用户名: 密码: 验证码:
X射线荧光测井关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻探是地质普查工作的重要方法,是发现和验证隐伏矿(化)体的经济、直接的手段,有些矿种(如铀矿)已大面积地开展带钻普查。但是,传统的获得钻探结果,只有一种表示方法,即岩芯样化学分析,其运输任务重,资金浪费,化学分析结果不真实无法纠正,获得钻探结果的周期长。X射线荧光测井技术可以使地下物探由过去的只能“定性”,发展到当代的“定量”阶段,在井中原位测定岩石中金属矿产的品位,划分矿层厚度,计算线储量,现场实时提供结果。因此,采用X射线荧光测井技术对提高钻探工作效率,降低勘探成本,具有重大的现实意义。
     本文在广泛调研的基础上,详细论述了X射线荧光测井技术的理论基础,较深入地分析了X射线荧光测井的影响因素,对X射线荧光测井探管的设计,高灵敏度X射线荧光探头的设计,井液影响及校正等关键技术问题展开了研究,主要研究内容如下:
     (1)X射线荧光测井探管的设计。针对X射线荧光测井的技术要求,设计X射线荧光探管的机械结构,并对其进行受力分析和强度校核,实现探管在1500m井深下安全可靠地工作、探测窗与井壁紧密接触。
     (2)高灵敏度X射线荧光探头的设计。提出降低探头材料对激发源初级射线和目标元素特征X射线吸收的方法;对激发源和探测器进行选型;理论分析激发源-样品-探测器几何位置布置并进行实验验证。
     (3)井液的影响与校正。研究井液对X荧光测井结果的影响,分析井液层厚度对散射峰计数的影响,并进行实验验证;分析井液层厚度对目标元素特征峰峰计数的影响,并进行实验验证。并从探管结构和方法技术上,对井液的影响进行校正。
     (4)野外X射线荧光测井试验。通过现场实时X射线荧光测井结果与岩芯样室内分析结果的对比,评价X射线荧光测井在实际地质勘探过程中的实用性与效果。
     本文取得的主要创新性成果如下:
     (1)研制了X射线荧光测井探管。探管材料选用硬质合金铝,密封采用O形橡胶密封圈进行双层密封。在结构上,将探测部分设计制作成单独的短臂(X射线荧光探头),与主体探管由电控支撑臂(短臂贴井装置)联接;支撑臂在驱动装置的推动下,将主体探管和X射线荧光探头推向井壁两侧并对井壁保持一定的压力,保证在X射线荧光测井过程中探测窗紧贴井壁;测井结束,收回支撑臂,探头与主体探管合拢成一体,便于从钻孔中取出探管。根据重庆地质仪器厂的试验井和拉拉铜矿的ZK702号勘探井的测井实验的结果,探管具有足够的强度,密封性能良好;支撑臂没有变形,具有足够强度和刚度;无论是点测还是连续测井,探测窗贴井壁效果良好。探管实现了1500m井深条件下安全可靠地工作。
     (2)研制了高灵敏度X射线荧光探头。为降低探头材料对X射线的吸收,在位于激发源和探测器处开一探测窗,探测窗材料选用对X射线具有高透过率的稀有金属铍,外形设计为圆弧面,抗压耐磨,用胶粘接具有良好的密封性。X射线荧光探头使用高能量分辨率的电致冷Si-PIN半导体探测器,以同位素放射源作为激发源,采用“斜边对称激发”方式,有效地提高了特征X射线探测的峰背比。通过理论分析和实验验证,在源样距离为8mm,激发源表面中心线与探测器夹角为35o时,探测到的特征X射线的峰背比为18%。
     (3)提出了散射内标法井液校正模型。从X射线荧光测井探管和方法技术两个方面入手,有效地解决了X射线荧光测井工作中井液厚度变化对X射线荧光测井结果的影响。在井下探管的硬件设计上,采用贴井壁装置保证在X射线荧光测井过程中探测窗紧贴井壁,以尽可能减小探测窗与井壁之间的间距;在方法技术上,提出了散射内标法井液校正模型,进一步校正间距小于几毫米厚层井液对X荧光测井结果的影响。实验表明:井液在0-3mm内变化时,对5%铜含量铜矿层产生的CuKa系特征射线峰面积相对变化小于10%。
     (4)通过野外X射线荧光测井试验,评价在实际地质勘探过程中的实用性与效果。Y422型X射线荧光测井仪的测井试验是在重庆地质仪器厂试验井和四川会理县拉拉铜矿的ZK702号勘探井中进行的,共完成了550.34m的测井试验。其中,连续测井总井深352.25m,点测总井深192.03m。在ZK702号勘探井中以0.1%铜含量作为边界品位划分铜矿层共13层,获得矿层平均品位为0.1156%,线储量为2.9754%m。与岩芯劈芯取样化学分析结果相比较,两种方法提供的矿层平均品位的相对误差为12.98%。
Drilling is an important method in geological survey. It is an economic and direct approach to discovery and validation concealed deposits. Some minerals (such as uranium) have been carrying out large-scale survey with drilling. However, there has been only one traditional way to get the drilling result, and that is the chemical analysis of rock core samples. This traditional approach comes with shortcomings of heavy rock transportation tasks, high costs, large scale projects, and enable to correct the chemical analysis result shall it be untrue, and also long cycle to get the drilling result. The X-ray fluorescence (XRF) logging technology could change the ground geophysical logging from "qualitative" in the past to the contemporary development of "quantitative" stage. XRF logging provides real time in situ exploration data and determines the metal ores’scale, layer thickness and calculates line reservation in the well. Thus, The XRF logging technology greatly improve the drilling efficiency, lower the drilling cost, and shorten the time of getting the drilling results.
     Based on extensive researches, this paper discusses in details about the theoretical basis of XRF logging, provides in-depth analysis of factors affect the XRF logging. It also discusses key technologies of XRF drilling tube design, high-sensitivity XRF probe design and drilling liquid influence and corrections. Major research contents include:
     (1) XRF drilling tube design。Based on the technical requirements of XRF logging, designed the mechanical structure of the XRF tube, and conducted stress analysis and strength check to achieve safe and reliable work of the tube in borehole as deep as 1500m, and the detection window closely contact the hole wall.
     (2) High-sensitivity XRF probe design. Proposed methods to lower the probe materials’absorption of characteristics X-ray from stimulation-source primary ray and target elements; Determined the model of stimulation-source and detector; Conducted theoretical analysis and experimental verification of geometry layout of stimulation-source, core samples and the detector.
     (3) Drilling fluid influence analysis and correction. Researched the influence of drilling fluid on XRF logging result. Analyzed and experimentally verified the drilling fluid thickness influence on scattering peak counts; Analyzed and experimentally verified the influence of drilling fluid thickness on target element characteristic peak counts; Corrected the drilling fluid influence from the aspects of tube structure and techniques.
     (4) Field XRF logging tests. Compared results from XRF logging field tests and rock core sample lab analysis results to evaluate XRF logging effectiveness and practicality in the production process of real world geological exploration.
     The main innovations of this paper are as follows:
     (1) Developed the XRF tube. The tube is made of aluminum alloy, double sealed with O-shape rubber ring. Structure wise, the detection part is a separate arm (XRF probe), and is attached to the main tube through an electronic-controlled support arm (hole wall-contact device); Driven by a drive, the support arm pushes the main tube and XRF probe to the sides of the well, and maintains a certain pressure to the hole wall to ensure that through the whole XRF logging process, the detection window has close contact with the wall; when logging is done, the support arm is withdrawn, the probe and the main tube closed into each other and become one for easy tube withdraw from the borehole. According to the logging result from both the test well of Chongqing Geological Instrument Factory and the No. ZK702 exploration well of the Lala copper exploration of Sichuan Huili County, the tube had sufficient strength and good sealing; support arm had sufficient strength, rigidity and was not deformed; no matter it was point logging or continuous logging, the detection window contacted with the hole wall well. Tube worked safely and reliably with 1500m well-depth.
     (2) Developed a highly sensitive XRF probe. To reduce the probe material’s X-ray absorption, a detection windows is implemented at where the stimulation-source and the detector are. This detection window’s is made of rare metal beryllium, which has high X-ray transmittance. The detection window’s exterior has circular-shaped surface which is compression-resistant and wear-resistant, and has good sealing when glued. XRF probe uses high energy resolution, electronic cooling Si-PIN semiconductor detector, radioactive isotope as stimulation source, and the "hypotenuse symmetry stimulate" approach to effectively improve the peak to background ratio of characteristic X-ray detection. Through theoretical analysis and experimental validation, with source sample distance of 8mm and 35 degree angle between stimulate-source surface center line and the detector, the detected peak to background ratio of the characteristic X-ray is18%.
     (3) Proposed Scattering Internal Standard Method drilling fluid correction model. From aspects of the XRF logging probe itself and techniques, effectively solved the problem of drilling fluid thickness influence on XRF logging result. From aspect of the probe hardware design, made sure to minimize the space between the detection window and hole wall during XRF logging process through the wall-contact device; From aspect of techniques, used Scattering Internal Standard Method drilling fluid correction model to further adjust the influence of drilling fluid with thickness less than a few millimeters on XRF logging result. Experiments show that when drilling fluid changes within a range 0-3mm, peak area of characteristic CuKa series radiation generated by copper layer with 5% copper content relative change was less than 10%.
     (4) Evaluate XRF logging effectiveness and practicality in the production process of real world geological exploration through field tests. Logging tests of Y422 model XRF logging device were conducted in the test well of Chongqing Geological Instrument Factory and the No. ZK702 exploration well of the Lala copper exploration of Sichuan Huili County. Total of 550.34m logging test were conducted. Among which, continuous logging total depth was 352.25m, and point logging total depth was 192.03m. In ZK702 well, took 0.1% copper content as the boundary grade, copper layer were categorized into 13 grades, copper layer average grade was 0.1156% and its line reserves was 2.9754% m. Compare this result with core samples chemical analysis result, the relative error of the two methods on average grade of ore bed is 12.98%.
引文
[01]葛良全,周四春,赖万昌.原位X辐射取样技术[M].成都:四川科学技术出版社,1997.
    [02]张家烨等.放射性同位素X射线荧光分析[M].原子能出版社,1981.
    [03]章晔,谢庭周,曹利国等.X射线荧光探矿技术[M].北京:北京地质出版社,1984.
    [04]林延畅.高灵敏度多元素现场X荧光探测系统研制[D].成都:成都理工大学,2006.
    [05] Liangquan Ge,Ye Zhang,Yeshun Chen,Sichun Zhou,Tingzhou Xie and Shenli Hou ,Proposed Correction and Influence of Drilling Fluids in X-Ray Fluorescence Logging[J].X-RAY SPECTROMETRY SPECTROMETRY,1997,26(1):303-308
    [06] C.G.Clayton, in Nuclear Techniques and Mineral Resources,pp.293-324.IAEA,Vienna(1969).
    [07] J.R.Rhodes,J.Furuta and P.F.Berry,in Nuclear Techniques and Mineral esourse,pp.353-364.IAEA,Vienna(1969).
    [08] Y.zhang, X-Ray Fluorescence Exploration Techniques. Geo-logical Publishing House,Beijing,(1984).
    [09] Syed Naeem Ahmed. Physics and engineering radiation detection[M].UK:Academic Press,2007
    [10] KONG Ling-Li,ZHANG Liang,LI Ying,et al.Investigation on natural radionucildes levels in multiole media in bone-coal mine areas of five provinces[J].NUCLEAR SCIENCE AND TECHNIQES.
    [11] Rhodes JR,Furuta T,Berry PF.A radioisotope X-ray fluorescence drill holed robe[J].Nuclear Techniques and Mineral Resources(Proceeding series),IAEA,Vienna,1969:353
    [12]复旦大学,清华大学,北京大学.原子核物理实验(上册)[M].北京:原子能出版社,1985.
    [13] Z.X.Xie, X-Ray Spectrometry. Beijing: Sciences Publishing House, (1984).
    [14]于孝忠,吕国刚,张勤等.核辐射物理学[M].北京:原子能出版社,1986.
    [15]吴学超,冯正永.核物理实验数据处理[M].北京:原子能出版社,1988.
    [16]王韶舜,叶秀云,卞祖和等.核与粒子物理实验方法[M].北京:原子能出版社,1989.
    [17]丁富荣,班勇,夏宗磺.辐射物理[M].北京:北京大学出版社,2004.
    [18]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M].北京:地质出版社,2005.
    [19]周蓉生,瓦岗诺夫.核方法原理与应用[M].北京:地质出版社,1994.
    [20]贾文懿,方方,苗放.核地球物理理论与实践[M].成都:四川大学出版社,2001.
    [21]曹利国,丁益民,黄志琦.能量色散X射线荧光方法[M].成都:成都科技大学出版社,1998.
    [22]简虎,吴松坪等.能量色散X荧光光谱分析及其应用[J].电子质量,2006,13(1).
    [23]葛良全.放射性同位素X荧光测井技术的研究[J].核技术,1997,20(1):18-23
    [24]任翔,葛良全,张庆贤等.原位X射线荧光测井井液的影响与校正[J].核技术,2009,32(10):756-759.
    [25]葛良全,周四春等.X射线荧光测井井液的影响与校正[J].成都理工大学学报,1997,20(1):103- 107.
    [26]陈长兵.综合测井系统的开发与研制[D].西安:西北工业大学,2004.
    [27]宋小龙等.金属材料手册[M].北京:化学工业出版社,2007.
    [28]王芝英,楼滨杰,朱俊杰等.核电子技术原理[M],北京:原子能出版社,1989.
    [29]丁洪林.半导体探测器及其应用[M].北京:原子能出版社,1989.
    [30]葛良全,赖万昌,周四春.海底X射线荧光探测系统的研制[J].成都理工学院学报,2001,28(l):80-84.
    [31]李国栋,贾文懿,周蓉生,唐红.便携式X荧光仪关键技术研究[J].原子能科学技术,1999,33(1).
    [32]能量色散型X射线荧光分析仪[EB/OL].httP://www.siint.eom.e.Produets/SEA200.htm.
    [33]葛良全,赖万昌,林玲等.水底沉积物原位X射线荧光测量中水分的影响与校正[J].核技术,2004,27(4):273- 276.
    [34] E.herrera Peraza ,M..Renteria .Villalobos,M.E.Montero Cabrera,A.Muoz Romero[EB/OL]. X-Ray Fluorescence analysis in environmental radiological surveillance using HPGE detectors.
    [35] X-Ray Fluorescence spectrometry for field analysis of metals in marine sediments[EB/OL].Nucl. Instr. Meth,April-December 1995, Pages 297-305
    [36] M.Flues,V.Moraes,B.P.Mazzilli.The influence of a coal-fired power plant operation on radioactivity,2002,63:285-294.
    [37] KONG Ling-Li,ZHANG Liang,LI Ying,et al.Investigation on natural radionucildes levels in multiole media in bone-coal mine areas of five provinces[J].NUCLEAR SCIENCE AND TECHNIQES.
    [38] Th.Zeevaert,L.Sweek,H.Vanmarcke.The radiological impact from airborne routine discharges of a modern coal-fired power plant[J].Journal of Envirnmenta Radioactivity,2006(85):1-22.
    [39]中国核工业总公司. EJ/T 1100-1999 X射线荧光测井仪[EB/OL]. http://wenku.baidu.com/view/3a57330e7cd184254b353545.html
    [40]青泽银,郭科.多元统计方法及其程序设计[M].成都:四川科学技术出版社,1999.
    [41]黄正丰.MCNP程序使用说明[C].内部资科,1986.
    [42]许淑艳.蒙特卡罗方法在实验核物理中的应用[M].北京:原子能出版社,2006.
    [43]裴鹿成.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京:科学出版社,1980.
    [44] E.A.Strakeretal.MorseCode:Anultigroupneutronondglllma-rayMonteCarlo transporteode[C].USAECReportORNL-4585,1970.
    [45] H.M.Colbert.SANDYL a computer program for calcu-lating combined photoneleetron transport in complex Systems,Sandia Laboratorics Reprot[C].1994.
    [46] LANL Group X-6,MCNP-a general Monte Carlo Code for neutron and Photon transport[C].LA-7396-M,1979
    [47] Srikanta Sinha, Simulation of X-ray and gamma ray detector response and spectraldeconvolution, Advances in Space Research[J] 38 (2006):3005–3007;
    [48] P.H.G.M.Hendriks, M.Maushcec, R.J.deMeijer, MCNP modelling of scintillation-detector g-ray spectra from natural radionuclides, Applied Radiation and Isotopes[j],57 (2002) 449–457;
    [49] J. D. Allyson , D. C. W. Sanderson, Monte Carlo Simulation of Environmental Airborne Gamma-Spectrometry, J. Enairon. Radioactivity[J], 38(1998): 259-282;
    [50]中华人民共和国地质矿产部.Dz/T0011一91.1:5万地球化学普查规范[M].北京:中国标准出版社,1991.
    [51]范钦珊等.工程力学[M].北京:高等教育出版社,2002.
    [52]吴根耀.会理-东川裂堑的发育及形成机制[M].北京:北京科技出版社,1983,30-62.
    [53]刘肇昌,李凡友,钟康惠等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1996,48-100.
    [54]陈根文,程德荣,余孝伟.四川拉拉铜矿黄铁矿标型特征研究[J].矿物岩石,1992,12(3):85-91.
    [55]周家云,郑荣才,朱志敏等.拉拉铜矿黄铁矿微量元素地球化学特征及其成因意义[J].矿物岩石,2008,28(3):64-71.
    [56]孙训方等.材料力学[M].北京:高等教育出版社,1988.
    [57]韦林等.理论力学[M].上海:同济大学出版社,2007.
    [58]孙恒等.机械原理[M].北京:高等教育出版社,2006.
    [59]华大年等.连杆机构设计与应用创新[M].北京:机械工业出版社,2008.
    [60]顾永泉等.机械密封实用技术[M].北京:高等教育出版社,1988.
    [61]付平等.密封设计手册[M].北京:机械工业出版社,2009.
    [62]赵文德,宿德春.水下机器人耐压壳体O形圈密封性能有限元分析[J].机械工程师,2009,(7):66-67
    [63]韩慧仙,曹显利.工程机械液压O形圈密封失效的原因及改进措施[J].机床与液压,2010,38(16):64-65.
    [64] O形密封圈的主要失效原因及其防治措施[EB/OL]. http://www.cx-dn.com/articleinfo/detail-5-9-123.html297-305
    [65] http://www.labbase.net/Product/ProductItems-26-183-1672-45567.html
    [66] http://www.spectro.com.cn
    [67] http://www.skyray-instrument.com.cn/Product/index.aspx
    [68] http://www.INNOV-X.NET.CN/1/Product/search.asp
    [69] http://www.cgif.com.cn/main.htm
    [70]常向东,赵丽新,舒丹.输油管线水下穿越荷载分析与计算方法[J].天然气与石油,2007,25(1):13-15
    [71]葛良全,周四春等.新型X荧光测井仪的研制与应用[J].成都理工大学学报,1997,20(1):103- 107.
    [72]章晔,谢庭周等.核地球物理学的X射线荧技术在我国固体矿产资源中的研究与应用[J].地球物理学报,1989,32(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700