用户名: 密码: 验证码:
功率变流装置中IGBT器件缺陷辨识研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可靠性是制约功率变流装置应用的关键因素之一。研究功率变流装置可靠性衰退评估方法是降低功率变流装置突发故障风险、实现功率变流装置健康运行和降低维护成本的重要举措。近年来,伴随电力电子器件制造技术的进步和变流技术的完善,功率变流装置的应用领域得到极大的拓展,在促进经济发展和社会进步方面开始发挥关键作用,因此可靠性问题日益突出,逐渐成为关注的热点,相关研究方兴未艾。本论文以功率变流装置的核心元件IGBT器件为对象,从状态监测的角度提出“IGBT器件缺陷”的概念,并分析缺陷对其杂散参数的影响,从而根据杂散参数的老化特征,将IGBT器件可靠性衰退评估归结为其缺陷的离线诊断、特征量分析、在线辨识等三个方面的问题进行系统研究,并延伸至健康管理的层面,探讨状态预测的实现。
     首先,把握IGBT器件的故障预兆信息,是减少事故发生,从而降低维护成本的有效前提,而缺陷是IGBT器件老化的直接结果,也是降低器件运行可靠性,增加突发故障风险的要素之一。为此,本文从IGBT器件的失效机理出发,分析了其主要的缺陷形式,并给出了缺陷对IGBT器件杂散参数的影响;然后,从杂散参数网络增益变化的角度,提出采用频率响应分析离线诊断IGBT器件缺陷的方法和缺陷评价指标;最后,进行了实验验证,结果表明:该方法能够有效检测出IGBT器件的芯片失效缺陷,可用于功率变流装置的定期检修,是预防IGBT器件故障的一项有效措施。
     其次,掌握和跟踪缺陷特征量,是从运行的角度实现IGBT器件可靠性衰退评估的先决条件。然而,IGBT器件老化失效过程中表现出的特征参数很少,通常都难以获取,或是影响因素多且难解耦。为此,本文根据缺陷对IGBT器件门极电路杂散参数的影响,提出采用门极电压和电流的动态变化作为缺陷辨识特征量的新思路,并通过门极电路和主电路之间的耦合分析,从IGBT器件开通时的瞬态过程入手,排除了非线性因素的影响。实验研究证实了以门极电压和电流的动态变化为缺陷特征量的可行性,在一定程度上缓解了IGBT器件缺陷相关信息缺失的困境,为IGBT器件缺陷在线辨识方法的实现奠定了基础。
     最后,IGBT器件的失效是依赖于时间的疲劳损伤累积过程,具有一定的随机性,衰退进程存在很大的差异。因此,针对个体IGBT器件的在线缺陷辨识是避免突发故障,从而降低损失的有力保障。为此,本文在离线诊断的基础上,根据IGBT器件杂散参数的老化特征,以门极电压和电流的动态变化为特征量,给出多种缺陷在线辨识的实现方法。这类方法可视为IGBT故障前的实时诊断手段,能够为运行人员赢得宽裕的维护时间,及时替换带有缺陷的IGBT器件,有效减少IGBT器件故障对功率变流装置的影响,避免事故的扩大化。
     另外,IGBT器件的状态预测,是从健康管理的层面分析其运行中可靠性衰退的重要手段,也是制定维护计划和实现状态检修的依据。但是由于IGBT器件运行工况的不确定性,自身的复杂性和与可靠性退化程度相关参数的不完全性,常规基于大样本统计参数的概率方法存在难以逾越的瓶颈。为此,本文引入了灰色理论,建立了IGBT器件状态的灰色状态预测模型;并从热疲劳损伤累积的角度,初步探讨了IGBT器件实时故障率的实现。
Reliability is one of the key factors that would limit the applications of powerelectronic converters, so developing evaluation method for the reliability of powerelectronic converters is an important measure to reduce the fault risk, realize the healthyoperation and save the cost of maintenance. In recent years, with the great developmentmade in power electronic technology, the application fields of power electronicconverters have been extended extremely, then power electronic converters start to playa vital role in promoting economic development and social progress. Therefore,reliability issues of power electronic converter are increasingly outstanding andbecoming a hot topic gradually, related research is just in the ascendant. In this paper,IGBTs as key components of power electronic converters are focused on, the defectconcept of IGBTs is proposed from condition monitoring viewpoints. Three aspects,namely, the reliability evaluation of IGBT is summarized to its defect off-line diagnosis,characterizing and on-line monitoring are systematically studied, which then beextended to the health management level, discussing the realization of state predictionfor IGBTs.
     Understanding and obtaining precursor information of failure is the basis ofreducing accident and saving maintenance cost. Defects are results of the fatigue, andessential factors in reducing the operational reliability of IGBTs and increasing the riskof an abrupt failure. Therefore, main defect types of IGBTs and their influence onparasitic parameters are analyzed. Then an off-line diagnostic based on frequencyresponse analysis is proposed in this paper. In the end, the correctness and applicationvalue is verified by test results. This method can be used in the regular overhauling ofpower electronic converters, is an effective measure for fault prevention.
     Tracing characteristic parameters of defects is a precondition for evaluatingreliability degradation of IGBTs during running. Unfortunately, most of physical wearout mechanisms of IGBTs give very few external indications of impending failure, andthose indications are not only difficult to be obtained but also affected by many factors.To circumvent this limit, the idea of using dynamic changes of gate voltage and currentas characteristic parameters of defects is proposed in this paper. In addition, thefeasibility is verified by experimental study.
     The failure of IGBTs depends on the fatigue damage accumulation with runningtime, and many uncertain factors would affect it. Therefore, on-line defect monitoringfor an individual IGBT is an important guarantee for avoiding an abrupt failure. For thispurpose, monitoring methods for defects under running condition are proposed in thispaper, which are based on the aging features of parasitic parameters. Moreover,dynamic changes of gate voltage and current are employed as observable variables tofind out the appearance of defects. These methods can be considered as pre-faultdiagnosis means, which are able to give operators a chance to replace defectivecomponents and avoid accidents enlargement.
     Future state evaluation is a very important content of health management forIGBTs, which is an evidence to make the scheduled maintenance and realize theCondition-Based-Maintenance. However, the traditional probabilistic methods based onlarge sample statistics are unable to be applied here, due to uncertain of runningcondition and other factors. For this reason, the gray theory is used in this paper, and agray state prediction model is built up. Besides, the failure rate function of IGBTs basedon the thermal fatigue damage accumulation is also preliminary discussed.
引文
[1]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [2] Emadi A,Young Joo L,Rajashekara K. Power electronics and motor drives in electric, hybridelectric, and plug-in hybrid electric vehicles [J]. IEEE Transactions on Industrial Electronics,2008,55(6):2237-2245.
    [3] Bernet S. Recent developments of high power converters for industry and tractionapplications [J]. IEEE Transactions on Power Electronics,2000,15(6):1102-1117.
    [4] Arai J,Iba K,Funabashi T, et al. Power electronics and its applications to renewable energy inJapan [J]. IEEE Circuits and Systems Magazine,2008,8(3):52-66.
    [5] Chen Z,Guerrero J M,Blaabjerg F. A review of the state of the art of power electronics forwind turbines [J]. IEEE Transactions on Power Electronics,2009,24(8):1859-1875.
    [6]汤广福,刘文华.提高电网可靠性的大功率电力电子技术基础理论[M].北京:清华大学出版社,2010.
    [7]马伟明.电力电子在舰船电力系统中的典型应用[J].电工技术学报,2011,26(5):1-7.
    [8] Yang S,Bryant A,Mawby P, et al. An industry-based survey of reliability in power electronicconverters [J]. IEEE Transactions on Industry Applications,2011,47(3):1441-1451.
    [9]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.
    [10]赵争鸣,白华,袁立强.电力电子学中的脉冲功率瞬态过程及其序列[J].中国科学(E辑:技术科学),2007,37(01):60-69.
    [11]赵争鸣,张海涛,袁立强.基于IGCT的高压三电平变频器失效机理及保护策略[J].电工技术学报,2006,21(05):1-6+18.
    [12] Trivedi M,Shenai K. Failure mechanisms of IGBT's under short-circuit and clamped inductiveswitching stress [J]. IEEE Transactions on Power Electronics,1999,14(1):108-116.
    [13] Perpina X,Serviere J F,Jorda X, et al. IGBT module failure analysis in railway applications[J]. Microelectronics Reliability,2008,48(8-9):1427-1431.
    [14] Wu B. High-power converters and AC drives[M]. Hoboken, NJ: John Wiley&Sons,2007.
    [15] Mohan N,Undeland T M,Robbins W P. Power electronics: Converters, applications, anddesign[M]. Hoboken, NJ: John Wiley&Sons,2003.
    [16] Bryant A,Yang S Y,Mawby P, et al. Investigation into IGBT dv/dt during turn-off and itstemperature dependence [J]. IEEE Transactions on Power Electronics,2011,26(10):3019-3031.
    [17] Tavner P J,Xiang J,Spinato F. Reliability analysis for wind turbines [J]. Wind Energy,2007,10(1):1-18.
    [18] Johan R,Lina Margareta B. Survey of failures in wind power systems with focus on Swedishwind power plants during1997-2005[J]. IEEE Transactions on Energy Conversion,2007,22(1):167-173.
    [19] Xie K,Jiang Z,Li W. Effect of wind speed on wind turbine power converter reliability [J].IEEE Transactions on Energy Conversion,2012,27(1):96-104.
    [20]国家自然科学基金委员会工程与材料科学部.电气科学与工程[M].北京:科学技术出版社,2006.
    [21]白华.电力电子变换器中电磁脉冲功率瞬态过程研究[D].北京:清华大学,2007.
    [22] Xiang D,Ran L,Tavner P, et al. Monitoring solder fatigue in a power module usingcase-above-ambient temperature rise [J]. IEEE Transactions on Industry Applications,2011,47(6):2578-2591
    [23] Rashid M H. Power electronics: Circuits, devices, and applications[M]. Upper Saddle River,NJ: Prentice Hall,2004.
    [24] Yang S,Xiang D,Bryant A, et al. Condition monitoring for device reliability in powerelectronic converters: A review [J]. IEEE Transactions on Power Electronics,2011,25(11):2734-2752.
    [25] Pecht M G. Prognostics and health management of electronics[M]. Hoboken, NJ: John Wiley&Sons,2008.
    [26] Hao M,Linguo W. Fault diagnosis and failure prediction of aluminum electrolytic capacitorsin power electronic converters[C]. Proceedings of the31st Annual Conference of IEEEIndustrial Electronics Society, Raleigh, NC,2005.
    [27] Gasperi M L. Life prediction model for aluminum electrolytic capacitors[C]. Proceedings ofthe IEEE Industry Applications Conference, San Diego, CA,1996.
    [28] Lahyani A,Venet P,Grellet G, et al. Failure prediction of electrolytic capacitors duringoperation of a switchmode power supply [J]. IEEE Transactions on Power Electronics,1998,13(6):1199-1207.
    [29] Yaow-Ming C,Hsu-Chin W,Ming-Wei C, et al. Online failure prediction of the electrolyticcapacitor for LC filter of switching-mode power converters [J]. IEEE Transactions onIndustrial Electronics,2008,55(1):400-406.
    [30] Abdennadher K,Venet P,Rojat G, et al. A real-time predictive-maintenance system ofaluminum electrolytic capacitors used in uninterrupted power supplies [J]. IEEE Transactionson Industry Applications,2008,46(4):1644-1652.
    [31] Imam A M. Condition monitoring of electrolytic capacitor for power electronics applications[D]: Georgia Institute of Technology,2007.
    [32] Musallam M,Johnson C M. Real-time compact thermal models for health management ofpower electronics [J]. IEEE Transactions on Power Electronics,2010,25(6):1416-1425.
    [33] Khanna V K. The insulated gate bipolar transistor: IGBT theory and design[M]. Hoboken, NJ:John Wiley&Sons,2003.
    [34] Ciappa M. Selected failure mechanisms of modern power modules [J]. MicroelectronicsReliability,2002,42(4-5):653-667.
    [35]鲁宗相,刘文华,王仲鸿.基于k/n(G)模型的STATCOM装置可靠性分析[J].中国电机工程学报,2007,27(13):12-17.
    [36] Aten M,Towers G,Whitley C, et al. Reliability comparison of matrix and other convertertopologies [J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):867-875.
    [37]王波,胡安,唐勇,等.IGBT电压击穿特性分析[J].电工技术学报,2011,26(8):145-150.
    [38]罗湘,汤广福,温家良,等.电压源换流器高压直流输电装置中IGBT的过电流失效机制[J].中国电机工程学报,2009,29(33):1-7.
    [39] Lefranc G,Licht T,Schultz H J, et al. Reliability testing of high-power multi-chip IGBTmodules [J]. Microelectronics Reliability,2000,40(8-10):1659-1663.
    [40] Thebaud J M,Woirgard E,Zardini C, et al. Strategy for designing accelerated aging tests toevaluate IGBT power modules lifetime in real operation mode [J]. IEEE Transactions onComponents and Packaging Technologies,2003,26(2):429-438.
    [41] Sonnenfeld G,Goebel K,Celaya J R. An agile accelerated aging, characterization and scenariosimulation system for gate controlled power transistors [J]. Proceedings IEEEAUTOTESTCON2008,2008,208-215.
    [42] Bayerer R,Herrmann T,Licht T, et al. Model for power cycling lifetime of IGBT modules:Various factors influencing lifetime[C]. Proceedings of the5th International Conference onIntegrated Power Electronic Systems, Nuremberg,2008.
    [43] Ammous A,Allard B,Morel H. Transient temperature measurements and modeling of IGBT'sunder short circuit [J]. IEEE Transactions on Power Electronics,1998,13(1):12-25.
    [44] Januszewski S,Kociszewska-Szczerbik M,Swiatek H. Some observation dealing with thefailures of IGBT transistors in high power converters [J]. Microelectronics and Reliability,1998,38(6-8):1325-1330.
    [45] Wuchen W,Held M,Jacob P, et al. Thermal stress related packaging failure in power IGBTmodules[C]. Proceedings of the7th International Symposium on Power SemiconductorDevices and ICs, Yokohama, Japan,1995.
    [46] Wuchen W,Held M,Jacob P, et al. Investigation on the long term reliability of power IGBTmodules[C]. Proceedings of the7th International Symposium on Power SemiconductorDevices and ICs, Yokohama, Japan,1995.
    [47] Ramminger S,Turkes P,Wachutka G. Crack mechanism in wire bonding joints [J].Microelectronics Reliability,1998,38(6-8):1301-1305.
    [48] Hamidi A,Beck N,Thomas K, et al. Reliability and lifetime evaluation of different wirebonding technologies for high power IGBT modules [J]. Microelectronics Reliability,1999,39(6-7):1153-1158.
    [49] Onuki J,Koizumi M,Suwa M. Reliability of thick al wire bonds in IGBT modules for tractionmotor drives [J]. IEEE Transactions on Advanced Packaging,2000,23(1):108-112.
    [50] Ishiko M,Usui M,Ohuchi T, et al. Design concept for wire-bonding reliability improvement byoptimizing position in power devices [J]. Microelectronics Journal,2006,37(3):262-268.
    [51] Loh W S,Corfield M,Lu H, et al. Wire bond reliability for power electronic modules-effect ofbonding temperature[C]. Proceedings of the International Conference on Thermal,Mechanical and Multi-Physics Simulation Experiments in Microelectronics andMicro-Systems, London, UK,2007.
    [52] Patil N,Celaya J,Das D, et al. Precursor parameter identification for insulated gate bipolartransistor (IGBT) prognostics [J]. IEEE Transactions on Reliability,2009,58(2):271-276.
    [53] Scheuermann U. Reliability challenges of automotive power electronics [J]. MicroelectronicsReliability,2009,49(9-11):1319-1325.
    [54] Lutz J,Dobler R,Mari J, et al. Short circuit III in high power IGBTs [M].13th EuropeanConference on Power Electronics and Applications. Barcelona, Catalonia,2009:1-8.
    [55] Gong X. A3.3kV IGBT module and application in modular multilevel converter forHVDC[C]. Proceedings of the IEEE International Symposium on Industrial Electronics,Hangzhou, China,2012.
    [56] Chokhawala R S,Catt J,Kiraly L. A discussion on IGBT short-circuit behavior and faultprotection schemes [M]. IEEE Transactions on Industry Applications,1995:256-263.
    [57] Laska T,Munzer M,Pfirsch F, et al. The field stop IGBT (FS IGBT). A new power deviceconcept with a great improvement potential[C]. Proceedings of the12th InternationalSymposium on Power Semiconductor Devices and ICs, Toulouse, Fr,2000.
    [58] Lefebvre S,Khatir Z,Saint-Eve F. Experimental behavior of single-chip IGBT andCOOLMOS devices under repetitive short-circuit conditions [J]. IEEE Transactions onElectron Devices,2005,52(2):276-283.
    [59] Xiong Y L,Cheng X,Shen Z J, et al. Prognostic and warning system for power-electronicmodules in electric, hybrid electric, and fuel-cell vehicles [J]. IEEE Transactions on IndustrialElectronics,2008,55(6):2268-2276.
    [60] Ginart A E,Brown D W,Kalgren P W, et al. Online ringing characterization as a diagnostictechnique for IGBTs in power drives [J]. IEEE Transactions on Instrumentation andMeasurement,2009,2290-2299.
    [61] Bryant A T,Mawby P A,Palmer P R, et al. Exploration of power device reliability usingcompact device models and fast electrothermal simulation [J]. IEEE Transactions on IndustryApplications,2008,44(3):894-903.
    [62] Yin C Y,Lu H,Musallam M, et al. A prognostic assessment method for power electronicsmodules[C]. Proceedings of the2nd Electronics System integration Technology Conference,Greenwich, UK,2008.
    [63] Musallam M,Johnson C M,Yin C Y, et al. In-service life consumption estimation in powermodules[C]. Proceedings of the13th International Power Electronics and Motion ControlConference, New York, USA,2008.
    [64] Xiang D W,Ran L,Tavner P, et al. Condition monitoring power module solder fatigue usinginverter harmonic identification [J]. IEEE Transactions on Power Electronics,2012,27(1):235-247.
    [65]马皓,徐德鸿,卞敬明.基于神经网络和频谱分析的电力电子电路故障在线诊断[J].浙江大学学报(工学版),1999,33(6):664-668.
    [66] Bin L,Sharma S K. A literature review of IGBT fault diagnostic and protection methods forpower inverters [J]. IEEE Transactions on Industry Applications,2009,1770-1777.
    [67]马伟明,胡安,王令蓉.基于电压波形分析的十二相整流装置故障诊断[J].电工技术学报,1997,12(6):49-54.
    [68]马皓,徐德鸿.电力电子装置在线检测与故障诊断系统[J].电测与仪表,1999,25(3):49-51.
    [69]徐德鸿,马皓.电力电子装置故障自动诊断[M].北京:科学出版社2001.
    [70]张志学,马皓,毛兴云.基于混杂系统模型和事件辨识的电力电子电路故障诊断[J].中国电机工程学报,2005,25(3):49-53.
    [71]李薇,谭阳红,彭永进.基于小波分析及网络的电力电子电路故障诊断方法[J].电机与控制学报2005,9(6):555-561.
    [72]陈如清.采用新型粒子群算法的电力电子装置在线故障诊断方法[J].中国电机工程学报,2008,28(24):70-74.
    [73]胡清,王荣杰,詹宜巨.基于支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2008,28(12):107-111.
    [74]罗慧,王友仁,崔江,等.电力电子电路多源特征层融合故障诊断方法[J].电机与控制学报,2010,14(4):92-96.
    [75]丘东元,彭锦凤,张波.电力电子变换器结构性故障的有向图论诊断方法[J].电机与控制学报,2010,14(8):13-18.
    [76]蔡金锭,鄢仁武. ARMA双谱分析与离散隐马尔可夫模型在电力电子电路故障诊断中的应用[J].中国电机工程学报,2010,30(24):54-59.
    [77]梅樱,孙大南,韦中利,等.一种基于矢量控制的变流器故障诊断方法[J].电工技术学报,2010,25(3):177-182.
    [78]龙伯华,谭阳红,许慧,等.基于量子神经网络的电力电子电路故障诊断[J].电工技术学报,2009,24(10):170-175.
    [79] Martin C,Schanen J L,Guichon J M, et al. Analysis of electromagnetic coupling and currentdistribution inside a power module [J]. IEEE Transactions on Industry Applications,2007,43(4):893-901.
    [80] Azar R,Udrea F,Ng W T, et al. The current sharing optimization of paralleled IGBTs in apower module tile using a Pspice frequency dependent impedance model [J]. IEEETransactions on Power Electronics,2008,23(1):206-217.
    [81] Dalessandro L,Karrer N,Ciappa M, et al. Online and offline isolated current monitoring ofparallel switched high-voltage multi-chip IGBT modules[C]. Proceedings of the IEEE PowerElectronics Specialists Conference, Rhodes, Greek,2008.
    [82] Zhang X P,Rehtanz C,Pal B. Flexible AC transmission systems: Modeling and control[M].Heidelberg: Springer,2006.
    [83] Smet V,Forest F,Huselstein J, et al. Ageing and failure modes of IGBT modules inhigh-temperature power cycling [J]. IEEE Transactions on Industrial Electronics,2011,58(10):4931-4941.
    [84]汪波,胡安,唐勇,等. IGBT电压击穿特性分析[J].电工技术学报,2011,26(8):145-150.
    [85] Heeb H,Ruehli A E. Three-dimensional interconnect analysis using partial element equivalentcircuits [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory andApplications,1992,39(11):974-982.
    [86]易荣.基于IGCT的变换器主回路杂散参数及瞬态换流研究[D].北京:清华大学,2007.
    [87]何平.变压器绕组变形的频率响应分析方法综述[J].高电压技术,2006,32(5):37-41.
    [88]桂峻峰,高文胜,谈克雄.用结构参数法研究变压器绕组变形判据[J].清华大学学报(自然科学版),2004,44(1):93-96.
    [89] Hefner A R,Diebolt D M. An experimentally verified IGBT model implemented in sabercircuit simulator [J]. IEEE Transactions on Power Electronics,1994,9(5):532-542.
    [90]袁立强,赵争鸣,宋高升.电力半导体器件原理与应用[M].北京:机械工业出版社,2011.
    [91] Zhang J,Li Z,Zhang B, et al. High performance CSTBT with p-type buried layer [J].Electronics Letters,48(9):525-527.
    [92]唐勇,胡安,陈明. IGBT栅极特性与参数提取[J].电工技术学报,2009,24(7):76-80.
    [93] Bryant A T,Xiaosong K,Santi E, et al. Two-step parameter extraction procedure with formaloptimization for physics-based circuit simulator IGBT and P-I-N diode models [J]. IEEETransactions on Power Electronics,2006,21(2):295-309.
    [94] Wanying K,Hyungkeun A,Nokali M A E. A parameter extraction algorithm for an IGBTbehavioral model [J]. IEEE Transactions on Power Electronics,2004,19(6):1365-1371.
    [95] Trivedi M,Shenai K. Parasitic extraction methodology for insulated gate bipolar transistors [J].IEEE Transactions on Power Electronics,2000,15(4):799-804.
    [96]黄群古,任震,黄雯莹.基于相似小波变换的电力系统故障信号分析[J].华南理工大学学报(自然科学版),2011,29(5):5-9.
    [97] Wilkinson W A,Cox M D. Discrete wavelet analysis of power system transients [J]. IEEETransactions on Power Systems,1996,11(4):2038-2044.
    [98] Turbelin G,Ngae P,Grignon M. Wavelet cross-correlation analysis of wind speed seriesgenerated by a NN based models [J]. Renewable Energy,2009,34(4):1024-1032.
    [99] Fréchet M. Sur quelques points du calcul fonctionnel [J]. Rendiconti del Circolo Matematicodi Palermo (1884-1940),1906,22(1):1-72.
    [100] Eiter T,Mannila H. Computing discrete Fréchet distance [R]. Vienna: Christian DopplerLaboratory for Expert Systems,1994.
    [101] Alt H,Godau M. Computing the Fréchet distance between two polygonal curves [J].International Journal of Computational Geometry and Applications,1995,5(1):75-91.
    [102]罗滇生,何洪英.基于形态相似准则的曲线拟合算法及其在超短期负荷预测中的应用[J].电网技术,2007,31(21):81-84.
    [103]吕科,耿国华,周明全.基于哈希方法的空间曲线匹配[J].电子学报,2003,31(2):294-296.
    [104] T. Speer,M. Kuppe,Hoschek J. Global reparametrization for curve approximation [J].Computer Aided Geometric Design,1998,15(9):869-877.
    [105]徐波,唐海龙,李行善.基于DTW的涡扇发动机气路故障定量诊断方法[J].北京航空航天大学学报,2004,30(6):524-528.
    [106]牛征,牛玉广,刘吉殝,等.基于动态时间归整技术的电站过程故障诊断方法[J].动力工程,2006,26(3):396-399.
    [107]王振浩,杜凌艳,李国庆,等.动态时间规整算法诊断高压断路器故障[J].高电压技术,2006,32(10):36-38.
    [108] Berndt D,Clifford J. Using dynamic time warping to find patterns in time series[C].Proceedings of the InKDD-94, Washington,1994.
    [109] Clausius R. The mechanical theory of heat: With its applications to the steam-engine and tothe physical properties of bodies[M]. London: J. van Voorst,1867.
    [110] Shannon C E. A mathematical theory of communication [J]. The bell system technical journal,1948,27(7):623-656.
    [111] Pincus S M. Approximate entropy as a measure of system complexity [J]. Proceedings of theNational Academy of Sciences,1991,88(6):2297-2301.
    [112]洪波,唐庆玉,杨福生,等.近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用[J].信号处理,1999,15(2):100-107.
    [113]何为,陈香,杨基海.基于近似熵的思维脑电信号分类研究[J].生物医学工程研究,2004,23(4):211-214.
    [114]符玲,何正友,麦瑞坤,等.近似熵算法在电力系统故障信号分析中的应用[J].中国电机工程学报,2008,28(28):68-73.
    [115]栗然,陆凤怡,徐宏锐,等.基于局域波与近似熵的负荷分析方法[J].中国电机工程学报,2010,30(25):51-58.
    [116]吴道虎.基于最大熵谱估计的工程非平稳信号的频谱分析研究与实践[J].继电器,2006,34(13):38-41.
    [117] Tipping M E. Sparse Bayesian learning and the relevance vector machine [J]. The Journal ofMachine Learning Research,2001,1(211-244.
    [118] Li Y,Campbell C,Tipping M. Bayesian automatic relevance determination algorithms forclassifying gene expression data [J]. Bioinformatics,2002,18(10):1332.
    [119] Deng J L. The GRA in cause-effect space of resources [J]. Journal of Grey System,2009,21(2):113-118.
    [120]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005.
    [121]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学技术出版社,2010.
    [122] Sheng W W,Colino R P. Power electronic modules: Design and manufacture[M]. Boca Raton:CRC Press,2005.
    [123]魏克信,杜明星.基于集总参数法的IGBT模块温度预测模型[J].电工技术学报,2012,26(12):79-84.
    [124]陈明,胡安,唐勇,等.绝缘栅双极型晶体管传热模型建模分析[J].高电压技术,2011,37(2):453-459.
    [125]刘勇,梁利华,曲建民.微电子器件及封装的建模与仿真[M].北京:科学出版社,2010.
    [126] Profumo F,Tenconi A,Facelli S, et al. Instantaneous junction temperature evaluation ofhigh-power diodes (thyristors) during current transients [J]. IEEE Transactions on PowerElectronics,1999,14(2):292-299.
    [127] Lixiang W,Kerkman R J,Lukaszewski R A, et al. Analysis of IGBT power cycling capabilitiesused in doubly fed induction generator wind power system [J]. IEEE Transactions on IndustryApplications,2011,47(4):1794-1801.
    [128]胡建辉,李锦庚,邹继斌,等.变频器中的IGBT模块损耗计算及散热系统设计[J].电工技术学报,2009,24(3):159-163.
    [129] Bouarroudj M,Khatir Z,Ousten J P, et al. Temperature-level effect on solder lifetime duringthermal cycling of power modules [J]. IEEE Transactions on Device and Materials Reliability,2008,8(3):471-477.
    [130]伍颖.断裂与疲劳[M].北京:中国地质大学出版社,2008.
    [131] Nies ony A. Determination of fragments of multiaxial service loading strongly influencingthe fatigue of machine components [J].2009,23(8):2712-2721.
    [132]孙元章,周家启.大型互联电网在线运行可靠性的基础理论[M].北京:清华大学出版社,2010.
    [133]陈建业,吴文伟.大功率变流器冷却技术及其进展[J].大功率变流技术,2010,3(1):15-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700