther.2007; 6(1):299-308.
    139.Kanehira M, Harada Y, Takata R, et al. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene.2007; 26(44): 6448-55.
    140.Gabory A, Ripoche MA, Yoshimizu T, et al. The H19 gene:regulation and function of a non-coding RNA. Cytogenet Genome Res.2006; 113:188-93.
    141.Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One.2007; 2(9):e845.
    142.Varela JC, Imai M, Atkinson C, et al. Modulation of protective T cell immunity by complement inhibitor expression on tumor cells. Cancer Res.2008; 68(16): 6734-42.
    143.Peng Q, Berg K, Moan J, et al.5-Aminolevulinic acid-based photodynamic therapy: Principles and experimental research. Photochem Photobiol.1997; 65:235-51.
    144.Krieg RC, Fickweiler S, Wolfbeis OS, et al. Cell-type specific protoporphyrin IX metabolism in human bladder cancer in vitro. Photochem Photobiol.2000; 72: 226-33.
    145.Miyake M, Ishii M, Kawashima K, et al. siRNA-mediated knockdown of the heme synthesis and degradation pathways:modulation of treatment effect of 5-aminolevulinic acid-based photodynamic therapy in urothelial cancer cell lines. Photochem Photobiol.2009; 85(4):1020-7.
    146.Goodman AI, Choudhury M, da Silva JL, et al. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med.1997; 214:54-61.
    147.Sacca P, Meiss R, Casas G, O. et al. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br J Cancer.2007; 97:1683-9.
    148.Schroeder GL, Lorenzo-Gomez MF, Hautmann SH, Friedrich MG, Ekici S, Huland H, Lokeshwar V. A side by side comparison of cytology and biomarkers for bladder cancer detection. J Urol.2004; 172:1123-6.
    149.Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer.2009; 125(2): 345-52.
    150.Lin T, Dong W, Huang J, et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol.2009; 181(3):1372-80.
    151.Friedman JM, Liang G, Liu CC, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res.2009; 69(6):2623-9.
    152.Ostenfeld MS, Bramsen JB, Lamy P, et al. miR-145 induces caspase-dependent and-independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene.2010; 29(7): 1073-84.
    153.Dyrskj(?)t L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of microRNAs in bladder cancer:miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res.2009; 69(11):4851-60.
    154.Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res.2009; 15(16): 5060-72.
    155.Dulic'V, Kaufmann WK, Wilson SJ, et al. p53-dependent inhibition of cyclin dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell.1994; 76:1013-23.
    156.Deng C, Zhang P, Harper JW, et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell.1995; 82:675-84.
    157.Brugarolas J, Chadrasekaran C, Gordon J, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature.1995; 377:552-7.
    158.Niculescu AB, Chen X, Smeets M, et al. Effects of p21 (Cipl/Wafl) at both the Gl/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol.1998; 18: 629-43.
    159.Ogryzko VV, Wong P, Howard BH. WAF1 retards Sphase progression primarily by inhibition of cyclin-dependent kinases. Mol Cell Biol.1997; 17:4877-82.
    160.Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther.2002; 1(8):639-49.
    161.Yang K, Zheng XY, Qin J, et al. Up-regulation of p21WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett.2008; 265(2):206-14.
    162.Chen Z, Place RF, Jia ZJ, et al. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Mol Cancer Ther. 2008; 7(3):698-703.
    163.Li LC, Zhao H, Nakajima K, et al. Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer. J Urol.2001; 166(2):705-9.
    164.Kang GH, Lee S, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol.2004; 202(2):233-40.
    165.Mao QQ, Li YB, Zheng XY, et al. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun.2008; 375(4):566-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700