用户名: 密码: 验证码:
由废润滑油再生的燃油燃烧与排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械化程度越来越高,消耗的润滑油日益增多,产生的废润滑油随之增加。废润滑油不能直接用于柴油机燃烧,但如果是废润滑油再生成燃油则成为可能,实现废物再利用,具有重要的现实意义。围绕废润滑油再生燃油的理化性能、喷雾燃烧规律、碳烟颗粒形成特征及化学动力学机理等方面,以试验与模拟相结合的方法,开展了再生燃油与柴油的燃烧与排放特性的研究。
     采用气相色谱质谱、电感耦合等离子体发射光谱、高频往复试验机方法,分别测量了再生燃油的烃类组成、微量元素和润滑性能,测试了主要理化参数。研究结果表明:再生燃油主要成分是直链烷烃和芳香烃;在再生燃油微量元素中,硫浓度最高,其次是钙、钠、硅、铷;再生燃油的润滑性优于柴油。再生燃油主要参数与柴油接近,可以满足柴油机燃用要求。
     从废润滑油再生燃油平均分子量出发,采用CHEMKIN软件研究了正十二烷预混层流燃烧特性和均质压燃燃烧特性。采用预混层流火焰传播速度计算模型得到正十二烷层流火焰传播速度、层流质量燃烧流量和绝热火焰温度的变化规律。研究结果表明,当量比为1.1时,层流火焰传播速度和层流质量燃烧流量达到最大值,层流火焰传播随着混合气初始压力的增加而减小,随初始温度增加而增加。当量比为1.0-1.1时绝热火焰温度最高。绝热火焰温度和质量燃烧流量随着混合气初始压力和温度的增加而增加。研究表明,羟基、氧、氢等自由基引发的链反应促进了火焰传播。
     在内燃机均质压燃燃烧模型中,采用生成速率与敏感性方法,分析得到对正十二烷、中间产物与生成产物有较大影响的基元反应,获得不同曲轴转角位置时正十二烷燃烧反应路径图。研究揭示了正十二烷燃烧反应的衍生过程。结果表明,在低温低压时,正十二烷分解反应对正十二烷消耗的贡献率高达94.6%,由甲基、羟基对正十二烷进行提氢反应,生成较小的烯烃、烷烃和烷基的基元反应的贡献率较低。在温度、压力增加后,正十二烷发生分解反应的贡献率减少,自由基提氢反应的贡献率增加。
     在常压环境下,采用酒精灯燃用再生燃油和柴油,测量了燃烧火焰温度。与柴油相比,再生燃油的火焰面积小,火焰温度高。采用热重分析法研究了再生燃油和柴油燃烧生成碳烟的热重特性,再生燃油的热稳定性好于柴油,再生燃油生成碳烟的10%起燃温度高于柴油生成碳烟的10%起燃温度,两者生成碳烟的50%起燃温度相差不多。采用Coats-Redfern方法,计算了热动力学参数。结果表明,再生燃油活化能比柴油高。
     在186F柴油机上,开展燃用再生燃油与柴油的燃烧特性试验。结果表明,燃用再生燃油气缸内最大爆发压力和燃烧放热率峰值均高于柴油,两者着火时刻与燃烧持续期接近。柴油机燃用再生燃油与柴油在小负荷时放热率曲线均呈单峰形状,在中高负荷时放热率曲线均呈双峰形状。
     以FIRE模型中柴油燃料为基础,通过修正喷雾破碎模型常数,修改燃料热值,建立柴油机燃用再生燃油喷雾燃烧模拟程序。将得到的示功图与实测结果进行对比,验证了模型的正确性。对柴油机标定工况下,燃用再生燃油与柴油的喷雾燃烧过程进行仿真。结果表明,再生燃油的喷雾贯穿趴离和喷雾夹角与柴油基本相同,索特平均直径比柴油大,燃油蒸发量比柴油小。在燃油喷射持续期,再生燃油燃空当量比比柴油小,再生燃油浓度比较集中。再生燃油混合气形成质量比柴油差,使得预混层流火焰速度较小。再生燃油粘度高、热值高分别是导致碳烟和NO较高的主要因素。
     采用同步辐射小角X射线散射技术,研究了再生燃油与柴汕碳烟颗粒的微观结构特征。基于小角散射理论,通过对散射强度曲线的拟合,得到粒径尺寸分布、回转半径、表面微结构与界面特征和分形特征等统计特性。研究结果表明,再生燃油碳烟粒径较大,所产生散射强度较大,结构较松散,表面较粗糙。散射数据均呈现Porod正偏离,说明两种燃油的碳烟颗粒内部存在微结构起伏区。研究认为,再生燃油的碳烟颗粒形状与柴油类似,均为球形,但团聚状态程度较小。
     在186F柴油机上,开展燃用再生燃油与柴油的经济性和排放性能的试验研究。结果表明,柴油机燃用再生燃油经济性比柴油好,与柴油相比,柴油机燃用再生燃油时CO排放增加,在高转速时NOx和HC排放增加,在中等负荷时碳烟排放略有增加。
The increasing of high degree of mechanization has created a huge demand for the lubricating oil, resulting in greatly increasing waste lubricating oil. Waste lubricating oil can not be directly used in diesel engines. However, it is feasible to the regenerated fuel from waste lubricating oil used in diesel engines. It is of great significance to transform the trash into treasure. A series of experiments and simulation of commonnes and individualities of the regenerated fuel from waste lubricating oil were conducted, including the physical-chemical properties, the characteristics of spray and combustion and soot formation emission of the regenerated fuel.
     The chemical composition, trace elements and friction characteristics of were measured by using the gas chromatography mass spectrometry, inductively coupled plasma optical emission spectrometer and high-frequency reciprocating rig. The physical-chemical properties of regenerated fuel were measured. The results show that regenerated fuel consists of straight-chain alkanes and aromatics polycyclic aromatic hydrocarbons. The sulfur content among the trace elements is the highest, followed by calcium, natrium, silicon and rubidium. The lubrication performance of the regenerated fuel is better than that of diesel. The main physical-chemical parameters of the regenerated fuel are close to those of diesel, meeting the combustion requirements in diesel engines.
     From the point of chemical compositions of the regenerated fuel, the premixed laminar combustion and homogeneous charge compression ignition of n-dodecane were simulated using CHEMKIN software. The premixed laminar flame speed, laminar burning flux and adiabatic flame temperature were obtained by the PLFSC model. The results show that the premixed laminar flame speed and laminar burning flux reach the peak values at the equivalence ratio of1.1. The premixed laminar flame speed decrease with the increase of initial pressure, and they increase with the increase of initial temperature. The adiabatic flame temperature reaches the maximum value between the equivalence ratios of1and1.1. The adiabatic flame temperature and laminar burning flux increase with increasing initial pressure and temperature. The chain reactions due to some radicals, such OH, O and H, are the driving force of flame spread.
     In the ICE model, the elementary reactions which have important effect on n-dodecane, intermediates and products, were obtained by using sensitivity analysis and rate-of-production analysis. The reaction path analysis for combustion of n-dodecane at different crank angle was performed. This reveals the evolution of combustion reaction of n-dodecane. The simulated results show that the decomposition reactions are responsible for94.6%n-dodecane consumption. The H-abstraction reactions by CH3and OH are responsible for little n-dodecane consumption, yielding smaller molecules, such as alkenes, alkanes and alkyls. As temperature and pressure increase, the decomposition reactions are responsible for less n-dodecane consumption, and the H-abstraction reactions are responsible for more n-dodecane consumption.
     In an atmospheric environment, the flame temperature was measured in the alcohol lamp fuelled with the regenerated fuel and diesel. The flame area of the regenerated fuel is smaller than that of diesel, but the flame temperature is higher than that of diesel. The outside flame of the regenerated fuel showed obvious yellow. The thermo-gravimetric technology was applied to study thermo-gravimetric characteristics of the two fuels and soot from them. The thermal stability of the regenerated fuel is superior than that of diesel does. The10%light-off temperature of soot from the regenerated fuel is higher than that of soot from diesel. The50%light-off temperature of soot from them is similar. Thermo-gravimetric thermal kinetics characteristics were calculated by Coats-Redfern method. The result shows that the activation energy of the regenerated fuel is larger than that of diesel.
     The commbustion test of186F diesel engine of fuelled with the regenerated fuel and diesel was carried out. The results show that the regenerated fuel can obtain higher peaks of in-cylinder pressure and heat release rate of diffusion combustion than diesel. The ignition time and combustion duration of the diesel engine of the regenerated fuel are almost the same as those of diesel. The distributions of the heat release rate have characters of a single peak at light loads, and dual peaks at moderate and heavy loads, regardless of the regenerated fuel or diesel.
     The spray and combustion models of the diesel engine fuelled with regenerated fuel were bulit by adjusting the constant of breakup model and customizing calorific value of the fuel, based on diesel in FIRE models. The indicator diagrams of the simulation and the experiment were compared to verify correctness of the simulation model. The characteristics of spray, mixture concentration, combustion and emissions of the diesel fuelled with diesel and regenerated fuel were simulated at rated condition. The simulation results show that spray penetration and spray cone angle of the regenerated fuel are basically similar to those of diesel. SMD of the regenerated fuel is greater than that of diesel, and the evaporated fuel is less than that of diesel. The equivalence ratio of the regenerated fuel is larger than that of diesel during fuel injection, but the area of rich regenerated fuel is greater that of rich diesel. The mixture of the regenerated fuel in quality is below that of diesel, resulting in lower premixed laminar flame speed of the regenerated fuel. The flame propagation start time of the regenerated fuel and diesel can be determined as the ignition timing. The higher calorific value and higher viscosity of the regenerated fuel are the main factors leading to higher NO and soot.
     The microstructures of soot of the regenerated fuel and diesel and were investigated by means of synchrotron small-angle X-ray scattering (SAXS). The soot microstructure information were obtained including size distribution, rotation radius, surface and interface character, and fractal by virtue of fitting the scattering intensity distribution curve base on SAXA theory. The results show that soot of the regenerated fuel has larger scattering intensity and size than that of diesel. Compared with that of diesel, the structure of soot particles of the regenerated fuel is looser and the surface of soot particles of the regenerated fuel is coarser. The Porod plots of soot of two fuels show a positive deviation, suggesting the existence of microstructure fluctuations. The study suggests that the sphere structure of soot particles the regenerated fuel is similar to that of diesel. However, the agglomeration of soot particles of the regenerated fuel strengthened and arranged more closely than that of diesel.
     The fuel economy and emissions of the single cylinder diesel engine fuelled with the regenerated fuel and diesel was carried out. Compared with diesel, the regenerated fuel has lower brake specific fuel consumption, higher CO emission, more NOx and HC emission at higher speeds and lightly higher soot emission at moderate loads.
引文
[1]http://news.xinhuanet.com/yzyd/energy/20121211/c_113982271.htm
    [2]中国内燃机工业“十二五”规划,http://www.ciceia.org.cn/nnews.asp?vid=723&f=8&lm=3610
    [3]赵国浩,柳亚琴.中国一次能源消费结构多目标优化研究[J].现代工业经济和信息化,2012(18):5-7.
    [4]Word energy outlook 2011.
    [5]崔心存.内燃机的代用燃料[M].北京:中国石化出版社,2007:32-327.
    [6]金佳佳,隋秀华,鄂红军.废润滑油的再生与利用[J].能源与节能,2012(3):29-31.
    [7]张春光,赵渊杰,邓永生,等.废润滑油再生技术现状及行业发展思路[J].润滑油,2008,23(2):9-12.
    [8]戴钧樑,戴立新.废润滑油再生[M].北京:中国石化出版社,2007.
    [9]Turlough F. Guerin.Environmental liability and life-cycle management of used lubricating oils[J].Journal of Hazardous Materials,2008,160(2/3):256-264.
    [10]Vorapot Kanokkantapong,Worapon Kiatkittipong,Bunyarit Panyapinyopol,et al.Used lubricating oil management options based on life cycle thinking[J].Resources,Conservation and Recycling,2009,53(5):294-299.
    [11]Ampaitepin Singhabhandhu, Tetsuo Tezuka. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion[J].Energy,2010,35(4):1839-1847.
    [12]Ampaitepin Singhabhandhu,Tetsuo Tezuka.The waste-to-energy framework for integrated multi-waste utilization:waste cooking oil,waste lubricating oil, and waste plastics[J].Energy, 2010,35(6):2544-2551.
    [13]Yu-Lung Hsu,Chun-Chu Liu.Evaluation and selection of regeneration of waste lubricating oil technology [J].Environmental Monitoring and Assessment,2011,176(1/4):197-212.
    [14]马宁.中国废润滑油再生市场政策解析[J].合成润滑材料,2011,38(4):29-31.
    [15]赵磊.东北地区废润滑油再生项目实施方案研究[D].长春:吉林大学,2011.
    [16]T Kuokkanen,P Peramaki,I Valimaki,et al.Determination of heavy metals in waste lubricating oils by inductively coupled plasma-optical emission spectrometry[J].International Journal of Environmental Analytical Chemistry,2001,81(2):89-100.
    [17]Roseli Martins Souza,Carmem Lucia P. Da Silveira, Riccado Queiroz Aucelio.Determination of refractory elements in used lubricating oil by ICPOES employing emulsified sample introduction and calibration with inorganic standards[J].Analytical Sciences,2004,20(2):351-355.
    [18]F M Adebiyi,E A Oluyemi,S V Peter.The study of the environmental implications of used lubricating oils by a combination of spectrometric analytical techniques [J].Eenrygy Sources Part A-Recovery Utilization and Environmental Effects,2011,33(5):459-466.
    [19]OP Abioye,P Agamuthu,A R Abdul Aziz.Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus[J].Biodegradation,2012,23(2):277-286.
    [20]J K Adesodun,J S C Mbagwu.Distribution of heavy metals and hydrocarbon contents in an alfisol contaminated with waste-lubricating oil amended with organic wastes[J].Bioresource Technology,2008,99(8):3195-3204.
    [21]孙宝湖ICP/AES测定添加剂和润滑油中十三种金属元素的含量[J].石油学报(石油加工),1988,4(3):107-112.
    [22]王光灿,殷国建,朱光辉,等.ⅠCP-AES法测定飞机润滑油中7种微量元素[J].云南化工,1998(4):39-40.
    [23]吕文继ICP-AES仪测定航空润滑油中微量元素含量[J].合成润滑材料,1999(2):14-19.
    [24]赵金伟,程薇,封亚辉ICP-AES 法测定润滑油中磨损金属元素的含量[J].光谱学与光谱分析,2004,24(6):733-766.
    [25]李绍松,姜玲玲ICP-AES有机进样测定润滑油中的S元素[J].润滑油,2006,21(5):62-64.
    [26]时文中,王文豪,张昕,等ICP-AES有机进样测定润滑油中的微量元素[J].河南科学,2004,22(3):341-344.
    [27]陈再洁,王智,李鹤,等.国产ICP-AES测定润滑油中金属元素[J].广州化工,2010,38(4):129-131.
    [28]黄宗平.电感耦合等离子体原子发射光谱法在润滑油杂质元素分析中的应用[J].冶金分析,2006,26(2:43-46.
    [29]杨桂珍,杨建男,陈伟珍.电感耦合等离子体原子发射光谱法测定润滑油中12种金属元 素[J].理化检测-化学分册,2010,46(3):303-306.
    [30]谭秋艳,吕焕明,刘慧玫.微波消解ICP-AES法测定润滑油中钙、钡、锌、镁、磷含量[J].2007,22(5):55-58.
    [31]郑建明.氧气辅助实现国产ICP直接进样检测润滑油中元素含量[J].分析试验室,2010,29(增刊):289-292.
    [32]常彬.应用微波消解和1CP-AES法测定润滑油中的元素含量[J].现代仪器,2011(4):90-92.
    [33]张铮.电感祸合等离子体发射光谱法同时测定原油或重油中的14种微量元素含量[J].石油炼制,1988(6):62-66.
    [34]夏鹏,常彬,李贺然,等.应用电感耦合等离子发射光谱仪监测使用中润滑油的元素含量[J].现代仪器,2005(5):41-43.
    [35]陈锁志,纪桂芬.X射线荧光光谱法测定润滑油和添加剂中Ba Ca P S和zn含量[J].黑龙江石油化工,1998,9(1):42-44.
    [36]周天龙,龚坚强,黎鸿举,等.X射线荧光光谱法测定润滑油中22种添加剂元素和磨损金属元素[J].理化检测-化学分册,2010,46(3):279-282.
    [37]牟明仁,李百舸,李伟,等.汽车发动机润滑油使用前后微量元素变化的研究[J].分析试验室,2008,27(增刊):150-152.
    [38]M.-J. Lazaro,R. Moliner,I. Suelves,et al.Characterisation of tars from the co-pyrolysis of waste lubricating oils with coal[J].Fuel,2001,80(2):179-194.
    [39]Maria F. Gomez-Rico,Ignacio Martin-Gullon,Andres Fullana, et al.Pyrolysis and combustion kinetics and emissions of waste lube oils[J].Journal of Analytical and Applied Pyrolysis,2003,69(Pyrolysis 2002 Conference):527-546.
    [40]Seung-Soo Kim,Byung Hee Chun,Sung Hyun Kim.Non-isothermal pyrolysis of waste automobile lubricating oil in a stirred batch reactor[J].Chemical Engineering Journal,2003,93(3):225-231.
    [41]Young Seok Kim,Seong Uk Jeong,Wang Lai Yoon,et al.Tar-formation kinetics and adsorption characteristics of pyrolyzed waste lubricating oil[J].Journal of Analytical and Applied Pyrolysis,2003,70(1):19-33.
    [42]Seung-Ho Kim,Seung-Soo Kim,Byung-Hce Chun,et al.Pyrolysis kinetics and characteristics of the mixtures of waste ship lubricating oil and waste fishing rope[J].Korean Journal of Chemical Engineering,2005,22(4):573-578.
    [43]M.J.Fuentes,R.Font,M.F.G6mez-Rico,et al.Pyrolysis and combustion of waste lubricant oil from diesel cars:Decomposition and pollutants[J].2007,79(1/2):215-226.
    [44]MarcosA.Scapin,CelinaL.Duarte,Jose Oscar W.V.Bustillos,et al.Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS[J].Radiation Physics and Chemistry,2009,78(7/8):733-735.
    [45]Manar E.Abdul-Raouf,Nermine E.Maysour,Abdul-Azim A. Abdul-Azim,et al.Thermochemical recycling of mixture of scrap tyres and waste lubricating oil into high caloric value products[J].Energy Conversion and Management,2010,51(6):1304-1310.
    [46]Geum-Ju Song, Yong-Chil Seo, Deepak Pudasainee, et al.Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil[J].Waste Management,2010,30(7):1230-1237.
    [47]Seung-Soo Kim,Jinsoo Kim,Jong-Ki Jeon,et al.Non-isothermal pyrolysis of the mixtures of waste automobile lubricating oil and polystyrene in a stirred batch reactor[J].Renewable Energy,2013,54(SI):241-247.
    [48]Thallada Bhaskara,Md Azhar Uddinb,Akinori Muto,et al.Recycling of waste lubricant oil into chemical feedstock or fuel oil over supported iron oxide catalysts[J].Fuel,2004,83(1):9-15.
    [49]Suat Ucar,Selhan Karagoz,Jale Yanik,et al.Copyrolysis of scrap tires with waste lubricant oil [J].Fuel Processing Technology,2005,87(1):53-58.
    [50]Mustafa Balat.Diesel-like fuel obtained by catalytic pyrolysis of waste engine oil[J].Energy exploration & exploitation,2008,26(3):197-208.
    [51]A Demirbas.Gasoline-like fuel from waste engine oil via catalytic pyrolysis[J].Energy Sources, Part A:Recovery, Utilization and Environmental Effects,2008,30(16):1433-1441.
    [52]Charusiri Witchakorn,Ubonwat Jintana.Pyrolytic coprocessing of used vegetable oil, waste lubricating oil and plastics to liquid fuels on the turbuiar reactor[C].//Proceedings of the 4th IASTED Asian Conference on Power and Energy Systems.Langkawi.Acta Press,2008:375-379.
    [53]Orhan Arpa,Recep Yumrutas,Ayhan Demirbas.Production of diesel-like fuel from waste engine oil by pyrolitic distillation[J].Applied Energy,2010,87(1):122-127.
    [54]Lea-Langton Amanda,Giannakeas Nikolaos,Rickett Gavin,et al.SAE International Journal of Fuels and Lubricants[J].2010,3(2):810-818.
    [55]Amnat Permsubscul,Tharapong Vitidsant,Somsak Damronglerd.Catalytic cracking reaction of used lubricating oil to liquid fuels catalyzed by sulfated zirconia[J].Korean Journal of Chemical Engineering,2007,24(1):37-43.
    [56]Su Shiung Lam, Alan D.Russell,Chern Leing Lee,et al. Microwave-heated pyrolysis of waste automotive engine oil:Influence of operation parameters on the yield,composition,and fuel properties of pyrolysis oil[J].Fuel,2012,92(l):327-339.
    [57]刘明.废塑料与废机油共催化裂解制取燃料油的研究[D].南昌:南吕大学,2007.
    [58]郑典模,卢钱峰,刘明,等.废塑料与废机油共催化裂解制取燃料油的研究[J].现代化工,2011,31(8):47-49.
    [59]王兴卫.催化裂解废润滑油制备轻柴油技术研究[D].赣州:江西理工大学,2011.
    [60]Wang Jiehong,Xia Shide,Xie Gang,et al.Reseach on waste oil prdoducing diesel key technologies and cleaner production on new technology[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2009,48(Sup.2):116-120.
    [61]隋日忠.用废润滑油生产柴油的方法[P].中国,发明专利,CN101029247A.2007-09-05.
    [62]刘恒满.以废润滑油为原料再生车用轻柴油[P].中国,发明专利,CN1268557A.2000-10-04.
    [63]梁长海,殷江锋.一种资源化利用废润滑油生产汽柴油的方法[P].中国,发明专利,CN101475870A.2009-07-08.
    [64]李文瑞.提炼废机油为汽油、柴油、机油的设备[P].中国,实用新型专利,CN200999241Y.2008-01-02.
    [65]何长春,何平,何柯,等.一种从废机油中连续提炼汽油、柴油的方法[P].中国,发明专利,CN101182429A.2008-05-21.
    [66]韩润根.废机油生产轻柴油的方法[P].中国,发明专利,CN1364862A.2002-08-21.
    [67]赵登利.废机油生产柴油的方法[P].中国,发明专利,CN101445763A.2009-06-03.
    [68]古小玲.柴油脱色、废机油裂化的通用装置[P].中国,实用新型专利,CN2527328Y.2002-12-25.
    [69]汤长松.用废机油提炼轻柴油的反应釜[P].中国,实用新型专利,CN201962269U.2011-09-07.
    [70]汤长松.用废机油提炼轻柴油的反应釜[P].中国,实用新型专利,CN201962269U.2011-09-07.
    [71 ]王建波.一种将废机油提炼为柴油的装置[P].中国,实用新型专利,CN202193771U.2012-04-18.
    [72]熊洧,熊道,陵邱萍.从废润滑油中提炼轻柴油的新型设备[P].中国,实用新型专利,CN201358240Y.2009-12-09.
    [73]何长春.从废机油中连续提取汽油、柴油的设备[P].中国,实用新型专利,CN201753346U.2010-07-07.
    [74]http://www.cepfg.com/about.asp
    [75]废物资源化科技工程“十二五”专项规划(全文),http://www.zhb.gov.cn/gkml/hbb/gwy/201206/120120619_231910.htm
    [76]S Chansky,B McCoy,N Surprenant.Waste automotive lubricating oil as a municipal incinerator fuel[R].1973.
    [77]J R Hobbs.R A Walter.Lubricating oil burn-off in coast guard power plants.[R].1975.
    [78]J O Storment,J R Sherrard.Waste oil burn-off in coast guard power plants-diesel piston ring wear study by radioactive tracer techniques[R].1976.
    179] R L Bechtold,S S Lestz.Combustion characteristics of dicsel fuel blends containing used lubricating oil[C].//SAE Paper 760132,1976.
    [80]Steven G Fritz,Brad McNett,Ray Schandelmeier.Exhausl emissions from heavy-duty diesel engines operating on JP-8 blended with used engine oil [C].//American Society of Mechanical Engineers,Internal Combustion Engine Division (Publication) ICE. Fort Lauderdale:ASME,1998.1-6.
    [81]H Tajima,K Takasaki, M Nakashima,J Yanagi,et al.Combustion of used lubricating oil in a diesel engine[C].//SAE Paper 2001-01-1930,2001.
    [82]S A-B Al-Omari,A Shaheen,A Al Fakhr, et al.Co-firing used engine lubrication oil with LPG in furnaces[J].Energy Conversion and Management,2010,51(6):1259-1263.
    [83]Orhan Arpa,Rccep Yumrutas.Experimental investigation of Gasoline-Like Fuel obtained from waste lubrication oil on engine performance and exhaust emission[J].Fuel Processing Technology,2010,91 (2):197-204.
    [84]O Arpa,R Yumrutas,M H Alma.Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission[J].Energy,2010,35(9):3603-3613.
    [85]Orhan Arpa,Recep Yumrutas,Zeki Argunhan.Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission[J].Fuel Processing Technology,2010,91(10):1241-1249.
    [86]曾亚森.环保新型废机油燃烧式热水器的研究[J].新技术新工艺,2000(7):31-33.
    [87]任瑞祥.废润滑油再生行业的发展新思路—废润滑油的无污染燃烧[J].黑龙江科技信息,2004(7):12.
    [88]杨宝祥.一种将废机油燃烧器[P].中国,实用新型专利,CN2783144Y.2006-05-24.
    [89]A. Murugesan,C. Umarani,R. Subramanian,et al.Bio-diesel as an alternative fuel for diesel engines-a review[J].Renewable and Sustainable Energy Reviews,2009,13(3):653-662.
    [90]Juha Heikkila,Annele Virtanen,Topi Ronkko,et al.Nanoparticle emissions from a heavy-duty engine running on alternative diesel fuels[J].Environmental Science & Technology,2009,43(24):9501-9506.
    [91]Kuen Yehliu,Andre L.Boehman,Octavio Armas.Emissions from different alternative diesel fuels operating with single and split fuel injection[J].Fuel,2010,89(2):423-437.
    [92]Octavio Armas,Kuen Yehliu,Andre L.Boehman.Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing[J].Fuel,2010,89(2):438-456.
    [93]Soo-Young No.Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines:A review[J].Renewable and Sustainable Energy Reviews,2011,15(1):131-149.
    [94]Lyes Tarabet,Khaled Loubar,Mohand Said Lounici,et al.Eucalyptus biodiesel as an alternative to diesel fuel:preparation and tests on diesel engine[J].Journal of Biomedicine and Biotechnology,2012.
    [95]Ahmed Hassaneen,Axel Munack,Yvonne Ruschel,et al.Fuel economy and emission characteristics of Gas-to-Liquid(GTL)and Rapeseed Methyl Ester (RME) as alternative fuels for diesel engines[J].Fuel,2012,97:125-130.
    [96]Saddam H. Al-lwayzy,Talal Yusaf.Chlorella protothecoides microalgae as an alternative fuel for tractor diesel engines[J].Energies,2013,6:766-783.
    [97]Markus Jakob,Thomas Hulser,Andreas Janssen,et al.Simultaneous high-speed visualization of soot luminosity and OH chemiluminescence of alternative-fuel combustion in a HSDI diesel engine under realistic operating conditions[J].Combustion and Flame,2012,59(7):2516-2529.
    [98]杨帅,周毅,杜海明,等.清洁能源GTL柴油作为柴油机代用燃料的试验研究[J].内燃机工程,2008,29(6):50-54.
    [99]张全长,尧命发,郑尊清,等.正丁醇对柴油机低温燃烧和排放的影响[J].燃烧科学与技术,2010,16(4):363-368.
    [100]谭满志,郭英男,刘发发,等.直喷柴油机燃用大豆油甲酯生物柴油的排放和燃烧特性[J].吉林人学学报(工学版),2010,40(5):1183-1187.
    [101]罗福强,王子玉,梁昱,等.柴油机燃用小桐子油燃烧与排放研究[J].农业机械学报,2010,41(11):8-12.
    [102]马志豪,王鑫,张小玉,等.油机燃用黄连木籽生物柴油的燃烧及排放特性[J].内燃机学报,2010,28(5):420-426.
    [103]蔡艳平,李艾华,李丽梅,等.乙二醇单丁醚-柴油混合燃料对柴油机燃烧和排放性能的影响[J].内燃机学报,2011,29(3):229-235.
    [104]朱建军,王铁,张翠平,等.油机燃用醇醚-柴油混合燃料的燃烧特性与排放的试验研究[J].汽车工程,2011,33(9):762-767.
    [105]韩旭东,黄勇成,易延洪,等.玉米秸秆生物油对直喷式柴油机燃烧与排放的影响[J].燃烧科学与技术,2012,18(3):248-255.
    [106]王真,石玉林,乔信起,等.共轨柴油机燃用煤直接液化柴油的燃烧与排放特性[J].内燃机学报,2012,30(3):201-206.
    [107]郝振强.含硫润滑油添加剂开发及应用研究[D].郑州:郑州大学,2006.
    [108]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会,GB252-2011,普通柴油,2011-07-01.
    [1091]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,GB/T6536-2010,石油蒸馏特性测定法,2011-01-10.
    [110]中国石油化工总公司,GB/11139-89,馏分燃料十六烷指数计算法,1989-03-17.
    [111]国家石油和化学工业局,SH/T 0694-2000,中间馏分燃料十六烷指数计算法(四变量公式法),北京:中国标准出版社,2004-04-22.
    [112]国家质量监督检验检疫总局,国家标准化管理委员会,GB/T386-2010,柴油十六烷值测定法,北京:中国标准出版社,2011-05-01.
    [113]凌文,吕大伟.用柴油的烃族组成预测十六烷值和密度[J].石化技术与应用,2004,22(3):215-216.
    [114]张在龙,朱子明,劳永新,等.用拓扑指数法预测柴油中烃类的十六烷值[J].石油大学学报:自然科学版,1999,23(3):81-82.
    [115]高波,李哲.柴油组成对十六烷值与十六烷指数关联性的影响[J].石化技术与应用,2007,28(1):27-30.
    [116]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,GB/T17040-2008,石油和石油产品硫含量的测定能量色散X射线荧光光谱法,2008-08-25.
    [117]王钇,吕伟,杨淑智.DF4内燃机车柴油机润滑油的热重分析[J].北方交通大学学报,1997,21(6):653-656.
    [118]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2008:54-55.
    [119]中华人民共和国国家发展和改革委员会,SH/T0765-2005,柴油润滑性评定法(高频往复试验机法),2005-04-11.
    [120]H J Curran,P Gaffuri,W J Pitz, et al.A comprehensive modeling study of n-heptane oxidation. Combustion and Flame,1998,114(1/2):147-179.
    [121]H J Curran,E M Fisher,P A Glaude,et al.Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels[C].//SAE Paper 2001-01-0653,2001.
    [122]R Hasegawa,I Sakata,T Koyama,et al.Numerical analysis of ignition control in HCCI engine[C].//SAE Paper 2003-01-1817,2003.
    [123]郑朝蕾,尧命发.正庚烷均质压燃燃烧反应化学动力学数值模拟研究[J].内燃机学报,2004,22(3):227-234.
    [124]黄豪中,苏万华.一个新的用于HCCI发动机燃烧研究的正庚烷化学反应动力学简化模型[J].内燃机学报,2005,23(1):42-51.
    [125]赵昌普,陈生齐,李艳丽,等.正庚烷燃烧详细化学动力学模型的简化及其有效性分析[J].内 燃机学报,2008,26(8):346-352.
    [126]http://creckmodeling.chem.polimi.it/index.php/previous-versions
    [127]http://ignis.usc.edu/Jet_Fuel_MechI.html
    [128]Tutorials Manual for Chemkin-Pro software [M].2008.
    [129]Kamal Kumar,Chih-Jen Sung.Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures [J].Combustion and Flame,2007,151(1/2):209-224.
    [130]E. Ranzi,A. Frassoldati, R. Grana, et al.Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels[J].Progress in Energy and Combustion Science,2012,38(4):468-501.
    [131]盖顿,伍法德.火焰学[M].王方译,北京:中国科学技术出版社,1994.
    [132]毛功平,王忠,倪培永,等.大气环境下生物柴油燃烧烧火焰温度的试验研究[J].车用发动机,2010(6):75-78,82.
    [133]Lakshitha Pahalagedara,Hom Sharma,Chung-Hao Kuo,et al.Structure and oxidation activity correlations for carbon blacks and diesel soot[J].Energy & Fuels,2012,26(11):6757-6764.
    [134]Jinyu Zhu,Kyeong Ook Lee,Ahmet Yozgatligil,et al.Effects of engine operating conditions on morphology, microstructure,and fractal geometry of light-duty diesel engine particulates[J].Proceedings of the Combustion Institute,2005,30(2):2781-2789.
    [135]M. Alfe,B. Apicella,R. Barbella,et al.Structure-property relationship in nanostructures of young and mature soot in premixed flames[J]. Proceedings of the Combustion Institute,2009,32(1):697-704.
    [136]卓建坤,李水清,宋蔷,等.煤粉燃烧火焰区域中碳烟的结构与行为[J].燃烧科学与技术,2009,15(1):74-81.
    [137]张炜,宋崇林,王林,等.柴汕机燃烧过程中微粒微观结构的变化规律[J].内燃机学报,2010,28(3):221-227.
    [138]李浩,宋崇林,宋金瓯,等.柴油机碳烟缸内氧化特性的研究[J].内燃机学报,2011,29(6):510-514.
    [139]Kuen Yehliu,Randy L. Vander Wal,Octavio Armas,et al.Impact of fuel formulation on the nanostructure and reactivity of diesel soot[J]. Combustion and Flame,2012,159(12):3597-3606.
    [140]孟昭富.小角X射线散射理论及应用[M].长春:吉林科学技术出版社,1996.
    [141]J P Hhssler,S Seifert,R E Winans.Spatially resolved small-angle X-ray scattering studies of soot inception and growth[J].Proceedings of the Combustion Institute,2002,29(2):2743-2748.
    [142]A Braun,F E Huggins,S Seifert,et al.Size-range analysis of diesel soot with ultra-small angle X-ray scattering[J].Combustion and Flame,2004,137(1/2):63-72.
    [143]S Stasio,J B A Mitchell,J L LeGarrec.Synchrotron SAXS in situ identification of three different size modes for soot nanoparticles in a diffusion flame[J].Carbon,2006,44(7):1267-1279.
    [144]G. Beaucage,H. K. Kammler,S E. Pratsinis.Particle size distributions from small-angle scattering using global scattering functions[J].Journal of Applied Crystallography,2004,37(4):523-525.
    [145]饶群力,路庆华,毕刚,等.纳米SiC颗粒SAXS表征及其XRD、SEM的比较[J].上海交通大学学报,2004,38(1):1665-1668.
    [146]庄文吕,陈晓,赵继宽,等.胶体分散体系与有序分子组合体的小角X射线散射研究[J].化学进展,2005,17(5):881-888.
    [147]夏庆中TATB和镁、铝合金材料微观结构的小角散射研究[D].绵阳:中国工程热物理研究院,2006.
    [148]李志宏,孙继红,赵军平,等.用小角X射线散射法研究溶胶结构[J].物理学报,2000,49(4):775-780.
    [149]荣利霞,解立平,黄宝中,等.同步辐射小角X射线散射方法研究由城市固体垃圾制备的活性炭[J].物理学报,2003,52(3):630-634.
    [150]J Ilavsky,P R Jemian.Irena:tool suite for modeling and analysis of small-angle scattering[J]Journal of Applied Crystallography,2009,42:347-353.
    [151]Irena SAS modeling macros manual [M].2004.
    [152]魏海军,孙培廷.燃油硫分对柴油机排气成分的影响[J].交通运输工程学报,2006,6(1):76-79.
    [153]吕林,许建华,徐万毅.柴汕品质对船用柴汕机颗粒与烟度排放的影响[J].内燃机工程,2010,31(4):44-48.
    [154]刘志华,葛蕴珊,丁焰,等.柴油机和LNG发动机排放颗粒物粒径分布特性研究[J].内燃机学报,2009,27(6):518-522.
    [155]王猛,谭建伟,韩秀坤.非道路车用柴油机排放颗粒粒径分布特性研究[J].内燃机工程,2010,31(3):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700