用户名: 密码: 验证码:
基于Cosserat连续体模型的颗粒材料宏细观力学行为数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒材料与人们的日常生活息息相关,广泛存在于自然界并在实际工程中被大量地应用,例如粒状药剂、砂砾、堆石料等。颗粒材料是由大量离散固体颗粒构成的,具有非常复杂的性质,其力学行为的理论研究和数值模拟受到众多学者的广泛关注。
     剪胀性是颗粒材料的重要宏观力学行为之一,一般通过引入剪胀角来表征其影响。在进行工程计算分析时,对剪胀角ψ一般有三种处理方式:(1)ψ=0°;(2)ψ=?μ,?μ为材料的内摩擦角;(3)0°<ψ≡const<φμ。以上三种处理方式都有着各自的弊端:第一种处理方式没有考虑颗粒材料的剪胀性;第二种处理方式则夸大了颗粒材料的剪胀性,并且与塑性能量耗散理论也存在一定的矛盾;第三种处理方式是前两种处理方式的折中,是一种过于依赖工程经验的方法。同时以上三种处理方式中剪胀角均为常数,这将导致剪胀会随剪切应变的增大而呈线性增加,而此与颗粒材料达到临界状态后其塑性体积不再增加的实际情况也是不相符的。本文借鉴了Houlsby提出的剪胀角相关公式,将其与Drucker-Prager准则结合并引入到了Cosserat连续体模型之中,形成了一个能考虑剪胀角演化的宏观连续体模型并运用Fortran语言独立开发了程序代码将其数值实现,最后通过数值算例对颗粒材料结构的承载力以及应变局部化现象进行了研究。
     同时颗粒破碎也是颗粒材料的一个重要特性,其对颗粒材料的宏观力学响应也有着影响。颗粒破碎所引起的最直观变化为颗粒粒径的改变,经典连续体模型大多无法对其加以描述,而Cosserat连续体模型中包含的特征长度参数则在一定程度上反映了细观结构内的平均颗粒粒径。本文中借鉴Hardin提出的颗粒破碎相关公式,将表征颗粒材料破碎程度的相对破碎率与Cosserat连续体模型中的特征长度参数关联了起来,同时还提出了破碎应力阈值对相对破碎率的计算进行了适当修正,形成了一个能考虑颗粒破碎的宏观连续体模型并运用Fortran语言独立开发了程序代码将其数值实现,最后通过数值算例对颗粒材料结构的承载力以及应变局部化现象进行了研究。
     此外,颗粒材料多尺度模型的建立为颗粒材料的研究提供了一种新的途径。本文中使用了宏观Cosserat连续体模型-细观离散颗粒模型两尺度模型,该模型在宏观尺度上依赖于宏观有限元网格,能有效地解决规模较大的问题;同时在细观尺度上将颗粒材料视为离散颗粒集合体,以便于更真实地描述颗粒材料的离散特性。此种方法是由计算均匀化理论发展而来,其核心为基于表征元的宏细观信息的传递,而细观数值样本尺寸的选取合适与否则关系到细观数值样本是否能被视作为表征元。本文基于Miehe提出的宏细观信息的传递格式详细研究了细观数值样本尺寸对颗粒材料结构的宏观刚度、极限承载力以及残余承载力产生的影响,并根据数值分析结果提出了相应的指数-对数型拟合公式以便于确定合适的细观数值样本尺寸,同时还研究了加载过程中细观尺度上细观数值样本构形及位移残差场的演化。
Granular materials are closely linked to human beings' daily life and are widely used in engineering, such as gravel, grainy pharmacy and so on. Generally speaking, granular materials are composed of randomly packed discrete particles partially or fully filled with void fluids and they have many complex charateristics. So many researchers devote themselves to theoretical and numerical studies of mechanical behaviors of granular materials.
     Many features of granular materials, such as the reduction of friction angle with increasing stress level, are related to dilatancy; therefore the understanding of dilatancy is the key to investigating behaviors of granular materials. In most engineering analysis, effect of dilatancy is usually taken into account by introducing the dilatancy angle. Dilatancy angle is generally considered by the following approaches:(1) assuming that the dilatancy angle is equal to zero;(2) assuming that the dilatancy angle is equal to the internal friction angle;(3) assuming that the dilatancy angle is a constant in the range from zero to the internal fricition angle. However, these approaches all have obvious drawbacks:the first method completely ignores dilatancy of granular materials; the second method expands dilatancy of granular materials and it also conflicts with the plastic energy dissipation theory; the last method is a way of over-reliance on engineering experience. While dilatancy angle in all three methods is kept as a constant, which causes that dilatancy increases linearly with the shear strain increasing. And this phenomenon is not consistent with that the plastic volume does not increase after achieving the critical state. In this paper, the specify formula about dilatancy angle given by Houlsby is introduced into plastic potential function in conjunct with Drucker-Prager yield function for Cosserat continuum model for granular materials. Based on two simple numerical examples, it has been show that evolution of dilatancy angle has some effect on the bearing capacity and strain localization. For the bearing capacity, with evolution of dilatancy angle, the larger dilatancy angle will lead to larger bearing capacity, and after the peak of the bearing capacity it will exhibit obvious nonlinear behaviors. For the strain localization, especially for slope stability problem, the larger dilatancy angle causes a more obvious slide band.
     At the same time, particles' breakage has an important effect on macroscopic mechanical behaviors of granular materials. Cosserat continuum model contains the internal length scale which represents the average particles' size of micro structure in granular materials to some extent. So the internal length scale can reflect changes of particles' radius caused by particles' breakage. In this paper, an elastoplastic model combined with an experiential crushing equation is suggested for crushable granular materials based on Cosserat continuum model, Hardin's definition of relative breakage Br, which is used to quantify the extent of crushing, can be obtained from the crushing equation according to normal crushing stress. Numerical examples mainly focus on the effect of particle crushing on the bearing capacity and localization of plastic strain. Numerical results illustrate that particles crush mainly in shear band, and shear band obviously becomes narrow and the equivalent plastic strain gradient increases when considering crushing.
     In addition, multiscale method for granular materials provides a new approach for the study of granular materials. The macro-micro mechanical behavior of granular materials is investigated based on a two-scale method (Finite Element Method-Discrete Element Method, FEM-DEM). In this method, the macro-stresses are obtained from the average of contact forces between discrete particles in RVE (Representative Volume Element) and the macro deformation provides the boundary condition for RVE, meanwhile the micro behavior of granular materials is modeled by the DEM. So RVE is the key point for this method and it needs to choose a micro structure which has an appropriate size to become RVE. Part of this paper's content is mainly focused on the influence of the size of micro structure on the deformation stiffness, the bearing capacity and the residual strength of the numerical model and suggests the corresponding fitting formulas according to the results. In addition, the micro structure's configuration and the particles' displacement fluctuation in the loading process are also concerned. Comparing the results under the same vertical loading displacement, it can be found that the macro deformation is closely associated with the evolution of the micro structure:because the micro structure's configuration and closely packed form both don't change obviously before the ultimate bearing capacity, the bearing capacity increases as the load displacement's increasement. After the ultimate bearing capacity, the micro structure's area becomes bigger apparently and closely packed form gradually disappears. As results of these changes, the bearing capacity has a significant softening and the particles' displacement fluctuation includes some slip bands.
引文
[1].王光谦,熊刚,方红卫.1998.颗粒流动的一般本构关系[J].中国科学(E辑),28(3):282-288.
    [2].鲍德松,张训生,徐光磊等.2003.平面颗粒流的瓶颈效应及其速度的关系[J].物理学报,52(2):401-404.
    [3]. Orpe.A.V, Khakhar.D.V.2004. Solid-fluid transition in a granular shear flow [J]. Physical Review Letters,93(6):068001.
    [4]. Babic.M, Shen.H.H, Shen.H.T.1990. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations [J]. Journal of Fluid Mechanics,219:81-118.
    [5].季顺迎.2007.非均匀颗粒介质的类固-液相变行为及其本构模型[J].力学学报,39(2):223-237.
    [6]. Mehta A, Barker GC.1994. The dynamics of sand. Reports on Progress in Physics,57 (4):383.
    [7]. Vanel.L, Claudin.P, Bouchaud.J.P, et al.2000. Stresses in siol:Comparison between theoretical models and new experiments [J]. Physical Review Letters,84(7):1439-1442.
    [8]. Mobius.M.E, Lauderdable.B.E, Nagel.S.R, et al.2001. Brazil-nut effect-Size separation of granular particles [J]. Nature,414(6861):270-270.
    [9]. Thomas H, Anita M.2003. Challenges in Granular Physics [M]. World Scientific Pub Co Inc.
    [10]. Terzaghi K, Peck RB, Mesri G. 1996. Soil mechanics in engineering practice [M]. Wiley-Interscience.
    [11]. Bak.P, Tang.C, Wiesenfeld.K.1988. Self-organized criticality [J]. Physical Review A,38(1): 364-374.
    [12]. Cambou.B, Dubujet.P, Nouguier.L.C.2004. Anisotropy in granular materials at different scales [J]. Mechanics of Materials,36(12):1185-1194.
    [13]. Terada.K, Kikuchi.N.2001. A class of general algorithms for multi-scale analyses of heterogeneous media [J]. Computer Methods in Applied Mechanics and Engineering,190(40-41): 5427-5464.
    [14]. Zohdi.T.I, Wriggers.P.2001. Computational micro-macro material testing [J]. Archives of Computational Methods in Engineering,8(2):131-228.
    [15]. Liu.W.K, Karpow.E.G, Zhang.S, et al.2004. An introduction to computational nanomechanics and materials [J]. Computer Methods in Applied Mechanics and Engineering,193(17-20): 1529-1578.
    [16]. Sitharam TG, Nimbkar MS.2000. Micromechanical modeling of granular materials:effect of particle size and gradation [J]. Geotechnical and Geological Engineering,18:91-117.
    [17]. Oda M, Iwashita K.1999. Mechanics of Granular Materials [M]. Rotterdam:A. A. Ballkema.
    [18]. Cundall PA, Strack ODL.1979. A discrete numerical model for granular assemblies [J]. Geotechnique,29:47-65.
    [19]. Alsaleh MI.2004. Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties [D]:[Ph.D.]. Louisiana:Louisiana State University.
    [20]. De Gennes PG. 1999. Granular matter:a tentative view [J]. Reviews of Modern Physics,71: 374-382.
    [21].吴爱祥,孙业志,刘湘平.2002.散体动力学理论及其应用[M].北京:冶金工业出版社.
    [22].吴清松,胡茂彬.2002.颗粒流的动力学模型和实验研究进展[J].力学进展,32:250-258.
    [23].鲍德松,张训生.2003.颗粒物质与颗粒流[J].浙江大学学报,30:514-517.
    [24]. Berryman.J.G. 1983. Definition of dense random packing. Advances in the mechanical and the flow of granular materials [C]. Vol.I, M.Shahinpor (ed.) Trans Tech Publications, D-3392 Clausthal, Germany, p1-18.
    [25].陆厚根.1993.粉体工程导论[M].上海:同济大学出版社.
    [26].谢洪勇.2003.粉体力学与工程[M].北京:化学工业出版社.
    [27]. Krein FK,陈万佳[译].1983.散粒体结构力学[M].北京:中国铁道出版社.
    [28]. Yu BM.2001. Some Fractal characters of porous media [J]. Fractals,9:365-372.
    [29]. Tagus FJ, Matin MA, Perfect E.1999. Simulation and testing of self-similar structures for soil particles size distributions using iterated functions system [J]. Geoderma,88:191-203.
    [30]. Perrier E, Bird N, Rieu M.1999. Generalizing the fractal model of soil structure:the pore solid fractal approach [J]. Geoderma,88:137-164.
    [31]. Tyler SW, Wheatcraft SW.1992. Fractal scaling of soil particle size distributions:analysis and limitations [J]. Soil Science Society of America Journal,56:62-69.
    [32].黄定向,刘本培,陈源.士壤的性质[M].
    [33]. Jia X, Williams RA.2001. A packing algorithm for particle of arbitrary shapes [J]. Powder Technology,120:175-186.
    [34]. Thomas PA, Bray JD.1999. Capturing nonsphererical shaper of granular media with disk clusters [J]. Journal of Geotechnical and Geonvironmental. Engineering,125:169-178.
    [35]. Rothenburg L, Bathurst RJ.1989. Analytical study of induced anisotropy in idealized granular materials [J]. Geotechique,39:601-614.
    [36]. Oda M, Nemat-Nasser S, Mehrabadi MM.1982. A statistical study of fabric in a random assembly of spherical granulars [J]. International Journal for Numerical and Analytical Methods in Geomechanics,6:77-94.
    [37]. Bagi K.1996. Stress and strain in granular assemblies [J]. Mechanics of Materials,22:165-177.
    [38]. De Borst R.1991. Simulation of strain localization:a reappraisal of the Cosserat continuum [J]. Engineering computations,8:317-332.
    [39]. HouIsby.G.T.1991. How the dilatancy of soils affects their behavior [C].10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy.
    [40]. Reynolds.O.1885. On the dilatancy of media composed of rigid particles in contact [J]. Phil.Mag,5(20):469-478.
    [41]. Casagrande.A.1936. Characteristics of cohesionless soils affecting the stability of earth fills [J]. Journal of the Boston Society of Civil Engineering,257-276.
    [42]. Casagrande.A.1938. The shearing resistance of soils and its relation to the stability of Earth dams [C]. Pro.Soils found. Conf. US Engineering Department.
    [43]. Taylor.D. W.1948. Fundamental of soil mechanics [M]. John Wiley and Sons Inc, New York.
    [44]. Newland.P.L, Allely.B.H.1957. Volume change in drained triaxial test on granular materials [J]. Geotechnique,7(1):17-34.
    [45]. Rowe.P.W.1962. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact [J]. Proc. Of the Royal Society of London,269. Series A:500-527.
    [46]. Home.M.R.1965. The behaviour of an assembly of rotund, rigid, cohesionless particles [J]. Proc. Royal Society, London,286:62-97.
    [47]. Schofied.A.N, Wroth.C.P.1968. Critical State Soil Mechanics [M]. McGraw Hill, London.
    [48]. Bolton.M.D.1986. The strength and dilatancy of sands [J]. Geotechnique,36(1):65-78; Discussion,37(2):219-226.
    [49]. Nove.R, Wood.D.M.1979. A constitutive model for sand in triaxial compression [J]. Int.J.Numer.Analyt.Mech.Geomech,3:255-278.
    [50]. Pastor.M, Zienkiewicz.O.C, Chan.H.C.1990. Generalized plasticity and the modeling of soil behavriour [J]. Int.J.Numerical.Anal.Methods.Geomech,14:151-190.
    [51]. Jefferies.M.G. 1993. Nor-Sand:a simple critical state for sand [J]. Geotechnique,43(1):91-103.
    [52]. Wood.D.M, Belkheir.K, Liu.D.F.1994. Strain softening and state parameter for sand modeling [J]. Geotechnique,44(2):335-339.
    [53]. Manzari.M.T, Dafalias.Y.F.1997. A critical state two-surface plasticity model for sands [J]. Geotechnique,47(2):255-272.
    [54]. Gajo.A, Wood.D.M.1999. A kinematic hardening constitutive model for sands:the multiaxial formulation [J]. Int.J.Numer.Anal.Meth.Geomech,23:925-965.
    [55]. Wan.R.G, Guo.R.G.1999. A pressure and density dependent dilatancy model for granular materials [J]. Soil and Foundations,39(6):1-12.
    [56]. Li.X.S, Dafalias.Y.F, Wang.Z.L.1999. State-dependent dilatancy in critical-state constitutive modeling of sand [J]. Can.Geotech,36:599-611.
    [57]. Li.X.S.2002. A sand model with state-dependent dilatancy [J]. Geotechnique,52(3):173-186.
    [58]. Wan.R.G, Guo.PJ.1998. A simple constitutive model for granular soils:modified stress-dilatancy approach [J]. Computers and Geotechnics,22(2):109-133.
    [59]. Li.X.S, Dafalias.Y.F.2000. Dilatancy for cohesionless soils [J]. Geotechnique,50(4):449-460.
    [60]. Yang.J, Li.X.S.2004. State-dependent strength of sands from the perspective of unified modeling [J]. Journal of Geotechnical and Geoenvironmental Engineering,130(2):186-198.
    [61]. Terzaghi.K, Peck.R.B.1948. Soil mechanics in engineering practice [M]. John Wiley & Sons.Inc, New York.
    [62]. DeSouza.1958. Compressilility of sand at high presure [MS]. Massachusetts Institute of Technology, Cambridge, Mass,63-64.
    [63]. Debeer.1970. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caission foundations [J]. Geotechnique, London, England, 13(1):39-75.
    [64]. Hite.D.R.1989. High pressure consolidation tests on sand [MS]. Univ of Louisville,53-67.
    [65]. Esterle.M.H.1990. Particle crushing in granular materials subjected to one-dimensional compression [MS]. Univ of Louisville.
    [66]. Yukio.N, Masayuki.H, Adrian, et al.2001. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression [J]. Soils and Foundations,41(1):69-82.
    [67]. Coop.M.R, Sorensen.K.K, et al.2004. Particle breakage during shearing of carbonate sand [J]. Geotechnique,54(3):157-163.
    [68]. Luzzani.L, Coop.M.R.2002. On the relationship between particle breakage and the critical state of sands [J]. Soils and Foundations,42(2):71-82.
    [69]. Indraratna.B, Salim.W.2002. Modeling of particle breakage of coarse aggregates incorporating strength and dilatancy [C]. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering. Thomas Telford Services Ltd,155:243-252.
    [70].刘崇权,汪稔.1999.钙质砂在三轴剪切中颗粒破碎评价及其能量公式[J].工程地质学报,7(4):366-371.
    [71]. Voigt W.1887. Theoretische studien uber die elasticitatsverhaltnisse der Krystalle. Abh.Ges.WissGottingen,34:3-51.
    [72]. Cosserat E, Cosserat F, Delphenich DH [translate].1909. Theory of deformable bodies [J]. Paris.
    [73]. Mindlin RD, Tiersten HF.1962. Effects of couple-stresses in linear elasticity [J]. Arch.Ration.Mech.Anal,11:415-448.
    [74]. Mindlin RD.1963. Influence of couple-stresses on stress concentrations [J]. Exp.Mech,3:1-7.
    [75]. Toupin RA.1962. Elastic materials with couple stresses [J]. Arch.Ration.Mech.Anal,11: 385-414.
    [76]. Mindlin RD.1965. Second gradient of strain and surface tension in linear elasticity [J]. Int.J.Solids.Struct,1:417-438.
    [77]. Ericksen JL, Truesdell C.1958. Exact theory of stress and strain in rods and shell [J]. Archives for Rational Mechanics and Analysis,1:295-323.
    [78]. Gunther W.1958. Zur statik und kinematik des Cosseratschen Kontinuums [J]. Abh.Braunschweig.Wss.Ges,10:195-213.
    [79]. Koiter WT.1964. Couple stresses in the theory of elasticity:1 and II [J]. Proc.K.Ned.Akad.Wet.B, 67:17-44.
    [80]. Eringen AC.1967. Mechanics of continua [M]. Wiley.
    [81]. Vardoulakis I, Sulem J.1995. Bifurcation analysis in geomechanics [M]. Blackie Academic and Professional.
    [82]. Liu X, Scarpas A, Kasbergen C.2007. A micropolar formulation of the Desai hierarchical model for elastoplastic porous media [J]. IntJournal of solids and structures,44(9):2695-2714.
    [83]. Muehlhaus HB, Vardoulakis I.1987. The thickness of shear bands in granular materials [J]. Geotechnique,37:271-283.
    [84]. Lade PV, Nelson RB.1987. Modelling the elastic behaviour of granular materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics,11 (5):521-542.
    [85]. Mcdowell.GR, Bolton.M.D, Robertson.D.1996. The fractal crushing of granular materials [J]. J. Mech. Phys. Solids,44(12):2079-2102.
    [86].徐永福,史春乐.1997.用土的分形结构确定土的水份特征曲线[J].岩土力学,18(2):40-43.
    [87].赵明华,陈炳初,苏永华.2007.红层软岩崩解破碎过程的分形分析及数值模拟[J].中南大学学报(自然科学版),38(2):351-356.
    [88].刘松玉,方磊,陈浩东.1993.论我国特殊土粒度分布的分形结构[J].岩土工程学报,15(1):23-30.
    [89].田堪良,张会礼.1996.论天然沉积砂卵石粒度分布的分形结构[J].西北水资源与水工程,7(4):26-31.
    [90]. King G C P, Sammis C G.1992. The mechanisms of finite brittle strain [J]. Pure and Appl. Geophys.,38:611-640.
    [91].谢和平,高峰,周宏伟,左建平.2003.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,23(4):1-9.
    [92].徐健,阎宗岭.2003.堆石体粒径的概率分布特征[J].施工与技术,1:34-36.
    [93].涂新斌,王思敬,岳中琦.2005.风化岩石的破碎分形及其工程地质意义[J].岩石力学与工程学报,24(4):587-595.
    [94].易顺民,赵文谦.1999.单轴压缩条件下三峡坝基岩石破裂的分形特征[J].岩石力学与工程学报,18(5):497-502.
    [95].王谦源,张清.1994.破碎体分形及其筛分布[J].青岛建筑工程学院学报,15(1):59-66.
    [96].柯昌松.1997.人工冻土破碎块度分布的分形性质[J].冰川冻土,19(1):79-83.
    [97].张季如,祝杰,黄文竞.2008.侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J].岩土工程学报,30(6):783-789.
    [98].徐永福,刘斯宏,董平.2001.粒状土体的结构模型[J].岩土力学,22(4):366-372.
    [99]. Guyon.E, Troadec.J.P.1994. Du sac de billes au tas de sable [M]. Edition Odile JACOB Sciences.
    [100].沈珠江,李建红.2006.椭球形结构块破损过程的数学描述[J].岩士工程学报,28(4):470-474.
    [101]. Marsal.R.J.1967. Large scale testing of rockfill materials [J]. Journal of the Soil Mechanics and Foundations Division,93(SM2):27-43.
    [102]. Lee.K.L, Farhoomand.I.1967. Compressibility and crushing of granular soils in anisotropic triaxial compression [J]. Can.Geotech,4(1):68-86.
    [103]. Hardin.B.O.1985. Crushing of soil particles [J]. Journal of Geotechnical Engineering,111(10): 1177-1192.
    [104]. Lade.P.V, Duncan.J.M.1975. Elasto-plastic stress-strain theory for cohesionless soil [J]. J.G.E.D.ASCE,101:1037-1053.
    [105].沈新慧.1985.天生桥混凝土面板堆石坝筑坝材料特性研究[M].水利水电科学研究院《科学研究论文集》,第32集(结构材料、岩土与抗震工程),北京:水利电力出版社,65-73.
    [106].柏树田.1985.西北口混凝土面板堆石坝筑坝材料特性的实验研究[M].水利水电科学研究院论文集.
    [107]. Hori.M, Nemat.N.S.1999. On two micromechanics theories for determining micro-macro relations in heterogeneous solids [J]. Mechanics of Materials,31:667-682.
    [108]. Bensoussan.A, Lions.J.L, Papanicolaou.G. 1978. Asymptotic methods in periodic structures [M]. Amsterdam:Noth-Holland.
    [109]. Suquet.P.M.1985. Local and global aspects in the mathematical theory plasticity. In:Bianchi.G, Sawczuk.A. Platicity today:modelling methods and applications [M]. London:Elsevier Applied Science Publishers,279-310.
    [110]. Guedes.J.M, Kikuchi.N.1990. Preprocessing and postprocessing for material based on the homogenization method with adaptive finite element methods [J]. Computer Methods in Applied Mechanics and Engineering,83:143-198.
    [111]. Terada.K, Kikuchi.N.2001. A class of general algorithms for multi-scale analysis of heterogeneous media [J]. Computer Methods in Applied Mechanics and Engineering,90: 5427-5464.
    [112]. Ghosh.S, Lee.K, Moorthy.S.1995. Multiple scale analysis of heterogeneous elastic strucutures using homogenisation theory and Voronoi cell finite element method [J]. International Journal of Solids and Structures,32(1):27-62.
    [113]. Terada.K, Hori.M, Kyoya.T, et al.2000. Simulation of the multi-scale convergence in computational homogenization approach [J]. International Journal of Solids and Structures,37: 2285-2311.
    [114]. Smit.R.J.M, Brekelmans.W.A.M, Meijer.H.E.H.1998. Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling [J]. Computer Methods in Applied Mechanics and Engineering,155:181-192.
    [115]. Miehe.C, Schotte.J. Schroder.J.1999. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains [J]. Computional Material Science,16: 372-382.
    [116]. Miehe.C, Schroder.J, Schotte.J.1999. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials [J]. Computer Methods in Applied Mechanics and Engineering,171:387-418.
    [117]. Miehe.C, Koch.A.2002. Computational micro-to-macro transition of discretized microstructures undergoing small strain [J]. Archive of Applied Mechanics,72:300-317.
    [118]. Michel.J.C, Moulinec.H, Suquet.P.1999. Effective properties of composite materials with periodic microstructure:a computational approach [J]. Computer Methods in Applied Mechanics and Engineering,172:109-143.
    [119]. Kouznetsova.V, Brekelmans.W.A.M. Baaijens.F.P.T.2001. An approach to micro-macro modeling of heterogeneous materials [J]. Computational Mechanics,27:37-48.
    [120]. Feyel.F, Chaboche.J.L.2000. FE2 multiscale approach for modeling the elastoviscoplastic behaviour of long fiber Sic/Ti composite materials [J]. Computer Methods in Applied Mechanics and Engineering,183:309-330.
    [121]. Kaneko.K, Terada.K, Kyoya.T, et al.2003. Global-local analysis of granular media in quasi-static equilibrium [J]. International Journal of Solids and Structures,40:4043-4069.
    [122].罗熙淳,梁迎春,董中。1999.分子动力学在纳米机械加工技术中的应用[J].中国机械工程,10(6):692-697.
    [123].杜咰.1985.连续体力学引论[M].北京:清华大学出版社.
    [124].吕洪生,曾新武.1999.连续体力学[M].长沙:国防科技大学出版社.
    [125].张兆顺,崔桂香.1998.流体力学[M].北京:清华大学出版社.
    [126]. Drugan.WJ, Wills.J.R.1996. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites [J]. Journal of the Mechanics and Physics in Solids,44:497-524.
    [127]. Hashin.Z.1983. Analysis of composites a survey [J]. Journal of Applied Mechanics,50: 481-505.
    [128]. Ren.Z.Y, Zheng.Q.S.2002. A quantitative study of minimum sizes of representative volume elements of cubic polycrystals numerical experiment [J]. Journal of the Mechanics and Physics in Solids,50:881-893.
    [129]. Liu.C.2005. On the minium size of representative volume element:an experimental investigation [J]. Experimental Mechanics,45(3):243-283.
    [130]. Ostoja.S.M.2002. Microstructural randomness versus representative volume element in thermomechanics [J]. Journal of Applied Mechanics,69:25-35.
    [131]. Kanit.T, Forest.S, Galliet.I, et al.2003. Determination of the size of the representative volume element for random composites:statistical and numerical approach [J]. International Journal of Solids and Structures,40:3647-3679.
    [132]. Stroeven.M, Asks.H, Sluys.L.J.2004. Numerical detemination of representative volumes for granular materials [J]. Computer Methods in Applied Mechanics and Engineering,193:3221-3238.
    [133]. Gitman.I.M, Askes.H, Sluys.L.J.2007. Representative volume:Existence and size determination [J]. Engineering Fracture Mechanics,74(16):2518-2534.
    [134]. Wagner.G.L, Liu.W.K.2003. Coupling of atomistic and continuum simulations using a bridging scale decomposition [J]. Journal of Computational Physics,190:249-274.
    [135]. Jenny.P, Lee.S.H, Tchelepi.H.A.2003. Multiscale finite volume method for elliptic problems in subsurface flow simulation [J]. Journal of Computational Physics,187(1):47-67.
    [136]. Jenny.P, Lee.S.H, Tchelepi.H.A.2006. Adaptive fully implicit multiscale finite volume method for multiphase flow and transport in heterogeneous porous media [J]. Journal of Computational Physics,217(2):627-641.
    [137]. Engquist.B.2003. The heterogeneous multiscale methods [J]. Communications in Mathematical Science,1(1):87-132.
    [138]. Dorobantu.M, Engquist-B.1998. Wavelet-based numerical homogenization [J]. SIAM Journal on Numerical Analysis,35(2):540-559.
    [139]. Stfantos.GK, Aliabadi.M.H.2007. Multiscale boundary element modeling of material degradation and fracture [J]. Computer Methods in Applied Mechanics and Engineering,197(7): 1310-1329.
    [140]. Evesque.P, Adjemian.F.2002. Stress fluctuations and macroscopic stick-slip in granular materials [J]. European Physics Journal E,9:253-259.
    [141]. Koyama.T, Jing.L.2007. Effects of model scale and particle size on micro mechanical properties and failure processes of rocks a particle mechanics approach [J]. Engineering Analysis with Boundary Elements,31:458-472.
    [142]. Kruyt.N.P.2003. Statics and kinematics of discrete Cosserat-type granular materials [J]. International Journal of Solids and Structures,40:511-534.
    [143]. Ehlers.W, Ramm.E, Diebels.S, et al.2003. From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses [J]. International Journal of Solids and Structures,40:6681-6702.
    [144]. Zhang.X, Jeffrey.R.G, Mai.Y.W.2006. A mciromechanics based Cosserat type model for dense particulate solids [J]. Z.Angew.Math.Phys,57:682-707.
    [145]. Tordesillas.A, Walsh.S.D.C.2002. Incorporating rolling resistance and contact anisotropy in micromechanics models of granular media [J]. Powder Technology,124:106-111.
    [146]. Gardiner.B.S, Tordesillas.A.2004. Micromechanics of shear band [J]. International Journal of Solids and Structures,41:5885-5901.
    [147]. Christoffersen.J, Mehrabadi.M.M.1981. A micromechanical description of granular material behavior [J]. Journal of Applied Mechanics,48:339-344.
    [148]. Chang.C.S, Kuhn.M.R.2005. On virtual work stress in granular media [J]. International Journal of Solids and Structures,42:3773-3793.
    [149]. Bagi.K.2006. Analysis of microstructural strain tensors for granular materials [J]. International Journal of Solids and Structures,43:3166-3184.
    [150]. Duran.O, Kruyt.N.P, Luding.S.2010. Analysis of three-dimensional micro mechanical strain formulations for granular materials:Evaluation of accuracy [J]. International Journal of Solids and Structures,47:251-260.
    [151]. Chang.C.S, Chao.S.J, Chang.Y.1995. Estimates of elastic moduli for granular material with anisotropic random packing structure [J]. International Journal of Solids and Structures,32(14): 1989-2008.
    [152]. Hichen.P.Y, Chang.C.S.2005. Evaluation of two homogenization techniques for modeling the elastic behavior of granular materials [J]. Journal of Engineering Mechanics,131:1184-1194.
    [153]. Chang.C.S, Gao.J.1996. Kinematic and static hypotheses for constitutive modeling of granlates considering particle rotation [J]. Acta Mechanic,115:213-229.
    [154]. Cambou.B, Dubujet.P, EmeriauIt.F, et al.1995. Homogenization for granular materials [J]. European Journal of Mechanics A/Solids,14:255-276.
    [155]. Nicot.F, Darve.F, Rnvo.2005. Groups Natural Hazards and Vulnerability of Structures [J]. A micro-macro approach to granular materials. Mechanics of Materials,37:980-1006.
    [156]. Li.X, Yu.H.S, Li.X.S.2009. Macro-micro relations in granular mechanics [J]. International Journal of Solids and Structures,46:4331-4341.
    [157]. Walsh.S.D.C, Tordesillas.A.2004. A thermomechanical approach to the development of microploar consititutive models of granular media [J]. Acta Mechanica,167:145-169.
    [158]. Collins.I.F.2005. Elastic plastic models for soils and sands [J]. International Journal of Mechanical Science,47:493-508.
    [159]. Einav.I.2007. Breakage mechanics Part I:theory [J]. Journal of the Mechanics and Physics of Solids,55:1274-1297.
    [160].何巨海,张子明,艾亿谋等.2008.基于细观力学的混凝土有效弹性性能预测[J].河海大学学报,36(6):801-805.
    [161].宁建国,王慧,朱志武等.2005.基于细观力学方法的冻土本构模型研究[J].北京理工大学学报,25(10):847-851.
    [162].朱其志,胡大伟,周辉等.2008.基于均匀化理论的岩石细观力学损伤模型及其应用研究[J].岩石力学与工程学报,27(2):266-272.
    [163]. Tsutsumi.S, Kaneko.K.2008. Constitutive response of idealized granular media under the principal axes rotation [J]. International Journal of Plasticity,24:1967-1989.
    [164]. Miehe.C, Dettma.J.2004. A framework for micro-macro transitions in periodic particle aggregates of granular materials [J]. Computer Methods in Applied Mechanics and Engineering, 193:225-256.
    [165]. Andrade.J.E, Tu.X.2009. Multiscale framework for behavior prediction in granular media [J]. Mechanics of Materials,41:652-669.
    [166]. Aristoff D, Radin Charles.2011. Dilatancy transition in a granular model [J]. J Stat. Phys 143: 215-225.
    [167]. Desimone A, Tamagnini C.2005. Stress-dilatancy based modeling of granular materials and extensions to soils with crushable grains [J]. Int. J. Numer. Anal. Mech. Geomech.29:73-101.
    [168]. Guo PJ, Su XB.2007. Shear strength, interparticle locking, and dilatancy of granular materials [J]. Can. Geotech. J,44:579-591.
    [169]. Li XK, Tang HX.2005. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization [J]. Computers & Structures,83: 1-10.
    [170]. Massoudi M, Mehrabadi MM.2001. A continuum model for granular materials:considering dilatancy and the Mohr-Coulomb criterion [J]. Acta Mechanica,152:121-138.
    [171]. Ueng TS, Chen TJ.2000. Energy aspects of particle breakage in drained shear of sands [J]. Geotechnique,50:65-72.
    [172]. Zhang J, Salgado R.2010. Stress-dilatancy relation for Mohr-Coulomb soils following a non-associated flow rule [J]. Geotechnique,60:223-226.
    [173]. Zienkiewicz OC, Humpheson C, Lweis RW.1975. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique,25:617-689.
    [174]. Perkins SW, Madson CR.2000. Bearing capacity of shallow foundations on sand:a relative density approach [J]. J.Geotech.Geoenviron.,126(6):521-530.
    [175]. Hagerty MM, Hite DR, Ullrich CR, Hagerty DJ.1993. One dimensional high pressure compression of granular media [J]. Journal of Geotechnical Engineering,113:1-18.
    [176]. Einav I.2007. Breakage mechanics-Part Ⅰ:Theory; Part Ⅱ:modeling granular materials [J]. Journal of the Mechanics and Physics Solids,55:1274-1297; 1298-1320.
    [177]. Ezaoui A, Lecompte T, Benedetto HD, Garcia E.2011. Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material [J]. Granular Matter,13:283-301.
    [178].楚锡华,沈顺,余村等.2012.考虑破碎影响的颗粒材料亚塑性模型及应变局部化模拟[J].计算力学学报,29:375-380.
    [179].迟世春,贾宇峰.2005.土颗粒破碎耗能对罗维剪胀模型的修正[J].岩土工程学报,27:1266-1269.
    [180].米占宽,李国英,陈铁林.2007.考虑颗粒破碎的堆石料本构模型[J].岩士工程学报,29:1865-1869.
    [181].郭灵熙,胡辉,包成纲.1997.堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报,19:83-88.
    [182].刘汉龙,秦洪玉,高玉峰等.2005.堆石料粒料颗粒破碎实验研究[J].岩土力学,26:562-566.
    [183]. K.Dopfer, J.Foster and J.Potts.2004. Micro-meso-macro [J]. J Evol Econ,14:263-279.
    [184].孙西芝,陈时锦,程凯和初文江.2006.多尺度仿真方法研究综述[J].系统仿真学报,18(10):2699-2702.
    [185]. P.Kanoute, D.P.Boso, J.L.Chaboche and B.A.Schrefler.2009. Multiscale methods for composites:a review [J]. Arch comput methods Eng,16:31-75.
    [186]. V.P.Nguyen, M.Stroeven and L.J.Sluys.2011. Multiscale continuous and discontinuous modeling of heterogeneous materials:a review on recent developments [J]. Journal of multiscale modeling,3(4):1-42.
    [187].吴聪颖,段芳莉和郭其超.2011.多尺度方法在微/纳接触行为模拟中的应用进展[J].材料导报,25(8):145-149.
    [188]. J.E.Andrade, I.Vlahinic, K.W.Lim and A。Jerves.2012. Multiscale 'tomography-to-simulation' framework for granular matter:the road ahead [J]. Geotechnique,2:135-139.
    [189]. R.I.Borja and J.R.Wren.1995. Macromechanics of granular media Part I:Generation of overall constitutive equation for assemblies of circular disks [J]. Comput.Methods Appl. Mech Eng.,127: 13-36.
    [190]. R.I.Borja and J.R.Wren.1997. Macromechanics of granular media Part II:Overall tangential moduli and localization model for periodic assemblies of circular disks [J]. Comput. Methods Appl. Mech. Eng.,141:221-246.
    [191]. C.Miehe, J.Dettmar and D.Zah.2010. Homogenization and two-scale simulations of granular materials for different microstructural constraints [J]. Int. J. Num. Mech. Eng.,83:1206-1236.
    [192]. H.A.Meier, P.Steinmann and E.Kuhl.2008. Towards multiscale computation of confined granular media-contact forces, stresses and tangent operators [J]. Techn. Mech.,28:32-42.
    [193]. Li Xikui, Liu Qipeng and Zhang Junbo.2010. A micro-macro homogenization approach for discrete particle assembly Cosserat continuum modeling of granular materials [J]. International Journal of Solids and Structures,47:291-303.
    [194]. Liu Qipeng, Liu Xiaoyu, Li Xikui and Li Shihai.2013. Micro-macro homogenization of granular materials based on the average-field theory of Cosserat continuum [J]. Advanced Powder Technology,2013(Article in press).
    [195]. M.Nitka, G.Combe, C.Dascalu and J.Desrues.2011. Two-scale modeling of granular materials: a DEM-FEM approach [J]. Granular Matter.,13:277-281.
    [196]. T.K.Nguyen, G.Combe, D.Caillerie and J.Desrues.2013. Modeling of a cohesive granular materials by a multi-scale approach [C]. A IP Conference Proceedings,1194-1197.
    [197]. J.E.Andrade and C.F.Avila.2012. Granular element method (GEM):linking inter-particle forces with macroscopic loading [J]. Granular Matter,14:51-61.
    [198]. R.Hill.1985. On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain [J]. Math. Proc. Camb. Phil. Soc,98:578-590.
    [199]. C.S.Chang and J.Gao.1996. Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation [J]. Acta Mechanica,115:213-229.
    [200]. C.S.Chang and A.Misra.1990. Packing structure and mechanical properties of granulates [J]. J. Eng. Mech.,116(5):1077-1093.
    [201]. S.Abedi, A.L.Rechenmacher and A.D.Orlando.2012. Vortex formation and dissolution in sheared sands [J]. Granular Matter,14:695-705.
    [202].唐洪祥.2007.基于Cosserat连续体模型的应变局部化有限元模拟[D]:[博士].大连:大连理工大学.
    [203].楚锡华.2006.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D]:[博士].大连:大连理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700