用户名: 密码: 验证码:
基于鲁米诺电化学发光的生物传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学发光或电致化学发光分析方法(Electrochemiluminescence,ECL)是指直接利用电化学反应形成激发态发光体而发光或通过电解产物之间、电解产物与体系中某组分之间进行化学反应产生光辐射而实现分析物测定的发光分析技术,是电化学与化学发光分析相结合的产物。与传统的化学发光分析法相比,ECL分析法不仅具有化学发光分析法的灵敏度高和线性范围宽等优点,而且在许多方面优于化学发光分析,包括如:第一,不稳定的化学试剂和中间体在电极表面定量生成,且迅速进行化学发光反应;第二,电化学反应可以通过改变所施加的电位加以控制,所以可以有选择地控制化学反应而不需要采取额外的分离手段;第三,电化学氧化能力是连续的,在同一化学条件下可以通过控制电位加以改变电化学氧化能力。本论文在全面总结和论述ECL分析的基本原理、常见ECL体系反应机理以及生物传感器的基本原理、分类、应用等方面的研究等基础上,进行了以下三方面的研究工作:
     一、鲁米诺电化学发光体系是基于电化学氧化鲁米诺生成自由基,所生成的自由基不稳定,再进一步被一些氧化剂氧化产生化学发光。虽然ECL分析法具有灵敏度高、线性范围宽和仪器设备简单等优点,但是在中性、弱碱性介质这样有利于生物分子保持活性的环境中,鲁米诺的ECL发光极弱,传统的鲁米诺ECL应用多在强碱性介质中进行。为保持生物分子的活性,考虑利用合理的措施来有效实现鲁米诺在中性、弱碱性介质环境中的ECL增敏,对其发展和应用都有很高的学术和实用价值。在已经建立的ECL分析体系的基础上,探讨了纳米材料如金溶胶(Au sol)和铂溶胶(Pt sol)、有机分子如氯霉素(Chloramphenicol,CAP)和半胱氨酸(Cysteine)、以及介质体系如微乳液(Microemulsion)和离子液体(Ion Liquid)在中性、弱碱性介质中对鲁米诺ECL的增敏作用,研究中发现ECL信号与增敏剂之间均存在可以被实际应用的确定的定量关系,并探讨了各体系的增敏机理。在此基础上,采用吸附、自组装等手段制备了相关的修饰电极,而且可以有效实现ECL物质鲁米诺的固定化,在成功提高检测灵敏度的前提下,实现微量、痕量生物分子(如维生素C、褪黑素、超氧化物歧化酶等)的检测。
     二、在中性或弱碱性介质中,对溶解氧、过氧化氢(H_2O_2)、辣根过氧化氢酶(HRP)/ H_2O_2、黄嘌呤氧化酶(XOD)/次黄嘌呤(Xanthine)、尿酸酶(Uricase)/尿酸(UA)以及谷丙转氨酶(ALT)等对鲁米诺电化学发光的增敏(或猝灭)行为进行了研究,进而对机理进行了探讨。研究结果表明,O_2、H_2O_2及其氧化还原过程中生成的具有更强氧化性的活性氧(Reactive oxygen species,ROSs)对鲁米诺的电化学发光具有显著的增敏效果,促进鲁米诺中间态自由基激发,导致ECL信号增强,在生物反应适合的酸度范围内,对鲁米诺ECL的增敏作用尤其显著,为研究生物ECL传感器奠定了良好的基础。由于辣根过氧化氢酶(HRP)催化H_2O_2的分解,故猝灭H_2O_2增敏的鲁米诺ECL。其他酶催化反应均可在电极表面产生活性氧物质,从而增敏鲁米诺的ECL,并可建立与相关底物浓度间的定量关系。研究中,结合循环伏安(Cyclic Voltammetry, CV)法,紫外-可见吸收光谱(Ultraviolet-Visible Absorption Spectrometry, UV-Vis)法等方法探讨了有关机理。在此基础上,采用能较好保持生物分子活性的固定化方法和材料,将生物活性物质修饰于电极表面,制备了响应性能优良的ECL生物传感器,稳定性好,灵敏度高。将制备的ECL生物传感器应用到一些生物分子(如超氧化物歧化酶、ALT、尿酸等)的检测中,均获得满意的结果。这些ECL生物传感器在保持生物分子活性的前提下,兼具了ECL的高灵敏度以及酶的高选择性,对于相关物质的检测的灵敏度高、检测限低、具有很强的实用性。
     三、DNA是生物体的基本遗传物质,是遗传信息的载体,它在生物的生长、发育和繁殖等生命活动中起着非常重要的作用。建立简单、敏感、特异和快速的病源、基因和药物检测方法,对疾病的预防、诊断和治疗具有重要的意义。论文研究了DNA在弱碱性介质中对鲁米诺ECL的猝灭作用,并用循环伏安法、紫外-可见吸收光谱法和荧光光谱法等讨论了其猝灭机理。采用金纳米粒子(Au NPs)和碳纳米管(CNTs)的复合纳米材料作为DNA的固定载体,应用鲁米诺的ECL作为对DNA响应的信号输出,制备了一种检测限低,灵敏度高、重现性好的DNA生物传感器。对应用ECL技术于不同互补状态的寡聚核苷酸杂交的表征进行了研究,结果表明ECL技术可以作为一种可靠的免标记表征杂交状态的手段。而药物与DNA相互作用的研究是认识某些疾病的致病机制和药物的治疗机制的基础,在阐明DNA结构和功能方面也具有重要意义。研究中探讨了利用ECL信号研究药物小分子如氯霉素(CAP)对DNA的损伤行为,并对其作用机理进行了探讨,为药物小分子损伤DNA的研究提供了一种可靠灵敏的检测模型。该研究对开发具有新颖特性的电化学发光探针和传感界面构造的新原理和新方法、以及设计和研制适用于检测蛋白质、基因或小分子药物的高灵敏度、高选择性、可重复使用的电化学发光DNA传感器具有很大的指导意义。
Electrochemiluminescence (ECL) has received increasing attention in recent years, especially in the determination of organic or biochemical compounds and immune diagnostic field. As an analytical technique, ECL possesses some favorable advantages. First, it is repeatable due to the light-emitting process which is realized in ECL is in accurate controlling for synchronization and dimensional orientation with the electrochemical reaction on electrode surface. Second, the ECL detection is separated from the electrochemical excitation, it is beneficial for enhancement of signal/noise ratio therefore the sensitivity. Third, the ECL can be controlled by manipulating the applied potential and/or other electric parameters to realize selective detection. Forth, in ECL procedure, more than one of the reactive species is electrochemically produced in situ, therefore to avoid the problems of the use of some violent and instable chemicals. In addition, the ECL instrument is often simpler than many electrochemical or fluorescence instruments. Luminol, noticed as a typical strong chemiluminescence (CL) reagent, has also been widely researched for ECL application. However, to the general knowledge, the researches of CL and ECL of luminol have been limited in strong alkaline solution algate, and its ECL behavior in neutral medium has almost been ignored. With regard to the bioactive molecules, the neutral medium would be more suitable for keeping their original properties. For example, it is affirmed that neutral medium is of the most favorable condition for noctilucent systems because the organisms such as amino acid, protein in disadvantageous conditions would alter their qualities to induce wrong exhibitions in reactions. During the discussions between the colleagues around the world, most researchers declared that the ECL of luminol in neutral medium was too weak to be practically applied. That is to say, as a preferential opinion that the luminol-based ECL detection for biomolecules was suffered from the usual requirement of high pH condition, it is difficult to use it directly for the detection of important biological compounds at physiological pH.
     Due to the exceeding ECL sensitivity, expedience and inexpensiveness, the authors paid strong interest on luminol to attempt its feasibility for determination of biomolecules contained in bio-fluids with trace amount. The ECL detection of luminol in neutral medium is realized if there was proper intensifier presented. In the ECL system of luminol, the ECL intensity of luminol was enhanced obviously in the presence of nanosized Au and Pt particles which were synthesized by reduction methods and characterized by transmission electron microscope (TEM) method, and the sensitization was attributed to nanoparticle’s character. Organic molecules including chloramphenicol (CAP) and Cysteine also could enhance the ECL of luminol. Microemulsion and ionic liquid which have become hot topics in many fields for having several unique physical and chemical properties are enhancers for ECL of luminol, too. Experimental results showed that significant increases in ECL intensity of the luminol were observed when adding above-mentioned materials. The sensitization efficiency was always related to the content of the enhancers, which could be used to improve the sensitivity of determined method based on the ECL of luminol. The paper lucubrated the mechanisms of all these enhancers enhanced ECL of luminol in neutral and the weak alkaline media by other techniques. Based on the sensitization, some biomolecules were determined. For example, Vitamin C and melatonin could quench the ECL signals. The ECL luminous intensity linearly decreases with the concentration of quenchers, and the samples have been determined with satisfactory results. It should be a sensitive and reliable method for the determination of such biomolecules.
     As reported in this paper, the sensitization greatly improved the ECL performance of luminol in neutral and the weak alkaline media, part of which were related with the reactive oxygen species (ROSs) which could enhance the ECL intensity of luminol. The results indicated that whether the enhancers were dissolved in solutions or immobilized on the surface of conventional electrodes, stronger ECL intensity of luminol could be obtained. Enhanced ECL by ROSs helped to provide ground work for the detection of biomolecules for which would further enhance or quench the ECL signals. The powerful sensitization from ROSs related with organics and organisms were examined under selected conditions which were suitable for biochemical analysis. And the applications for biodetecting target related to superoxide dismutase (SOD), horseradish peroxidase (HRP), xanthine oxidase (XOD), uric acid (UA) and alanine aminotransferase (ALT) became true based on the progress. Different enzyme biosensors were fabricated according to enzymatic reactions. The ECL-based biosensor showed excellent character for some certain measurement. It can detect the lower concentration of samples due to the highly sensitivity of ECL and highly selectivity of enzyme. So, the studies on sensitization ECL of luminol not only extended the region of ECL research into the physiological category, but also established a basis for ECL research of biomaterials. The technique may provide new means in a variety of fields such as clinical diagnostics, immunological analysis and environmental monitoring due to its simplicity and high efficiency.
     Rapid detection, quantification and sequencing of deoxyribonucleic acid (DNA) are important tasks in the fields of biology, drug discovery, medical diagnostics, agriculture, as well as environmental science. In the thesis, we have reported the quenching effect of DNA on ECL of luminol and the further development of a DNA sensing device. The typical design of a DNA sensor involves the appropriate immobilization of the DNA molecules or introduction of an effective indicator or so called labeled probe. In this field, the nano-material modified electrodes are inherently ideal because of the enormous specific surface, which is highly susceptible to heterogeneous redox with surrounding environments. With the pre-functionalization by composite of carbon nano-tubes (CNTs) and Au nanoparticles (Au NPs), the sensor provides a novel and valuable label-free approach for DNA sensing. The results indicated that the ECL response was correlative with the presence of dsDNA. Based on the researches, the possible quenching mechanism of dsDNA for ECL of luminol has also been discussed. It might be resulted from the interaction of luminol with dsDNA, and the elimination of ROSs by dsDNA.
     Based on the ability of CAP to enhance the ECL signals, the above-mentioned DNA-biosensor was used for the study of interaction of DNA and CAP in a neutral aqueous solution in the thesis. The interaction of DNA and CAP had been examined in detail using ECL method, Ultraviolet-Visible Absorption Spectrum, fluorescence spectroscopy, cyclic voltammogram technique and the mechanism was proposed based on the experiments data. The method which was presented here could be act as a model leading to applications in DNA damage caused by other chemicals in clinical practice, medicine and basic research.
     The thesis reports an ECL sensing technique for label-free characterization of oligonucleotide complementation. Followed the pre-function for glassy carbon electrode by composite of Au NPs and CNTs, the sensor was constructed by immobilizing the probing oligonucleotide with ECL of luminol as sensing signal. Its availability for characterization of oligonucleotide hybridization and further potentiality for DNA detection were reported herein. The variational regression slope is distinguishable for complementation status of oligonucleotide hybridization. It was found that high degree of complementation caused efficient quenching for ECL of luminol. Furthermore, it was revealed that the response could be attributed to the interaction between luminol and oligo-strands, and also related to the reducing of ROSs.
引文
[1] Karsten A. F., Miloslav P., George G. G., Talanta, 2001, 54: 531-559.
    [2] Richter M. M., Chem. Rev., 2004, 104(6): 3003-3036.
    [3] Kukoba A. V., Bykh A. I., Svir I. B., Fresenius J., Anal. Chem., 2000, 368: 439-442.
    [4] Miao W., Chem. Rev. 2008, 108: 2506-2553.
    [5] Havery N., J. Phys. Chem., 1929, 33: 1456-1459.
    [6]安镜如,林金明,陈曦,分析化学,1991(19): 1340-1346.
    [7] Faulkner L. R., Bard A. J., J. Electroanal. Chem., 1977, 10: 1-9.
    [8] Faulkner L. R., Method Enzymol, 1978, 57: 594-528.
    [9] Park S. M., Tryk D. A., Rev. Chem. Intermed., 1981, 4: 43-79.
    [10] Boccara A. C., Duran J., Briat B., Stephens P. J., Chem. Phys. Lett., 1973, 19: 187-190.
    [11] Gerardi R. G., Barnett N. W., Lewis S. W., Anal. Chim. Acta, 1999, 378: 1-41.
    [12] Lee W. Y., Mikrochim. Acta, 1997, 127: 19-39.
    [13] Lyons C. H., Abbas E.D., Lee J. K., Rubner M. F., J. Am. Chem. Soc., 1998, 120: 12100-12107.
    [14]安镜如,陈曦,陈恒,分析化学,1988,16(2): 127-132.
    [15]安镜如,陈曦,分析化学,1989,17: 917-921.
    [16]安镜如,陈曦,高等学校化学学报,1989,11: 1110-1113.
    [17] An J. R., Lin J. M., Chem. Res. Chin. Univ., 1991, 7: 37-41.
    [18] Chen Y., Lin Z., Chen J., Sun J., Zhang L., Chen G., J. Chromatogr. A, 2007, 1172: 84-91.
    [19] Dong Y., Chi Y., Zheng L., Zhang L., Chen L., Chen G., Electrochem. Commun., 2009, 11: 983-986.
    [20] Rong J., Chi Y., Zhang Y., Chen L., Chen G., Electrochem. Commun., 2010,12: 270-273.
    [21] Shu Q., Chi Y., Zheng L., Dong Y., Zhang L., Chen G., Electrochem. Commun., 2009, 11: 387-389.
    [22]章竹君,陕西师范大学学报(自然科学版),2000, 28(3): 79-83.
    [23] Shi C., Shan Y., Xu J., Chen H., Electrochimica Acta, 2010, 55: 8268-8272.
    [24] Zou G., Ju H., Ding W., Chen H., J. Electroanal. Chem., 2005, 579: 175-180.
    [25] Xue B., Wang E., Anal. Chim. Acta, 2005, 533: 113-120.
    [26] Zhao X., You T., Qiu H., Yan J., Yang X., Wang E., J. Chromatogr. B, 2004, 810: 137-142.
    [27] Gao Y., Tian Y., Sun X., Yin X., Xiang Q., Ma G., Wang E. K., J. Chromatogr. B, 2006, 832: 236-240.
    [28] Guo S., Wang E. K., Electro. Commun., 2007, 9: 1252-1257.
    [29] Xu G., Dong S., Electroanalysis, 1999, 11: 1180-1184.
    [30] Xu G., Dong S., Analyst, 1999,124: 1085-1087.
    [31] Zhang L., Xu Z., Sun X., Dong S., Biosens. Bioelectron., 2007, 22: 1097-1100.
    [32]林祥钦,孙玉刚,崔华,分析化学,1999,27(5):497-503.
    [33]孙玉刚,崔华,林祥钦,化学学报,2000,58(5):567-571.
    [34]孙玉刚,崔华,林样钦,化学学报,2000,58:1151-1155.
    [35] Tian D., Duan C., Wang W., Li N., Zhang H., Cui H., Lu Y., Talanta, 2009, 78:399-404.
    [36] Yu H., Cui H., J. Electroanal. Chem., 2005, 580:1-8.
    [37] Wang W., Cui H., Deng Z., Dong Y., Guo J., J. Electroanal. Chem., 2008, 612: 277-287.
    [38] Shi M., Cui H., J. Lumin., 2007, 126:187-195.
    [39] Shi M., Cui H., Electrochimica Acta, 2006, 52:1390-1397.
    [40] Wang X., Dong P., He P., Fang Y., Anal. Chim. Acta, 2010, 658:128-132.
    [41] Yun W., Xu Y., Dong P., Ma X., He P., Fang Y., Anal. Chim. Acta, 2009, 635:58-62.
    [42] Wang X. Y., Zhou J. M., Yun W., Xiao S. S., Chang Z., He P. G., Fang Y. Z., Anal. Chim. Acta, 2007, 598: 242-248.
    [43] Wang X. Y., Dong P., Yun W., Xu Y., He P. G., Fang Y. Z., Biosens. Bioelectron., 2009, 24: 3288-3292.
    [44]屠一锋,黄炳强,郭文英,陈瑾,分析化学, 2002, 30(6): 729-731.
    [45]齐莹莹,郭文英,狄俊伟,屠一锋,光谱学与光谱分析, 2005, 25(2): 195-197.
    [46]储海虹,吴莹,狄俊伟,屠一锋,分析测试学报, 2006, 25(1): 125-126.
    [47]储海虹,郭文英,狄俊伟,屠一锋,分析科学学报, 2005, 21(6): 676-678.
    [48]齐莹莹,狄俊伟,屠一锋,光谱实验室, 2005, 29(4): 730-733.
    [49]储海虹,吴莹,屠一锋,分析化学, 2006, 34(9): 1303-1306.
    [50]徐杨,储海虹,齐莹莹,狄俊伟,屠一锋,光谱学与光谱分析, 2005, 25(2): 192-194.
    [51]徐杨,储海虹,齐莹莹,屠一锋,苏州大学学报-研究生论文集,2000(下).
    [52]王智泳,郭文英,狄俊伟,屠一锋,光谱学与光谱分析, 2005, 25(10): 1564-1567.
    [53]王智泳,郭文英,狄俊伟,屠一锋,分析化学, 2005, 30(6): 763-766.
    [54]王鹏,张文艳,周泓,朱果逸,分析化学, 1998, 26: 898-903.
    [55] Bard A. J., Faulkner L. R., Electrochemical Methods - Fundamentals and Applications. John Wiley & Sons, New York, 1980, 621-629.
    [56] Martin C. R., Rubinstein I., Bard A. J., J. Electroanal. Chem., 1983, 151(1-2): 267-271.
    [57] Fabrizio E F., Prieto I., Bard A J., J. Am. Chem. Soc., 2000, 122: 4996-4997.
    [58] Kulmala S.,Kulmala A., Ala-Kleme T., Pihlaja J., Anal. Chim. Acta, 1998, 367: 17-31.
    [59] Ding Z., Quinn B. M., Haram S. K., Pell L. E., Korgel B. A., Bard A. J., Science, 2002, 296: 1293-1297.
    [60] Myung N.,Ding Z.,Bard A J., Nano Lett., 2002, 2: 1315-1319.
    [61] Zhang X. R., Baeyen W. R. C., Garcia-Campana A. M., Ouyang J., Trends in Anal.Chem., 1999,18: 384-391.
    [62] Knight A.W., Greenway G. M., Analyst, 1994, 119: 879-890.
    [63] Ege D., Beaker W. G.,Bard A. J., Anal. Chem., 1984, 56: 2413-2417.
    [64]鞠熀先,电分析化学与生物传感技术,北京:科学出版社,2006.
    [65] Haapakka K. E., Kankarc J. J., Anal. Chim. Acta, 1982, 138: 253-259.
    [66] Jirka G. P., Martin A. F., Nieman T. A., Anal. Chim. Acta, 1993, 284: 345-349.
    [67] Leca B., Blum L. J., Analyst, 2000, 125: 789-791.
    [68] Sakura S., Imai H., Anal.Sci., 1988, 4: 9-12.
    [69] Sakura S., Anal. Chim. Acta, 1992, 262(l): 49-57.
    [70] Rypka M., Lasovosky J., J. Electroanal. Chem., 1996, 416: 41-45.
    [71] Kearney N. J., Hall C. E., Jewsbury R. A., Timmis S. G., Anal. Commun., 1996, 33: 269-270.
    [72] Ouyang C.S., Wang C.M., J. Electroanal. Chem., 1999, 474: 82-88.
    [73]叶蕾,张国芳,陈洪渊,高等学校化学学报,2000,21(1):59-61
    [74] Zhang C., Zhang S., Zhang Z., Analyst, 1998,123: 1383-1386.
    [75] Wilson R., Schiffrin D. J., J. Electroanal. Chem., 1998, 448: 125-130.
    [76] TaylorⅣC.E., Creager S. E., J. Electroanal.Chem., 2000, 485: 114-120.
    [77] Kawasaki T., Mada M., Tsuji A., J. Chromatogr., 1985, 328: 121-126.
    [78] Spurlin S., Cooper M. M., Anal. Lett., 1986, 19: 2277-2283.
    [79] Ishida J., Sonezaki S., Yamaguchi M., J. Chromatogr., 1992, 598: 203-214.
    [80] Zhang X. R., Baeyen W. R. C., Garcia-Campana A. M., Ouyang J., Trends Anal. Chem., 1999, 18: 384-391.
    [81] Knight A.W., Greenway G. M., Analyst, 1994, 119: 879-890.
    [82] Rubinstein I., Bard A. J., J. Am. Chem. Soc., 1980, 102: 6641-6642.
    [83] Zhang X., Bard A. J., J. Phys. Chem., 1988, 92: 5566-5569.
    [84] Obeng Y S., Bard A.J., Langmuir, 1991, 7: 195-201.
    [85]王炳全,程广金,董绍俊,分析化学, 1999, 27: 982-988.
    [86]李瑛绣,朱连德,朱果逸,分析试验室, 2001, 20: 89-92.
    [87] Fiaccabrino G. C., Rooij N. F., Koudelka-Hep M., Anal. Chim. Acta, 1998, 359: 263-267.
    [88] Haapakka K.E., Anal. Chim. Acta,1982, 139: 229-236.
    [89] Xu G., Dong S., Elecrtochem.Commun., 1999, 40: 463-470.
    [90]安镜如,林金明,许雪琴,分析试验室,1993,12: 4-7.
    [91]郑行望,章竹君,高等学校化学学报,1999,20: 209-213.
    [92] Sakura S., Imai H., Anal. Sci, 1988, 4: 9-12.
    [93] Laespada M. F. F., Pavon J.L.P., Cordero B.M., Anal. Chim. Acta, 1996, 327: 253-260.
    [94] Sakura S., Terao J., Anal. Chim. Acta, 1992, 262: 59-65.
    [95] Rubinstein I., Martin C. R., Bard A. J., Anal.Chem., 1983, 55: 1580-1582.
    [96] Knight A.W., Greenway G. M., Analyst, 1995, 120: 2543-2547.
    [97] Chen X., Sato M., Anal. Sci., 1995, 11: 749-754.
    [98] Sun Y.G., Cui H., Li Y. H., Li S. F., Lin X. Q., Anal. Lett., 2000, 33: 3239-3252.
    [99] Chen X., Sato M., Lin Y., Microchem. J., 1998, 58: 13-20.
    [100] Uchikura K., Anal. Sci., 1999, 15: 1049-1050.
    [101] Noffsinger J. B.,Danielson N. D., Anal. Chem., 1987, 59: 865-868.
    [102] Greenway G. M., Knight P. J., Anal. Proc., 1995, 32: 251-253.
    [103] Bialk P., Vogel R., Mayr S., Clin. Chem., 1995, 41: S60.
    [104] Ege D., Becker W.G., Bard A.J., Anal. Chem., 1984, 56, 2413-2417.
    [105]王鹏,张文艳,周泓,朱果逸,科学通报,1998,43: 2241-2247.
    [106]徐国宝,董绍俊,分析化学, 2001, 29: 103-108.
    [107] Rodrigues M., Bard A. J., Anal. Chem.,1990,62: 2658-2662.
    [108] Liang P., Sanchez R. I., Martin M. T., Anal. Chem., 1996, 68: 2426-2431.
    [109]黄德欢,纳米技术与应用,中国纺织大学出版社,2001.
    [110] Mieszawska A. J., Jalilian R., Sumanasekera G. U., Zamborini F. P., small, 2007, 3(5): 722-756.
    [111] Hu J. T., Odom T. W., Lieber C. M., Acc. Chem. Res. 1999, 32: 435-445.
    [112] Wu Y., Yan H., Huang M., Messer B., Song J.H., Yang P., Chem. Eur. J. 2002, 8: 1260-1268.
    [113] Oyama M., Anal. Sci.,2010, 26(1): 1-12.
    [114]李维芬,纳米材料的性质,现代化工, 1999, 19(6): 44-47.
    [115]王永康,王立,纳米材料科学与技术,浙江大学出版社,2002.
    [116]顾宁,付德刚,张海黔,纳米技术与应用,人民邮电出版社,2002.
    [117]陈丽娟,纳米材料修饰电极在电化学分析中的应用研究进展,化学研究,2010,21(5):103-106.
    [118] Britto P. S., Santhanam K. S. V., Alonso A., Alonso J.A., Ajayan P.M., Ady Mater, 1999, 11(l): 154-157.
    [119] Yang Z., Hu G., Chen X., Zhao J., Zhao G., Colloids Surf., B: Biointerfaces, 2007, 54(2): 230-235.
    [120]卫应亮,张路平,邵晨,郑州轻工业学院学报(自然科学版),2008,23(5):8-11.
    [121]杨婕,杨涛,马瑶,焦奎,化学研究与应用, 2007, 19(3): 233-237.
    [122]胡瑞省,刘善堂,物理化学学报, 2000, 16(3): 202-206.
    [123] Freeman R. G., Garbar K. C., Allison K. J., Bright R. M., Davis J. A., Guthrie A. P., Hommer M. B., Jackson M. A., Smith P. C., Walter D.G ., Natan M. J., Science, 1995, 267, 1629-1632.
    [124] Liu S. Q., Ju H. X., Anal. Biochem., 2002, 307: 110-116.
    [125]孟宪伟,冉均国,苟立,苏葆辉,王方瑚,段莉,唐芳琼,材料科学与工艺,2004, 12: 163-166.
    [126] He P., Hu N., Rusling J. F., Langmuir, 2004, 20: 722-729.
    [127] He P., Hu N., Electroanalysis, 2004, 16: 1122-1131.
    [128] Viticoli A., Curulli A., Cusma A., Kaciulis S., Nunziante S., Pandolfi L., Valentini F., Padeletti G., Mater. Sci. Eng. C-Biomimetic Supramol. Sys. 2006, 26: 947-951.
    [129] Liu A. H., Wei M. D., I Honma., Zhou H. S., Anal. Chem., 2005, 77: 8068-8074.
    [130] Liu S. Q., Dai Z. H., Chen H. Y., Ju H. X., Biosens. Bioelectron., 2004, 19: 963-969.
    [131] Lvov Y., Munge B., Giraldo O., Ichinose I., Suib S. L., Rusling J. F., Langmuir, 2000, 16: 8850-8857.
    [132] Katz E., Lioubashevski O., Willner I., J. Am. Chem. Soc., 2004, 126: 11088-11092.
    [133] Authier L., Grossiord C., Brossier P., Anal. Chem., 2001, 73 (18): 4450-4456.
    [134] Xia P., Liu H., Tian Y., Biosens. Bioelectron., 2009, 24(8): 2470-2474.
    [135] Wang J., Wang L., Di J., Tu Y., Sensor. Actuators, B-Chemical, 2008, 135(1): 83-288.
    [136] Wang J., Wang L., Di J., Tu Y., Talanta, 2009, 77(4): 1454 -1459.
    [137] Nam J. M., Stoeva S. I., Mirkin C. A., J. Am. Chem. Soc., 2004, 126 (19): 5932-5933.
    [138] Wang M. Q., Du X. Y., Liu l. Y., Sun Q., Jiang X. C., Chinese J Anal Chem, 2008, 36(7): 890-894.
    [139] Wang H., Zhang C. X., Li Y., Qi H. L., Anal. Chim. Acta, 2006, 575(2): 205-211.
    [140] Oillic C., Mur P., Blanquet E., Delapierre G., Vinet F., Billon T., Mater. Sci. Eng. C, 2007, 27: 1500-1503.
    [141] Liu Q., Lu X. B., Li J., Yao X., Li J. H., Biosens. Bioelectron., 2007, 22(12): 3203-3209.
    [142] You J., Ding W. P., Ding S. J., Ju H. X., Electroanalysis, 2009, 21(2):190-195.
    [143] Du P., Li H. X., Hua M. Z., Liu S. F., Bioelectrochemistry, 2009, 75 (1):37-43.
    [144] Narayanan S. S., Sinha S. S., Verma P. K., Pal S. K., Chem. Phys. Lett., 2008, 463(1-3): 160-165.
    [145] Li Y. X., Chen J. L., Zhu C. Q., Wang L., Zhao D. H., Zhuo S. J., Wu Y. Q., Spectrochim. Acta, Part A, 2004, 60(8-9): 1719-1724.
    [146] Xie J. K., Jiao K., Liu H., Wang Q. X., Liu S. F., Fu X., Chinese J Anal Chem, 2008, 36(7): 874-878.
    [147] Lijima S. Helical microtubules of graphitic carbon. Nature,1991, 354(6348): 56-58.
    [148] Daniel S., Rao T. P., Rao K. S., Rani S. U., Naidu G. R. K., Lee H. Y., Kawai T., Sens. Actuators, B: Chemical, 2007, 122(2): 672-682.
    [149] Khripin C. Y., Zheng M., Jagota A., J. Colloid Interf. Sci., 2009, 330(2):255-265.
    [150] Germarie S., Carlos R. C., J. Electroanal. Chem., 606(1): 47-54.
    [151]陈亚芳,王保国,陈晋芳,山西化工,2010,30(2):27-30.
    [152]舒建华,仇伟,郑少琴,化学进展, 2009, 21: 1015-1021.
    [153] Ding K. Q., Cheng F. M., Synthetic Metals, 2009, 159(19-20): 2122-2127.
    [154] Yang T., Zhou N., Zhang Y. C., Zhang W., Jiao K., Li G. C., Biosens. Bioelectron., 2009, 24 (7): 2165-2170.
    [155] Wu J., Zou Y. H., Li X. L., Liu H. B., Shen G. L., Yu R. Q., Sens. Actuators, B, 2005, 104: 43-49.
    [156] Bhadra S., Khastgir D., Singha N. K., Lee J. H., Prog. Polym. Sci., 2009, 34(8): 783-810.
    [157] Sun Y., Mo Z., Chen H., Guo R. B., Qiao L. J., Li H. J., Computational Materials Science, 2009, 46(1): 162-166.
    [158]常竹,祝宁宁,赵琨,樊浩,何品刚,方禹之,化学学报, 2007, 65(2): 135-139.
    [159] Cai H., Zhu N., Jiang Y., He P. G., Fang Y. Z., Biosens. Bioelectron., 2003, 18(11): 1311-1319.
    [160] Lee S. H., Lee C. K., Shin S. R., Gu B. K., Kim S. I., Kang T. M., Kim S. J., Sens. Actuators B: Chemical, 2010, 145 (1): 89-92.
    [161] Lien T. T. N., Lam T. D., An V. T. H., Hoang T. V., Quang D. T., Khieu D. Q., Tsukahara T., Lee Y. H., Kim J. S., Talanta, 2010, 80(3): 1164-1169.
    [162] Kato K., Radbruch A. Cytometry, 1993, 14 (4): 384-392.
    [163] Doyle P. S., Bibette J., Bancaud A. Sci, 2002, 295(5563): 2237-2238.
    [164] Cheng G. F., Zhao J., Tu Y. H., He P. G., Fang Y. Z., Anal. Chim. Acta, 2005, 533(1): 11-16.
    [165] Chiang C. L., Sung C. S., Chen C. Y., J. Magn. Magn. Mater., 2006, 305(2): 483-490.
    [166] Pang L. L., Li J. S., Jiang J. H., Le Y., Shen G. L., Yu R. Q., Sens. Actuators, B: Chemical, 2007, 127(2): 311-316.
    [167] Fuentes M., Mateo C., Rodriguez A., Casqueiro M., Tercero J. C., Riese H. H., Biosens. Bioelectron., 2006, 21(8): 1574-1580.
    [168] Chang Z., Zhou J. M., Zhao K., Zhu N. N., He P. G., Fang Y. Z., Electrochim. Acta, 2006, 52(2): 575-580.
    [169] Sun X. R., Du Y.,Dong S. J.,Wang E. K., Anal. Chem., 2005, 7(24): 8166-8169.
    [170] Cui H., Xu Y., Zhang Z. F., Anal. Chem., 2004, 76(14): 4002-4010.
    [171] Dennany L., Wallace G. G., Forste R. J., langmuir, 2009, 25(24): 14053-14060.
    [172] Ding Z. F., Quinn B. M., Haram S. K., Pell L. E., Korgel B. A., Bard A. J., Science, 2002, 296(17): 1293-1297.
    [173] Myung N., Ding Z. F., Bard A. J., Nano Letters, 2002, 2(11): 1315-1319.
    [174] Myung N., Lu X. M., Johnston K. P., Bard A. J., Nano Letters, 2004, 4(l): 183-185.
    [175] Zou G., Ju H., Anal. Chem., 2004, 76(23): 6871-6876.
    [176] Jie G. F., Liu B., Pan H. C., Zhu J. J., Chen H. Y., Anal. Chem., 2007, 79(15):5574-5581.
    [177] Guo Z. H., Shen Y., Wang M. K., Zhao F., Dong S. J., Anal. Chem., 2004, 76(1):184-191.
    [178] Li G. X., Zheng X. W., Anal. Lett., 2007, 40(10):1853-1863.
    [179] Clark L. C., Lyons C., Ann N. Y., Acad. Sci., 1962, 102: 29-45.
    [180] Janata J., J. Am. Chem. Soc., 1975, 97: 2914-2916.
    [181] Rechinitz G. A., Kobos R. K., Riechel S. J., Gebauer C. R., Anal. Chim. Acta, 1977, 94: 357-365.
    [182] Elizabeth A. H., Biosensor, New York: Prentice Hall, 1991, 58-65.
    [183]吴礼光,刘茉娥,朱长乐,生物传感器研究进展,化学进展, 1995, 7: 287-301.
    [184]司士辉,生物传感器,北京:化学工业出版社, 2003, 1-2.
    [185] Heyrovsky J., J Chem Listy, 1922, 16, 256-264.
    [186] Bentley R., The Enzymes, 1963, 7: 567-586.
    [187] Rechinitz G. A., Kobos R. K.,Riechel S. J., Gebauer C. R., Anal.Chim.Acta, 1977, 94: 357-365.
    [188] Updike S. J., Hicks G. P., Nature, 1967, 214: 986-988.
    [189] Caras S., Janata J., Anal. Chem., 1980, 52: 1935-1937.
    [190] Rechnitz G. A., Chem. Eng. News, 1978, 56: 16-18.
    [191]张先恩,生物传感器,北京:化学工业出版社,2006.
    [192]王建龙,张悦,施汉昌,李花子,生物技术通报,2000, 3:13-18.
    [193] Campanella L., Pacifici F., Sammartino M.P., Tomassetti, M., Bioenerg., 1998, 47: 25-38.
    [194] Lee T., Tsuzuki M., Takeuchi T., Yokoyama K, Karube I., Anal. Chim. Acta, 1995, 302: 81-87.
    [195] Oungpipat W., Alexander P. W., Southwell-Keely P., Anal. Chim. Acta, 1995, 309: 35-45.
    [196] Pandey P. C., Weetall H. H., Anal. Chem., 1995, 67: 787-792.
    [197] Tombelli S., Mascini M., Braccini L., Anichini M., Turner A. P., Biosens. Bioelectron., 2000, 15: 363-370.
    [198] Blackburn G. F., Talley D. B., Booth P. M., Durfor, C. N., Martin, M. T., Napper, A. D., Rees, A. R., Anal. Chem., 1990, 62: 2211-2216.
    [199]安立超,钮红,曾衍,环境污染与防治,1996,18(3):32-33
    [200] Rechnitz G. A., Ho M.Y., J. Biotechnol., 1990, 15(3): 201-217
    [201] Coughlan M. P., Kierstan M. P .J., Border P. M., Turner A. P. F., J. Microbiol. Methods, 1988, 8(1-2): 1-50
    [202] Rechnitz G. A., Kobos R. K., Chem. Eng. News, 1978, 56(41): 16-18.
    [203] Dong Y. Z., Shannon C., Anal. Chem., 2000, 72: 2371-2376.
    [204] Bartlett P. N., Booth S, Caruana D. J., Kilburn J. D., Santamaria C., Anal. Chem., 1997, 69: 734-742.
    [205] Brahim S., Narinesingh D., Guiseppi-Elie A., Anal. Chim. Acta., 2001, 448: 27-36.
    [206] Pena N., Kuiz G., Reviejo A. J., Pingarron, J. M., Anal. Chem., 2001, 73: 1190-1195.
    [207] Sergeyeva T. A., Soldatkin A. P., Rachkov A. E., Tereschenko M. I., Piletsky S. A., El'skaya A. V., Anal. Chim. Acta, 1999, 390: 73-81.
    [208]姚守拙,压电化学与生物传感,长沙,湖南师范大学出版社, 1997.
    [209] Minunni M., Skladal P., Mascini M., Anal. Lett.,1994, 27: 1475-1487.
    [210] Pizziconi V. B., Page D. L., Biosens. Bioelectron.,1997, 12: 287-299.
    [211] Toppozada A. R.,Wright J., Eldefrawi A. T., Biosens. Bioelectron., 1997, 12: 113-124.
    [212] Zhou Y. M., Wu Z. Y., Shen G. L. Yu R. Q., Sens. Actuators, B, 2003, 89(3): 292-298.
    [213] Deng T., Wang H., Yu R. Q., Sens. Actuators B, 2004, 99(1): 123-129.
    [214] Fernandez-sanchez C., Costa-Garcia A., Anal. Chim. Acta., 1999, 402(1-2): 119-127.
    [215]乔丽娜,周在德,肖丹,化学研究与应用,2005,17: 299-312.
    [216]王海雄,吴侯,翁新楚,上海大学学报, 2003, 5: 428-432.
    [217] Cooper J. M., Greenough K. R., McNeil C., J. Eleetroanal Chem., 1993, 347: 267-275.
    [218] Niculescu M., Gaspar S., Schulte A., Csoregi E., Schuhmann W., Biosens. Bioelectron., 2004, 19: l175-1184.
    [219] Lin Z., Deng J., Li D., Anal. Chim. Acta, 2000, 407: 87-96.
    [220] Ikariyama Y., Yamauch S., Yukiash T., Vashioda H., J. Anal. Lett., 1987, 20: 1791-1801.
    [221] Barnett D., Laing D. G., Slopec S., Sadik O. A., Wallace G. G., Anal. Lett., 1994, 27(13): 2417-2429.
    [222] Santandreu M., Cespedes F., Alegret S., Martínez-Fàbregas E., Anal. Chem., 1997, 69(9): 2080-2085.
    [223] Gooding J. J., Waniowych C., Barnett D., Hibbert, D. B.; Barisci, J. N.; Wallace, G. G., Biosens. Bioelectron., 2004, 20: 260-268.
    [224] Medyantseva E. P., Khaldeeva E. V., Glushko N. I., Budnikov, H. C., Anal. Chim. Acta., 2000, 411(1-2): 13-18.
    [225] Shumyantseva V. V., Bulko T. V., Usanov S. A., Schmid R. D., Nicolini C., Archakova A. I., J. Inorg. Biochem., 2001, 87: 185-190.
    [226] Shumyantseva V. V., Ivanov Y. D., Bistolas N., Scheller F. W., Archakov A. I., Wollenberger U., Anal. Chem., 2004, 76: 6046-6052.
    [227] Yang Z., Sasaki S., Karube I., Suzuki H., J. Anal. Chim. Acta, 1997, 357: 41-49.
    [228] Schmidt A., Standfu?-Gabisch C., Bilitewski U., Biosens. Bioelectron., 1996,11: l139-1145.
    [229] Peter J., Hutter W., Stollnberger W., Hampel W., Biosens. Bioelectron., 1996, 11: 1215-1219.
    [230] Tag K, Lehnann M, Chan C, Renneberg R, Riedel K, Kunze G., Sens. Actuators B, 2000, 67: 142-148.
    [231] Karyakin A. A., Kotel’nikova L. V., Karykina E. E., Wang J., J. Anal. Chem., 2002, 74:1597-1603.
    [232] Yu J. H., Ju H. X., J. Anal. Chem., 2002, 74: 3579-3583.
    [233] Xiao Y., Ju H. X., Chen H. Y., Anal. Chim. Acta., 1999, 391: 73-82.
    [234] Beh S. K., Moody G. J., Thomas J. D. R., J. Analyst, 1989, 114: 29-37.
    [235] Ram M. K., Adami M., Paddeu S., Nicolin C., J. Nanotech., 2000, 11: 112-119.
    [236] Darader M., Casero E., Pariente F., Lorenzo E., J. Anal. Chem., 2000, 72:3784-3792.
    [237] Wingrad L. B., Cantin L. A., Castner J. F., J. Biochim. Biophys. Acta, 1983, 748: 21-27.
    [238] Anzai J., Tezuka S., Osa T., Nakajima H., Matsuo T., J. Chem. Pharm Bull, 1987, 35(2): 693-698.
    [239] Oyama N., Ohsaka T., Mizunuma M., Kobayashi M., J. Anal. Chem., 1988, 60: 2536-2537.
    [240] Trojanowicz M., Krawczyk T. K., Geschke O., Sens. Actuators B, 1995, 28: 191-199.
    [241] Mu S. L., Xue H. G., Sens. Actuators B, 1996, 31: 155-160.
    [242] Belanger D., Nadreau J., Fortier G., J. Electroana. Chem., 1989, 274: 143-155.
    [243] Fortier G., Brassard E., Belanger D., Biosen. Bioelectron., 1990, 5: 473-490.
    [244] Zotti G., Zecchin S., Schiavon G., Sannicolo', F., Brenna, E., Chem. Mater., 1995, 7: 2309-2315.
    [245] Bartlett P. N., Tebbutt P., Tyrrell C. H., Anal. Chem., 1992, 64: 138-142.
    [246]杜丹,王升富,化学研究与应用, 2001, 13(6): 617-622.
    [247]翟怡,张金利,王一平,化学进展, 2004, 16(4): 478-484.
    [248]杨生荣,任嗣利,张俊彦,张绪寿,高等化学学报,2001, 22(3): 470-476.
    [249]张俊苓,杨芳,郑文杰,化学进展,2005,17(2):203-208.
    [250]邵会波,宋雅茹,王宁,分析化学评述与进展,2003,1(7):874-879.
    [251]华兰,冀克俭,邓卫华,高分子材料科学与工程,2005,21(6):31-35.
    [252]方程,周性尧,分析科学学报,2003,19(1):81-85.
    [253] Lee M., Kim T., Kim K. H., Kim J. H, Choi M. S., Choi H. J., Koh K., Anal. Biochem., 2002, 310:163-170.
    [254] Yadavalli V. K., Forbes J. G., Wang K., Langmuir, 2006, 22: 6969-6976.
    [255] Briand E., Salmain M., Compere C., Pradier C. M., Colloids Surf., B: Biointerfaces, 2006, 53: 215-224.
    [256] Wang Z., Viana A. S., Jin G., Bioelectrochemistry, 2006, 69: 180-186.
    [257] Ding S., Chang B., Wu C., Anal. Chim., 2005, 554: 43-51.
    [258] Janek R. P., Fawcett W. R., Langmuir, 1998, 14: 3011-3018.
    [259] Liu S. Q., Miller B., Chen A. C., Electrochem. Commun., 2005, 7:1232-1236.
    [260] Zhang H., Mu1llen K., Feyter S. D., J. Phys. Chem. C, 2007, 111 (23): 8132-8144.
    [261]孙乔玉,张校刚,李晓红,高等化学学报,2001,22(10):1693-1696.
    [262] Liu S. Q., Wollenberger U., Halmek J., Chem. Eur. J, 2005, 11: 4239-4246.
    [263] Grochol J., Dronov R., Lisdat F., Langmuir, 2007, 23: 11289-11294.
    [264] Gobi K. V., Matsumoto K., Toko K., Anal Bioanal Chem., 2007, 387: 2727-2735.
    [265] Colvin V. L., Goldstein A. N., Alivisato A. P., J. Am. Chem. Soc., 1992, 114: 5221-5230.
    [266] Boozer C., Ladd J., Chen S. F., Anal. Chem., 2004, 76: 6967-6972.
    [267] Briand E., Salmain M., Herry J. M., Biosens. Bioelectron., 2006, 22: 440-448.
    [268] Ruan C., Yang F., Lei C. H., Deng J. Q., Anal. Chem., 1998, 70: 1721-1725.
    [269]张先恩,生物传感技术原理与应用,吉林科技出版社, 1991.
    [270] Clark J. L. C., J. Methods Enzymol, 1979, 56: 448-454.
    [271] Lanniello R. M., Yaeynyeh A. M., J. Anal. Chem., 1981, 53: 2090-2095.
    [272] Wang J., Naser N., Kwon H., Cho M. Y., J. Anal Chem., 1992, 264(1): 7-12.
    [273]董绍俊,车广礼,谢远武,化学修饰电极,北京:科学出版社, 2003.
    [274] Bockris J O M, Drazic D M., Electrochemical Science. London: Taylor & Francis Ltd, 1972.
    [275]鞠熀先,电分析化学与生物传感技术,科学出版社,2006.
    [276]屠一锋,陶春红,分析科学学报,1997,13:189-192.
    [277]张海锋,张小水,王丽娟,娄巧云,计测技术,2006,26:102-106.
    [278] Gorton L., Bremle G., J. Anal. Chim. Acta, 1991, 249: 43-54.
    [279] Armstrong F. A., Lannon A. M. J., J. Am. Chem. Soc., 1987, 109: 7211-7219.
    [280] Scott D. L., Paddock R. M., Bowden E. F., J. Electroanal. Chem., 1992, 341: 307-321.
    [281] Ianniello R. M., Lindsay T. J., Yacynych A. M., Anal. Chim. Acta, 1982, 141: 23-32.
    [282] Narasimhan K., Wingrad L. B., J. Anal. Chem., 1986, 58: 2984-2987.
    [283] Kajia Y., Sugai H., Iwakura I., Yoneyama H., J. Anal.Chim.,1991, 63: 49-55.
    [284] Smith E. T., Ensign S. A., Ludden P. W., Feinberg B. A., J. Biochem., 1992, 285: 181-185.
    [285] Sucheta A., Ackrell B. A. C., Cochran B., Armstrong F. A., J. Nature, 1992, 356: 361-362.
    [286] Guo L. H., Hill H. A. O., Lawarance G. A., Sanghera G. S., Hopper D., J. Eletroanal. Chem., 1989, 266: 379-396.
    [287] Lyer R. N., Schmidt W. E., J. Bioelectrochem. Bioenerg, 1992, 27: 393-404.
    [288] Borsari M., Azab H. A., J. Bioelectrochem. Bioenerg. 1992, 27: 229-233.
    [285] Jung D H., Kim B H., Ko Y K., Jung M S., Jung S., Lee S Y., Jung H T., Langmuir, 2004, 20(20): 8886-8891.
    [286] He P G., Li S., Dai L., Synth. Met., 2005, 154: 17-20.
    [289]蔡称心,陈静,陆天虹,中国科技化学,2003,33:511-515.
    [290]江丽萍,吴霞琴,朱柳菊,贾能勤,章宗穰,上海师范大学学报(自然科学版),2003:48-52.
    [291] Cooper J. M., Greenough K. R., McNeil C., J. Eleetroanal Chem., 1993, 347: 267-275.
    [292]熊海涛,郑行望,唐志华,理化检验-化学分册,2008,44:708-710.
    [293] Leca B. D., Verdier A. M., Blum L. J., Sens. Actuators, B: Chemical, 2001, 74(1-3): 190-193.
    [294] Banu S., Greenway G. M., R. Wheatley A., Anal. Chim. Acta, 2005, 541(1-2): 89-95.
    [295] Dotsikas Y., Loukas Y. L., Talanta, 2007, 71(2): 906-910.
    [296]冯作化,医学分子生物学,人民卫生出版社, 2004.
    [297] Dahm R., Dev Biol., 2005, 278(2): 274-288.
    [298]陈竺,医学遗传学,人民卫生出版, 2009.
    [299]左伋,医学细胞生物学,复旦大学出版社, 2008.
    [300]左伋,医学分子细胞生物学,复旦大学出版社, 2005.
    [301]周虹,生物化学与分子生物学高级教程,科学出版社,2002.
    [302]王曼莹,分子生物学,科学出版社,2006.
    [303]王曼莹,生命科学基础,中国中医药出版社,2010.
    [304]马文丽,医学分子生物学,高等教育出版社,2008.
    [305]冯作化,王广义,李伟,医学分子生物学,人民卫生出版社,2005.
    [306]胡维新,医学分子生物学,科学出版社,2010.
    [307]程力惠,李毅群,刘仲明,刘芳,生命的化学,2002,22(6):575-577.
    [308]姜艳霞,高秀峰,雷钧涛,吕士杰,传感器与微系统,2007, 26(2):48-52.
    [309] Vo-Dinh T., Sens. Actuators, B, 1998, 51: 52-59.
    [310] Dhadwal H. S., Kemp P., Aller J., Dantzler M. M., Anal. Chim. Acta, 2004, 501: 205-217.
    [311] Bier F. F., Kleinjang F., Scheller F. W., Sens. Actuators, B, 1997, 38: 78-82.
    [312] Wilson P. K., Jiang T., Minunni M. E., Turner A. P. F., Mascini M., Biosens. Bioelectron., 2005, 20: 2310-2313.
    [313] Su H. B., Thompson M., Biosens. Bioelectron., 1995, 10: 329-340.
    [314] Tombelli S., Mascini M., Sacco C., Turner A. P. F., Anal. Chim. Acta, 2000, 418: 1-9.
    [315] Lien T. T. N., Lam T. D., An V. T. H., Hoang T. V., Quang D. T., Khieu D. Q., Tsukahara T., Lee Y. H., Kim J. S., Talanta, 2010, 80: 1164-1169.
    [316] Binnig G., Gerber Ch., Stoll E., Albrecht T. R., Quate C. F., Surf Sci, 1987, 189-190: 1-6.
    [317] Binnig G., Gerber Ch., Stoll E., Albrecht T. R., Quate C. F., Surf. Sci. Lett., 1987, 2:189-190.
    [318]郭云昌,蔡颖谦,中岛秀郎,中华神经医学杂志,2005,4(7): 653-654.
    [319] Jiang X. H., Lin X. Q., Electrochem. Commun., 2004, 6(9): 873-879.
    [320] Brett A. M. O., Paquim A. M. C., Bioelectrochemistry, 2005, 66(1-2):117-124.
    [321] Hoyt P. R., Doktycz M. J., Warmack R. J., Allison D. P., Ultramicroscopy, 2001, 86( 1-2): 139-143.
    [322] Lyubchenko Y. L., Jacobs B. L., Lindsay S. M., Stasiak A., Scanning Microscopy, 1995, 9: 705-727.
    [323] Mateo-Mart′? E., Briones C., Pradier C. M., Mart′?n-Gago J. A., Biosens. Bioelectron., 2007, 22: 1926-1932.
    [324] Cheng G. F., Zhao J., Tu Y. H., He P. G., Fang Y. Z., Anal. Chim. Acta, 2005, 533:11-16.
    [325] Numnuam A., Kanatharana P., Mattiassonc B., Asawatreratanakul P., Wongkittisuksa B., Limsakula C., Thavarungkul P., Biosens. Bioelectron., 2009, 24: 2559-2565.
    [326] Cheng Y. T., Pun C. C., Tsai C. Y., Chen P. H., Sens. Actuators, B, 2005, 109: 249-255.
    [327] White H. S., Bard A. J., J. Am. Chem. Soc., 1982, 104: 6895- 6899.
    [328] Ding C. F., Zhong H., Zhang S. S., Biosens. Bioelectron., 2008, 23: 1314-1318.
    [329] Masaaki K., Sohsuke K., Kazue S., Anal. Chim. Acta, 1999, 381: 155-163.
    [330] Chen Y., Chen Y. L., Li H., Lu Z. H., Clin. Chim. Acta, 2000, 298: 45–53.
    [331] Zhu D. B., Liu J. F., Tang Y. B., Xing D., Sens. Actuators, B, 2010, 149(1): 221-225.
    [332] Lee J. G., Yun K., Lim G. S., Lee S. E., Kim S., Park J. K., Bioelectrochemistry, 2007, 70: 228-234.
    [333] Li Y., Qi H. L., Fang F., Zhang C. X., Talanta, 2007, 72: 1704-1709.
    [334] Wang H., Zhang C. X., Li Y., Qi H. L., Anal. Chim. Acta, 2006, 575: 205-211.
    [335] Wang X. Y., Zhou J. M., Wen Y., Xiao S. S., Chang Z., He P. G., Fang Y. Z., Anal. Chim. Acta, 2007, 598: 242-248.
    [336]曾建飞,姚坚毅,医学分子生物学,科学出版社,2010.
    [337] Wang F., Wu Y. J., Liu J. X., Ye B. X., Electrochim. Acta, 2009, 54(5): 1408-1413.
    [338] Chen H., Heng C. K., Puiu P. D., Zhou X. D., Lee A. C., Lim T. M., Tan S. N., Anal. Chim. Acta, 2005, 554(1-2): 52-59.
    [339] Nakamura F., Ito E., Hayashi T., Hara M., Colloids Surf., A, 2006, (284-285: 495-498.
    [340]刘钟瑸,杨贵贞,王文余,生物化学与生物物理进展, 1992, 19(6): 478-480.
    [341] Filliard A. D., Billon M., Livache T., Guillerez S., Anal. Chim. Acta, 2004, 515(2): 271-277.
    [342]孙伟,李清军,焦奎,陆路德,化学试剂,2005, 27(3): 149-152.
    [343]卢继新,李惠芬,蔡乐,李娟,张贵珠,分析科学学报,2007,23(5): 601-606.
    [344]黄琦,汪维鹏,钟文英,倪坤仪,中南药学, 2004, 2(6): 54-357.
    [345]杨铭,北京医科大学学报,1996, 28(4): 303-305.
    [346]杨铭,王爱,Boykin D. W., Wilson W. D.,北京医科大学学报, 1992, 24(2): 147-149.
    [347]马原松,石毅,安徽农业科学, 2006 ,34(7): 1304-1308.
    [348]张文毓,传感器世界,2007,10: 6-10.
    [349] Fodor S. P. A., Rava R. P., Huang X. V., Nature, 1993, 364: 555-556.
    [350] Campa’s M., Katakis I., Trends Anal. Chem., 2004, 23(1): 49-62.
    [351] Oillic C., Mur P., Blanquet E., Delapierre G., Vinet F., Billon T., Mater. Sci. Eng. C, 2007, 27: 1500-1503.
    [352] Mannelli I., Courtois V., Lecaruyer P., Roger G., Millot M. C., Goossens M., Canva M., Sens. Actuators, B, 119: 583-591.
    [353] Kricka L. J., Clin. Chim. Acta, 2001, 307: 219-223.
    [354]齐莉,邹俊伟,许士坤,周蓉,分析仪器, 1998,2:1-6.
    [355] Littig J. S., Nieman T.A., Anal.Chem., 1992, 64, 1140-1144.
    [356] Zhang X., Bard A. J., J. Phys. Chem., 1988, 92: 5566-5569.
    [357] Authier L., Grossiord C., Brossier P., Anal. Chem., 2001, 73 (18): 4450-4456.
    [358] Xia P., Liu H., Tian Y., Biosens. Bioelectron., 2009, 24(8):2470-2474.
    [359] Wang J., Wang L., Di J., Tu Y., Sensor. Actuators, B-Chemical, 2008, 135(1): 83-288.
    [360] Wang J., Wang L., Di J., Tu Y., Talanta, 2009, 77(4): 1454 -1459.
    [361] Nam J. M., Stoeva S. I., Mirkin C. A., J. Am. Chem. Soc., 2004, 126 (19): 5932-5933.
    [362] Wang M. Q., Du X. Y., Liu l. Y., Sun Q., Jiang X. C., Chinese J Anal Chem, 2008, 36(7): 890-894.
    [363] Wang H., Zhang C. X., Li Y., Qi H. L., Anal. Chim. Acta, 2006, 575(2): 205-211.
    [364] Shirtcliffe N., Nickel U., Schneider S. J., Colloid Interface Sci., 1999, 211: 122-129.
    [365] Pal A. J., J. Photochem. Photobiol., A , 2001, 142: 59-65.
    [366] Pan S. L., Chen M., Li H. L., Colloids Surf., A, 2001, 180: 55-62.
    [367]李璐,陆华,施国跃,云南大学学报(自然科学版), 2002, 24(6): 441-444.
    [368] Alivisatos A. P., Science, 1996, 271(16): 933-936.
    [369] Shi J., Gider S., Babcock K., Awschalom D. D., Science, 1996, 271(16): 937-942.
    [370] Back C. H., Allenspach R., Weber W., Parkin S. S. P,. Weller D., Garwin E. L., Siegmann H. C., Science, 1999, 285(6): 864-872.
    [371] Dong Y., Cui H., Xu Y., Langmuir, 2007, 23 (2): 523-529
    [372] Doron A., Katz E., Willner I., Langmuir, 1995, 11(4): 1313-1324.
    [373] Lahav M., Shipway A. N., Willner I., Nielsen M. B., Stoddart J. F., J. Electroanal. Chem., 2000, 482: 217-221.
    [374]蒋治良,刘绍璞,王力生,覃爱苗,梁宏,高等学校化学学报, 2003, 24(7): 1201-1203.
    [375]丁收年,卢业举,金葆康,安徽大学学报, 2002, 26(3): 74-78.
    [376] Spring M., Wardell H., American Heart Journal, 1952, 43(6): 918-921.
    [377]曾立明,王小卫,彭贵华,临床检验杂志, 2003, 21(5): 282-283.
    [378]席荣英,孙祥德,齐伟,贺立山,李敬东,分析科学学报,2003,19(4): 352-354.
    [379]曾庆平,郭勇,药物生物技术, 1996, 3(4): 202-205.
    [380]郭荣,张启清,钱俊红,杨汉明,应用化学, 2001, 18(8): 602-605.
    [381]韩鹤友,崔华,林祥欣,光谱实验室, 2002, 19(1): 39-44.
    [382] Altria K. D., J. Chromatogr. A, 2000, 892: 171-186.
    [383] Prince L. M., Microemulsion:theory and practive, New York: Academic Press, 1977.
    [384] Sun Y. G., Cui H., Lin X. Q., J. Luminescence, 2001, 92(3): 205-211.
    [385] Sun Y. G., Cui H., Lin X. Q., Anal. Chim. Acta, 2000, 423(2): 247-253..
    [386] Hreniak A., Maruszewski K., Rybka J., Gamian A., Czy?ewski J., Optical Materials, 2004, 26: 141-144.
    [387] Parejo I., Petrakis C., Kefalas P., J. harma. Toxi. Methods, 2000, 43(3): 183-190.
    [388] Kamyshny A., Magdassi S., Colloids Surf., B, 1998, 11: 249-254.
    [389] Lin J. M., Chemiluminescence-basic principles and applications, Beijing: Chemical Industry Press, 2004.
    [390] Kubisa P., Prog. Polym. Sci., 2004, 29: 3-12.
    [391] Bennett M. D., Leo D. J., Sens. Actuators, A, 2004, 115: 79-90.
    [392] Welton T., Coord. Chem. Rev., 2004, 248: 2459-2477.
    [393]李建喜,杨志强,王学智,动物医学进展,2006,27(10):33-36.
    [394] Parejo I., Petrakis C., Kefalas P., J. Pharm. Toxicol. Meth., 2000, 43: 183-190.
    [395] Kulmala S., M?t?chescu S., Kulmala A., Papkovsky D., H?kansson M., Ketamo H. , Canty P.,Anal. Chim. Acta, 2002, 453: 253-267.
    [396] Robinson J. K., Bollinger M. J.,. Birks J. W., Anal. Chem., 1999, 71: 5131-5136.
    [397]孙伟,韩军英,陆路德,环境科学与技术,2003, 26: 75-77.
    [398]蔡称心,陈静,化学学报, 2004, 62(3): 335-340.
    [399]张娟,徐静娟,陈洪渊,高等学校化学学报, 2004, 25(4): 614-617.
    [400]杨防祖,许书楷,吴辉煌,周绍民,高等学校化学学报, 1994, 15(7): 1042-1046.
    [401] Nakamura M., Nakamura S., Free Rad. Bio. Med., 1998, 24: 537-544.
    [402] Campanella L., Favero G., Persi L., Tomassetti M., J. Pharm. Biomed. Anal., 2001, 24: 1055-1064.
    [403] Ignatov S., Shishniashvili D., Ge B., Scheller F. W., Lisdat F., Biosens. Bioelectron., 2002, 17: 191-199.
    [404]瞿鹏,李保新,章竹君,理化检验:化学分册,2004, 40(8): 470-471.
    [405] Johnson R. J., Kang D. H., Feig D., J. Hypertens., 2003, 42: 247-252.
    [406] Ferraris S. P., Lew H., Elsayed N. M., J. Ana1. Biochem., 1991, 195: 116-121.
    [407] Bhargava A. K., Lal H., Pundir C. S., J. Biochem. Biophys. Methods, l999, 39: l25-136.
    [408] Nelson J. W., Batra K. K., J. Clin. Chem., 1975, 21: 125-131.
    [409] Uete T., Yamashita Y., Clin. Chim. Acta., l976, 69(1): 143-146.
    [410] Raj C. R., Ohsaka T. J., J. Electroanal. Chem., 2003, 540: 69-77.
    [411] Shi K., Shiu K. K., J. Electroanalysis., 2001, 13: 1319-1325.
    [412] Hong H. C, Huang H. J,, Anal. Chim. Acta., 2003, 499: 41-46.
    [413] Kannan P., Abraham John S., Anal. Biochem., 2009, 386: 65-72.
    [414] Zhang X. T., Zhang J., Liu Z. F., Robinson C., J. Chem. Commun., 2004, 16: 1852-1853.
    [415]张国权,杨凤林,催化学报,2007,28:504-508.
    [416]杨防祖,许书楷,吴辉煌,周绍民,高等学校化学学报,1994,15:1042-1046.
    [417] Kalhansc, Mahmans, Burkett E. E., J. Biol. Chem., 2001, 276: 12928-12932.
    [418] Thangavelp R., Selvam N. P., Pestic J., Sci., 1999, 55: 1217-1223.
    [419] Akyilmaz E., Yorganci E., Electro. Acta, 2007, 52(28): 7972-7977.
    [420] Sánchez-Pomales G., Cabrera C. R., J. Electroanal. Chem., 2007, 606(1):47-54.
    [421] Arias P., Ferreyra N. F., Rivas G. A., Bollo S., J. Electroanal. Chem., 2009, 634(2): 123-126.
    [422] Tian B., Xu Z. J., Sun Z. T., Lin J., Hua Y. J., Biochim. Biophys. Acta, 2007, 1770: 902-911.
    [423]赵金莲,曾佑炜,李宽,彭永宏,华南师范大学学报(自然科学版),2010, 3: 92-97.
    [424] Salimi A., Banks C.E., Compton R.G., Analyst, 2004, 129: 225-228
    [425] Qi H. L., Zhang C. X., Chin. J. Anal. Lab., 2004, 23: 20-22.
    [426]张帆,陈国南,陈恒,环境化学,1984, 3(1): 42-47.
    [427]卓琳,重庆工商大学学报, 2005, 22(5): 440-445.
    [428] Long E. C., Absalon M. J., Stubbe J., Barton J. K., J. Inorg. Biochem., 1991, 43(2-3): 436-440.
    [429] Zhu Y., Cheng G., Dong S., Biophys. Chem., 2000, 87(2-3): 103-110.
    [430] Nowicka A. M., Zabost E., Donten M., Mazerska Z., Stojek Z., Bioelectrochemistry, 2007, 70(2): 440-445.
    [431]苗延芳,王振永,焦奎,分析测试学报, 2007, 26(4): 492-495.
    [432]庞代文,颜蔚,高等学校化学学报,2001, 22(3): 389-395.
    [433] Part O., Lopez E.,Mathis G., Anal. Biochem., 1991, 195: 283-289.
    [434] Foster A.C., McInnes J.L., Skingle D.C.,Symons R. H., Nucleic Acids Res., 1985, 13: 745-761.
    [435] Ito Y., Fukusaki E., J. Mol. Catal. B: Enzym., 2004, 28: 155-166.
    [436]吴海霞,康敬万,李志峰,董树清,苏碧泉,卢小泉,分析测试学报, 2006, 25(4): 1-5.
    [437] Zhu N. N., Chang Z., He P. G., Fang Y. Z., Electrochim. Acta, 2006, 51: 3758-3762.
    [438] Arias P., N. Ferreyra F., Rivas G. A., Bollo S., J. Electroanal. Chem, 2009, 634: 123-126.
    [439] Erdem A., Kerman K., Meric B., Akarca U. S., Ozsoz M., Anal. Chim. Acta, 2000, 422: 139-149.
    [440] Hu Z., Tong C. L., Anal. Chim. Acta, 2007, 587: 187-193.
    [441]刘俊芳,李彦青,郭满栋,理化检验-化学分册, 2007, 43 (8): 701-706.
    [442] Laviron E., J. Electroanal. Chem, 1974, 52(3): 395-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700