用户名: 密码: 验证码:
孤束核在针刺调节大鼠血压及胃肠感觉和运动中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
《灵枢·海论》“夫十二经脉者,内属于府藏,外络于肢节”的记载,说明沟通脏腑与体表肢节的联系是十二经脉的重要功能。针刺通过刺激人体体表的穴位以达到治疗内脏疾病调节内脏功能的作用。现代临床研究显示针刺治疗心血管、胃肠等各种内脏疾病效果显著,并有一定的穴位特异性。
     针刺对内脏功能的调节是由脊髓及脊髓上中枢协同完成的。针刺引起的体表-内脏反射是其调节心血管、胃肠等内脏功能的重要神经反射形式,可分为脊髓固有反射及脊髓上反射两种形式。体表-自主神经反射分为体表-交感和体表-副交感反射两种,由器官的自主神经支配特性和刺激部位的脊髓节段性决定,同时受刺激强度和种类的影响。孤束核(nucleus of tractus solitary, NTS)位于延髓背侧,是迷走神经感觉传入的第一级中枢,参与心血管、呼吸、胃肠等多种内脏功能的调控,也是心血管压力感受性反射、胃肠感觉的第一级感觉中继站;同时NTS与迷走神经背核、延髓尾端腹外侧核(rostral Ventrolateral Medulla, rVLM)、延髓头端腹外侧核(caudal Ventrolateral Medulla, cVLM)、疑核等中枢核团有纤维联系,通过交感和副交感神经传出通路完成对内脏功能的调节。
     针刺调节内脏功能,常见单一穴位或依据传统穴位配伍的多穴调节一脏的报道。例如内关对心血管功能的影响,足三里对胃肠功能的作用。未涉及穴位选取的规律性总结。本研究根据哺乳动物皮肤,肌肉,内脏神经分布的节段性特点,结合体表刺激引起躯体—植物神经反射的前期研究报道,探讨不同节段穴位,不同刺激方式引起的内脏植物神经反射的规律,力求从动物实验总结出针刺对特定内脏功能进行交感样和副交感样调节的规律。本研究通过电生理学方法在中枢鉴别出NTS与心血管、胃肠等内脏功能及结直肠扩张(colorectal distention, CRD)刺激相关的神经元,同时记录平均动脉压(mean arterial pressure, MAP)、胃运动,选取不同神经节段的穴位进行针刺刺激,观察不同穴位对MAP和胃运动的影响,并同步观察NTS与血压调节、胃运动、CRD刺激相关神经元放电活动,研究NTS在降压、调节胃运动和抑制CRD诱导内脏痛中的作用。
     1针刺对MAP的影响及NTS与血压调节相关神经元在针刺降压中的作用
     1.1实验目的
     研究针刺对正常麻醉大鼠MAP、静脉注射去氧肾上腺素(phenylephrine,PE),硝普钠(sodium nitroprusside, NP)分别引起升压平台期、降压平台期时MAP的影响,并同步观察NTS与升压(hypertensive related neurons)、降压反射相关神经元(hypotensive related neurons)在针刺调节血压时放电活动的变化,探讨NTS中与升压、降压反射相关神经元在介导针剌降压中的作用。
     1.2实验方法
     本课题所有研究的动物实验过程均遵守美国国立卫生院倡导的实验动物保护和使用指导原则(Guide for Care and Use of Laboratory Animals, NIH),实验过程中对动物的处置遵照科技部发布的《关于善待实验动物的指导性意见》规定。
     实验选用健康成年Sprague-Dawley雄性大鼠81只,体重300-380g之间,用10%的乌拉坦腹腔注射麻醉(urethane,1.0-1.2g/kg体重)。手术及实验中动物体温用动物恒温系统维持在37℃左右。大鼠麻醉后进行颈动、静脉插管、气管插管,并暴露延髓后,监测动脉血压和心率,同步记录MAP及NTS神经元放电,在微电极推进器下,找到自发放电稳定的NTS神经元,经静脉推注30s左右PE(4μg/kg)、NP (NP,20ug/kg),以判断该神经元对升压反射、降压反射的反应及鉴别出与升压反射和降压反射相关神经元。对升压反射和降压反射相关神经元,待自发放电稳定、MAP'恢复至正常后,记录30s放电脉冲数作为对照值,分别电针(波宽500ms,10Hz,1mA)“耳穴心”、“内关”、“足三里”各30秒。为排除针刺穴位顺序对神经元放电结果的影响,穴位针刺顺序随机选择,观察对MAP及血压调节相关神经元放电的影响。然后在大鼠颈静脉微量注射PE(6~121μg/kg,10-15min)或者NP(60~80μg/kg,10-15min)分别造成药物性血压升高、药物性血压降低模型各15min左右,在升压平台期、降压平台期再分别电针上述穴位,并观察对动脉血压和NTS神经元放电的影响。
     1.3实验结果
     1.3.1NTS与血压反射相关神经元的鉴别
     麻醉大鼠颈静脉注射PE,完整记录120个NTS细胞放电(细胞记录不完整者不做统计,下同),其中70个细胞(58.3%)放电频率无变化;26个细胞(21.7%)放电频率减少,呈抑制反应;24个细胞(20.0%)放电频率增加,呈兴奋反应。
     麻醉大鼠颈静脉注射NP,完整记录101个NTS细胞放电,其中52个细胞(51.5%)放电频率无变化;29个细胞(28.7%)放电频率减少,呈抑制反应;20个细胞(19.8%)放电频率增加,呈兴奋反应。
     13.2电针刺激对麻醉大鼠生理状态下MAP及NTS神经元放电活动的影响
     电针“耳穴心”和“足三里”能够明显降低实验动物的MAP,与此同时,NTS与升压、降压反射相关神经元的放电明显增加。电针“内关”虽然也能轻度激活NTS神经元放电,但对MAP没有明显影响。统计结果表明,正常血压状态下,电针“耳穴心”使动物的MAP由100.11±3.3mmHg下降为88.47±3.75mmHg,下降幅度为11.64±0.45mmHg(P<0.001);电针“足三里”使MAP下降了5.74±0.64mmHg(P<0.001),电针“内关”对MAP无显著影响。不同穴位组间降压效应比较显示,电针“耳穴心”、“足三里”对正常MAP的影响大于“内关”(P<0.05)。
     针刺不同穴位引起MAP变化,同时影响正常生理性血压状态下NTS与血压反射相关神经元的放电频率,这种影响主要以兴奋性为主。在MAP正常状态下,电针大鼠不同穴位,对血压反射有兴奋或抑制性反应的神经元放电频率发生明显变化。电针大鼠“耳穴心”(n=50),25个神经元(50%)放电频率增加,(净增加率为115.2±15.25%)。电针“内关”穴(n=50),24个神经元(48%)放电频率增加(净增加率为54.24±6.89%)。电针“足三里”穴(n=47),20个神经元(42.55%)放电频率增加(净增加率为103.35±14.78%)。组间比较显示,电针“耳穴心”和“足三里”两个穴位对神经元的激活百分比增加率显著高于“内关’穴(P<0.05)。
     1.3.3电针刺激对PE引起血压升高状态MAP和NTS升压反射相关神经元放电活动的影响
     大鼠颈静脉注射PE(12~16μg/kg,10~15min)造成药物性升压模型,MAP由99.28±3.82mmHg上升并维持在121.66±2.91mmHg(P<0.001)。电针“耳穴心”和“足三里”能明显降低实验动物升压平台期的MAP,与此同时,NTS与升压反射相关神经元的放电明显增加。电针“内关”虽然能轻度激活NTS神经元放电,但对MAP没有明显影响。统计结果表明,在PE引起的升压平台期,电针“耳穴心”使MAP由124.17±4.43mmHg下降到118.7±3.64mmHg,下降幅度8.30±0.79mmHg(P<0.001);电针“足三里”使MAP下降6.07±0.79mmHg(P<0.05);电针“内关”对MAP无明显影响。组间比较显示(one-way ANOVA),电针“耳穴心”、“足三里”的降压效应优于“内关”(P<0.05)。电针同一穴位对麻醉大鼠正常状态和PE引起血压升高状态下MAP的影响无明显差异(independent/test,P>0.05).
     电针不同穴位引起升压平台期MAP变化,同时对NTS与升压反射相关神经元的放电频率产生影响,这种作用主要以兴奋性为主,使神经元放电增加。对升压反射有兴奋或抑制性反应的50个神经元中,完成升压平台期记录及针刺实验的共21个。电针大鼠耳甲区穴位,9个放电频率增加,净增加率为92.94±10.42%。电针“内关”穴,9个放电频率增加,净增加率为44.66±6.27%。电针“足三里”穴,8个放电频率增加,净增加率为86.73±5.57%。组间比较显示,电针“耳穴心”和“足三里”两个穴位对神经元的激活百分比增加率显著高于“内关”穴(P<0.05)。
     1.3.4电针刺激对NP引起血压降低状态MAP和NTS降压反射相关神经元放电活动的影响
     大鼠颈静脉注射NP(60~80μg/kg,10~15min)造成药物性降压模型,MAP由96.56±2.24mmHg下降并维持在78.29±1.84mmHg.电针不同穴位能明显降低实验动物降压平台期的MAP,与此同时,NTS与降压反射相关神经元的放电显著增加。统计结果表明,在NP引起的降压平台期,电针“耳穴心”使MAP由79.76±1.39mmHg下降到69.32±2.48mmHg,下降幅度10.44±1.60mmHg(P<0.001);电针“内关”使MAP下降7.93±1.20mmHg(P<0.05);电针“足三里”使MAP下降15.63±1.76mmHg(P<0.05);组间比较显示(one-Way ANOVA),电针上述三个穴位的降压效应无差异(P>0.05)。电针“耳穴心”、“足三里”,对麻醉大鼠生理情况MAP及NP降压状态MAP的影响无明显差异,电针“内关”对降压平台期血压的降压效应好于生理状态(independent t test,P<0.05)。
     电针不同穴位引起降压平台期MAP变化,同时,对NTS与降压反射相关神经元的放电频率产生影响,这种作用主要以兴奋性为主。电针“耳穴心”、“内关”和“足三里”使NTS内与降压反射有关神经元的放电增加。对降压反射有兴奋和抑制性反应的49个神经元中,完成升压平台期记录的共19个。电针大鼠耳甲区穴位,9个放电频率增加,净增加率为138.00±18.76%。电针“内关”穴,8个神经元放电频率增加,净增加率为96.75±20.51%。电针“足三里”穴,8个神经元放电频率增加,净增加率为100.75±31.87%。组间比较显示,电针三个穴位对神经元的激活百分比无显著差异(组间比较,one-way ANOVA, P>0.05)
     2针刺对胃运动及NTS胃运动相关神经元放电活动的影响
     2.1实验目的
     观察针刺不同穴位对正常麻醉大鼠胃内压的影响,及静脉注射不同交感和副交感神经受体业型激动剂引起胃运动迟缓和亢进状态时针刺的效应,并同步观察NTS与胃运动相关神经元在针剌调节胃运动过程中放电活动的变化,探讨NTS中与胃运动相关神经元在针刺调节胃肠功能中的作用。
     2.2实验方法
     实验选用健康成年Sprague-Dawley雄性大鼠50只。实验前禁食12-18小时,手术及实验中动物体温用动物恒温系统维持在37℃左右。大鼠麻醉后进行颈静脉、气管插管,胃幽门部插入水囊连接压力换能器以记录胃内压,并监测血压、心率。
     同步记录胃内压及孤束核与胃运动相关神经元,找到稳定孤束核神经元胞外放电后,记录背景放电30s,然后分别电针、手针“耳穴心”、“内关”、“中脘”、“足三里”四个穴位,同步观察对胃运动和孤束核神经元细胞外放电的影响。对针刺有反应的神经元,分为5组,分别静脉注射四种药物和生理盐水:p3体激动剂BRL37344Salt Hydrate4-8μ g/kg;β2受体激动剂盐酸克仑特罗0.05-0.1mg/kg;α:受体激动剂可乐定0.4-0.8mg/kg;拟胆碱药氨基甲酰胆碱0.2-0.4mg/kg和静脉注射0.2ml0.9%的生理盐水。上述药物引起胃蠕动迟缓或亢进的同时,NTS神经元放电活动发生兴奋或抑制的同步变化,则鉴定为孤束核与胃运动相关神经元。各组药物注射后,继续观察针刺不同穴位对胃运动和孤束核与胃运动相关神经元的影响。
     2.3实验结果
     2.3.1生理状态下针刺对胃运动和NTS胃运动相关神经元放电活动的影响
     生理状态下,麻醉大鼠的胃运动频率为4-5次/min,波幅在50-100mmH2O。结果表明电针刺激“耳穴心”、“内关”、“足三里”都能促进麻醉大鼠胃蠕动(P<0.01),而电针“中脘”穴则明显减弱胃蠕动(P<0.001)。手针效果与电针效果一致(independent t test, P>0.05)。
     针刺过程共记录133个NTS神经元胞外放电,对针刺上述4个穴位有反应的神经元104个;静脉注射p3受体激动剂、β2受体激动剂、α2受体激动剂、拟胆碱药有反应的共45个,以下分组讨论。在正常情况下,针刺对孤束核与胃运动相关神经元放电的影响以抑制为主。针刺不同穴位对孤束核与胃运动相关神经元的抑制作用无明显差异(one way ANOVA, LSD, P>0.05)
     2.3.2使用β3受体激动剂后针刺对胃运动和NTS相关神经元活动的影响
     静脉注射β3受体激动剂后,药物对胃运动抑制作用大约持续30-60min,胃运动蠕动波波幅下降了10-20mmH20,胃内压明显降低,幅度为65.4±7.20mmH2O(P<0.001)。药物后电针对胃运动没有影响(P>0.05)。手针刺激“耳穴心”、“足三里”使胃内压增高(P<0.05);手针刺激“中脘”使胃内压降低(P<0.05)。与电针比较,手针“耳穴心”和“中脘”分别引起的胃运动的增强和抑制效应更为显著(P<0.05),其余穴位不同刺激无明显差异(independent t test, P>0.05)。
     分别针刺4个穴位对p3受体激动剂静脉注射前后孤束核与胃运动相关神经元放电的影响无统计学差异(independent t test, P>0.05)。
     2.3.2使用β2受体激动剂后针刺对胃运动和NTS相关神经元电活动的影响
     静脉注射β2受体激动剂Clenbuterol(克伦布特罗)后,胃运动波幅明显减低了10-20mmH20,胃内压明显下降,幅度为51.18±9.93mmH2O(P<0.001)。电针刺激“耳穴心”使胃内压升高(P<0.05;电针刺激“内关”、“中脘”、“足三里”对胃运动无作用(P>0.05)。手针刺激“耳穴心”、“内关”、“足三里”能促进胃运动(P<0.01),手针“中脘”能抑制胃运动(P<0.05)。手针“内关”、“足三里”、“中脘”相比电针对胃运动的影响作用更明显。(independent t test, P<0.05)。
     在Clenbuterol药物引起胃运动抑制状态,针刺不同穴位对药物前后孤束核与胃运动相关神经元的放电的影响无明显差异(independent t test, P>0.05)。
     2.3.3使用α2受体激动剂后针刺对胃运动和NTS相关神经元放电活动的影响
     静脉注射α2受体激动剂Clonidine后,胃运动的波幅降低了10-20mmH20,胃内压明显下降,幅度为79.07±24.59mmH20,持续30-60min(P<0.05)。药物后电针、手针“耳穴心”、“足三里”能促进胃运动(P<0.05),在Clonidine药物注射后引起胃运动迟缓状态下,两种刺激增强胃运动的作用无显著差异。手针“中脘”能抑制胃运动且比电针的抑制作用更显著(independent t test,P>0.05)。
     针刺不同穴位对Clonidine药物静脉注射前后孤束核与胃运动相关神经元的放电的影响无明显差异(independent t test, P>0.05)
     2.3.4使用拟胆碱药后针刺对胃运动和NTS相关神经元放电活动的影响
     静脉注射拟胆碱药氨基甲酰胆碱后,胃运动频率明显升高至6-7次/min,胃运动波幅升高了200-300mmH2O,胃内压明显升高,幅度为121.27±29.53mmH20(P<0.01)。药物注射前后,电针和手针“耳穴心”、“内关”、“足三里”均能促进胃运动(P<0.01,P<0.05,P<0.001),电针和手针“中脘”均能抑制胃运动(P<0.01;P<0.01)。与电针相比较,在拟胆碱药引起胃运动亢进状态下,手针“耳穴心”和“中脘”的作用更显著(independent t test, P<0.05)。
     针刺不同穴位对拟胆碱药静脉注射前后孤束核与胃运动相关神经元的放电的影响无明显差异(independent t test, P>0.05)。静脉注射上述四种交感和副交感受体业型激动剂对针刺调节孤束核神经元放电活动无影响。
     3针刺对NTS与CRD相关神经元活动的影响与针刺治疗内脏痛的机制
     3.1实验目的
     给予麻醉大鼠梯度的CRD条件刺激,鉴别NTS中CRD“点燃”(ON cell)型和“熄火”(OFF cell)型神经元,观察针刺作为检验刺激对此类神经元放电活动的影响,探讨针刺在孤束核部位干预内脏痛的中枢神经系统机制。
     3.2实验方法
     正常雄性SD大鼠,监测心率、颈总动脉血压,记录孤束核神经元细胞外放电。大鼠经肛门在直结肠放置长度4-5cm左右的气囊,通过压力计随机给予梯度为20、40、60、80mmHg的结直肠扩张刺激(CRD),同时用电生理单细胞记录的方法记录和鉴别孤束核对CRD刺激有反应的相关神经元,参照Fields等的研究大鼠RVM内存在对伤害性热刺激引起的甩尾反射相关的“熄火”型(OFF cell)和“点燃”型(ON cell)神经元,对梯度CRD刺激产生递增的兴奋性反应的神经元,称为“点燃”型(ON cell),对梯度CRD刺激产生递减的抑制性反应的神经元,称为“熄火”型(OFF cell).鉴别出NTS中CRD相关神经元后,待放电恢复至基础水平,给予CRD刺激,NTS神经元放电发生明显"ON cell"或“OFFcell"型反应时,给予2mA、10Hz持续30s的电针不同穴位的刺激,观察针刺“耳穴心”、“内关”、“足三里”在正常及CRD条件刺激引起NTS放电变化时对孤束核与CRD "ON cell"型和"OFF cell"型神经元的影响。
     3.3实验结果
     3.3.1NTS神经元对梯度CRD刺激的反应
     本实验在57只大鼠共记录到对CRD "ON cell"型神经元21个。在CRD20、40、60、80mmHg条件刺激时,NTS神经元放电由自发的205.52±30.12个/30s分别增加了21.10±5.23个/30s、56.79±11.93个/30s、86.17±13.38个/30s、124.27±15.00个/30s(P<0.001,P<0.01,P<0.001,P<0.001),为梯度增加反应。
     另外记录到12个CRD "OFF cell"型神经元。在CRD20、40、60、80mmHg条件刺激时,NTS神经元放电由自发的196.67±42.36个/30S分别减少了25.82±13.43个/30s、72.72±14.77个/30s、112.91±22.37个/30s、146.83±29.83个/30s(P<0.05,P<0.01,P<0.01,P<0.05),为梯度抑制反应。
     此外记录到2个对梯度CRD刺激产生先兴奋后抑制,3个先抑制后兴奋的神经元,在本实验中未纳入统计。
     3.3.2电针对NTS与CRD相关神经元放电活动的影响
     CRD刺激对NTS产生"ON cell"型反应的神经元,CRD刺激前和CRD过程中电针“耳穴心”、“内关”、“足三里”都以抑制反应为主。如CRD前电针“耳穴心”放电减少了34.73±3.37个/30s(P<0.01);CRD刺激过程电针“耳穴心”使放电减少了45.55±4.17个/30s(P<0.001)。
     对CRD刺激产生"OFF cell"型反应的神经元,在CRD刺激前和CRD刺激过程中电针上述3个穴位都以兴奋反应为主。如CRD前电针“耳穴心”使放电增加了184.26±27.35个/30s(P<0.001);CRD刺激时电针“耳穴心”使放电增加了130.14±28.23个/30s(P<0.01)。
     4结论
     孤束核内存在升压、降压反射相关神经元,这些神经元可以分别被升压、降压反射兴奋和抑制,表现为反应的多样性。在生理状态下及PE引起的升压平台期,这些神经元被“耳穴心”、“足三里”激活的百分比与“内关”相比更为显著;在降压平台期,这些神经元被上述三个穴位激活的百分比无明显差异,与其针刺降压相应相一致。这说明NTS在针刺调节血压过程中发挥重要的中枢整合作用,通过神经信号交互调节(cross talk)的方式完成对血压的调节。
     针刺不同穴位对胃运动的影响不同,针刺“耳穴心”及与胃肠异节段的“足三里”、“内关”能显著增强胃运动,针刺与胃肠同神经节段的“中脘”使胃运动减弱。使用交感神经不同业型神经受体激动剂后,针刺对胃运动的影响减弱;电针对胃运动的作用不如手针显著;而针刺不同穴位对胃运动的影响也发生变化,“耳穴心”、“足三里”促进胃运动的效果比“内关”明显。使用副交感神经的拟胆碱药物后,不同穴位对胃运动的作用与药物前相比无明显变化。NTS内存在与胃运动同步变化的神经元,不同植物神经受体激动剂对此类神经元的影响以兴奋为主,介导了针刺“耳穴心”、“内关”、“足三里”的胃运动增强效应和“中脘”的胃运动抑制的效应,使用植物神经受体激动剂后针刺对此类神经元的效应与生理状态下无显著差异,以抑制NTS神经元放电为主。
     NTS与CRD刺激相关神经元有两类:第一类对梯度的CRD刺激产生兴奋反应,表现为神经元胞外放电梯度增加,为“点燃”型神经元(ON cell);第二类对梯度的CRD刺激产生抑制反应,表现为神经元胞外放电梯度减少,为“熄灭”型神经元(OFF cell).这两类神经元介导了针刺拮抗CRD痛刺激的效应。针刺能够使孤束核CRD"ON cell"型神经元的放电抑制,而使孤束核CRD"OFF cell"型神经元的放电增加。提示针刺可以通过交互调节(cross talk)的方式在孤束核干预内脏感觉和痛觉,是针刺镇痛的脑干核团机制所在。
The Miraculous Pivot (it is one of the earliest medical classics in China) stated."Twelve regular channels belong to the zang-fu organs internally, and connect to the extremities and joints externally." Acupuncture and Moxibustion can treat visceral diseases to modulate visceral function by stimulating the acupoins. Acupuncture and Moxibustion's treatment of kinds of visceral diseases such as cardiovascular, gastrointestinal diseases are very effective, and has certain acupoints specificity.
     Acupuncture modulating visceral diseases through coordination of spinal and supraspinal centers. Acupuncture-induced somato-viscera reflexes have two patterns of propriospinal reflex and supraspinal reflex. Somato-autonomic nervous reflexes are divided into two kinds:the somato-sympathetic and the somato-parasympathetic reflex, dominated by the autonomic nervous characteristics of the organs and the spinal cord segments of the stimulated parts, as well as the impact of stimulus intensity and type. The medullary dorsal nucleus of solitary tract (NTS) is the first level of the central vagus nerve afferent involved in the regulation of cardiovascular, respiratory, gastrointestinal and other visceral functions of cardiovascular baroreceptor reflex, the relay station of gastrointestinal senses. NTS has fibric connections with the dorsal nucleus of the vagus nerve, the rostral Ventralateral Medulla (rVLM,), the caudal Ventrolateral Medulla (cVLM), nucleus ambiguous (NA) and other central nuclei of the fiber contact, to complete the regulation of visceral functions through the sympathetic and parasympathetic efferent pathways.
     Acupuncture regulating visceral function was commonly reported using single point or multi-points according to the traditional acupuncture compatibility. For example, the impact of Neiguan (PC6) on cardiovascular function, Zusanli (ST36) on gastrointestinal function, yet the summary of the regularity of acupuncture points selected is not involved in. In this study, according to the segmental characteristics of mammalian skin, muscle, and splanchnic nerve distribution, combined with a preliminary study of surface stimulation of the body, we tried to explore the law of the visceral autonomic reflex caused by the different segments of acupuncture points, the different stimulation, and strive to summarize the sympathetic and parasympathetic-like regulation of the law of acupuncture on the specific function of internal organs from animal experiments. This study identified the central NTS neurons that related to the cardiovascular, gastrointestinal and colorectal distention (CRD) by electrophysiological methods, simultaneously recording the blood pressure, gastric motility, to stimulate by selecting the different acupoints of the body segments, and to observe the NTS-related neuronal activity, to study the role of NTS related neurons in the effects of acupuncture reducing MAP, modulating gastric motility and inhibiting CRD-induced visceral pain.
     1The effect of acupuncture on MAP and the role of NTS blood pressure regulation related neurons in the acupuncture reducing blood pressure
     1.1Objective
     To observe the effects of acupuncture on MAP in three conditions of anaesthized rats:physiological, pressor reflex, depressore reflex caused by i.v. PE, NP and the firing changes of the NTS pressor reflex related neurons, depressor reflex related neurons, to demonstrate the role of NTS blood pressure regulation related neurons in acupuncture reducing MAP.
     1.2Methods
     All the experimental process of animals in this study was in accordance with '"Guide for Care and Use of Laboratory Animals, NIH", the disposal of animals was in accordance with "Guidance to treat experimental animals", released by the Ministry of Science and Technology.
     Eighty one healthy adult Sprague-Dawley male rats were used, weighing300-380g, anesthetized with10%urethane intraperitoneal injection of anesthetic (urethane,1.0~1.2g/kg body weight). During Surgery and experiments, animals thermostat system was used to maintain animal body temperature around37℃. Simultaneously NTS neurons and arterial blood pressure were recorded, looking for stabile spontaneous discharges of the NTS neurons under the control of microelectrode thruster. To identify the neurons'responses to the pressor reflex, depressor reflex reaction, intravenous injection of phenylephrine (PE)4μg/kg, sodium nitroprusside (NP)20ug/kg were administered. The discharges of NTS neurons responded to blood pressure reflex were recorded,30s discharges pulse number were recorded as control, then respectively EA of "Auricular acupoint"(AA),"Neiguan"(PC6)","Zusanli"(ST36) each for30seconds. To exclude the impact of acupuncture order on neuronal firing results, the acupuncture order randomly selected to observe the impact of acupuncture on the MAP and the discharge of NTS neurons. Microinjection of PE in the rat jugular vein caused drug-induced high blood pressure, or microinjection of NP in the rat jugular vein caused drug-induced low blood pressure. During the step-up platform, step-down platform, we observed the impact of EA on arterial blood pressure and the discharge of NTS neurons.
     1.3Results
     1.3.1The identification of the NTS blood pressure reflex related neurons
     After jugular vein injection of PE in normal anesthetized rats, a complete of120NTS neuron discharges were recorded (the remaining cells were not completely recorded, and did not do statistic analysis), in which the discharge frequency of70cells (58.3%) did not change; the discharge frequency of26cells (21.7%) reduced, exhibitng inhibited response; the discharge frequency of24cells (20.0%) increased, exhibitng excited reaction.
     After jugular vein injection of NP in normal anesthetized rats, a complete of101NTS neuron discharges were recorded, in which the discharge frequency of52cells (51.5%) did not change; the discharge frequency of29cells reduced (28.7%), showing inhibited responses;20cells (19.8%) increased, showing excited reaction.
     Among them,50cells responded to the pressor reflex, in which31cells responded to depressor reflex. In24Pressor reflex excitated cells,9had inhibited reaction to NP,7no reaction,8excited; In26pressor reflex inhibited cells,13excited,1no response,12inhibited.
     1.3.2The effects of electro acupuncture (EA) on MAP and NTS neurons' discharges in anesthetized rats under physiological conditions.
     EA of A A and ST36can significantly reduce the MAP of the experimental animals, at the same time, discharges in the NTS pressor reflex neurons increased significantly. EA of PC6can also mildly activate NTS neural discharges, but almost no effect on the MAP. The statistical results showed that during the state of normal blood pressure, EA of AA reduced MAP of the animals from100.11±3.3mmHg to88.47±3.75mmHg, decreased by11.64±0.45mmHg (P<0.001); EA of ST36decreased normal MAP for5.74±0.64mmHg (P<0.001),EA of PC6had no significant effect on the normal MAP. The comparison of the antihypertensive effects of different acupoint groups, EA of AA, ST36is greater than PC6under normal MAP condition (P<0.05).
     MAP changed during acupuncture at different acupoints, at the same time, the NTS pressor reflex related neurons'discharge activities were excited. EA of AA, PC6and ST36increased NTS pressor reflex related neural discharges. When MAP restored to normal state, EA of AA increased discharge frequencies of25neurons of pressor reflex excitatory or inhibitory response of50neurons (net increase in the rate was115.2±15.25%). EA of PC6,24neurons discharge frequency increased (net increase in the rate of54.24±6.89%). EA of ST36,20neurons'firing rate increased (net increase was103.35±14.78%). The results of the comparison between groups showed that the EA of AA and ST36two points compared to PC6, the neuron activation percentage increased even more significantly (P<0.05).
     1.3.3The effects of EA on MAP and NTS neurons discharges in PE caused MAP increased state rats
     In the rats'carotid, intravenous injection of PE (12~16μg/kg,10~15min) caused drug-induced step-up model, the MAP increased and maintained from normal99.28±3.82mmHg to121.66±2.91mmHg. EA of AA and ST36can significantly reduce the step-up platform of MAP in experimental animals. At the same time, the discharges of NTS pressor reflex related neurons increased significantly. EA of PC6also can mildly activate NTS neural discharges, but almost no significant effect on the MAP. The statistical results showed that during the PE pressor plateau, EA of AA reduced step-up platform of MAP from124.17±4.43mmHg to118.7±3.64mmHg, decreased by8.30±0.79mmHg (P<0.001); EA of ST36decreased the step-up platform of the MAP by6.07±0.79mmHg (P<0.05); EA of PC6had no significant effect on step-up platform of MAP. Between the depressor effect of EA of AA and ST36to PC6, the former two acupoints had better pressor effects (one way ANOVA, P>0.05).
     EA of A A, PC6, ST36on the MAP states of normal anesthetized rats and PE caused high blood pressure state, had no significant difference (independent t test, P>0.05).
     EA caused MAP changes during the step-up platform, at the same time, EA excited the discharged of NTS pressor related neurons. EA of AA, PC6and ST36increased the NTS pressor reflex related neurons'discharges. Of the50NTS pressor reflex excitatory and inhibitory neurons, a total of21NTS discharges were recorded during the step-up platform. EA of AA, nine discharge frequencies increased, the net increase rate was92.94±10.42%,7had no change in discharge frequency, five discharge frequency decreased. EA of PC6increased nine neurons firing rate, a net increasing rate was44.66±6.27%, seven discharge frequencies did not change,5discharge frequencies reduced. EA of ST36, eight neuronal firing frequencies increased, the net increasing rate was86.73±5.57%, eight discharge frequencies did not change, five discharge frequencies were reduced. The results of the comparison between groups showed that the EA of AA and ST36excited the neuronal discharges more significantly compared to PC6(P<0.05).
     1.3.4The effects of EA on MAP and NTS neurons discharges of rats in the NP caused MAP reduced state
     In rat jugular vein injection of the NP (60~80μg/kg, and10~15min) caused drug-induced step-down MAP model, the MAP reduced from the normal96.56±2.24mmHg to78.29±1.84mmHg. EA of AA, PC6and ST36can significantly reduce the step-down platform of MAP in experimental animals. At the same time, neurons in the NTS step-down reflex related neurons discharges increased significantly. Statistical results showed that the EA of AA in NP caused step-down platform of MAP dropped from79.76±1.39mmHg to69.32±2.48mmHg, decreased by10.44±1.60mmHg (P<0.001); In NP caused step-down platform of MAP, MAP decreased by7.93±1.20mmHg by EA of PC6(P<0.05);15.63±1.76mmHg by ST36decreased by (P<0.05); Comparison between groups showed that (one way ANOVA), the depressor effect of EA at these three points had no significant difference (P>0.05).
     EA of AA and ST36can reduce the MAP during physiological and NP induced depressor conditions and there was no significant difference between these two states, EA of PC6can reduce the MAP in the NP induced depressor conditions, which was better than in the physiological state.(Independent t test, P<0.05).
     EA caused the changes of the MAP during the step-down platform, at the same time, EA excited the discharge frequencies of neurons in the NTS. EA of AA, PC6and ST36can increase the discharges of NTS depressor reflex related neurons. In the49excitatory and inhibitory response neurons,19NTS discharges were recorded during the step-down platform. During EA of AA, nine discharge frequencies increased, the net increase in the rate was138.00±18.76%, seven discharge frequencies did not change,3discharge frequencies reduced. EA of PC6, eight neuronal firing frequencies increased, the net increase rate was96.75±20.51%, and seven had no change in the discharge frequencies, and four reduced discharge frequencies. During EA of ST36, eight neurons increased the discharge frequencies, the net increase rate was100.75±31.87%, eight firing rate did not change,3discharge frequencies reduced. The results of the comparison between groups showed that EA of these three acupoints on the activation percentage had no significant difference (between the two groups, One-way ANOVA, P>0.05).
     2The role of NTS gastric motility related neurons in acupuncture adjusting gastrointestinal function
     2.1Objective
     To investigate the effect of acupuncture of different acupoints on physiological gastric pressure and the inhibited or excited conditions caused by i.v different sympathetic and parasympathetic subtype receptor agonists, and synchronizely on the firing rates of NTS gatric motility related neurons, to discuss the role of NTS gastric motility related neurons in acupuncture regulating gastrointestinal functions.
     2.2Methods
     Fifty Sprague-Dawley male rats were used, weighing300~380g, anesthized with10%urethane intraperitoneal injection (urethane,1.0~1.2g/kg body weight). Fasted for18-20hours before the experiment, animal body temperature during surgical and experimental periods maintained at around37℃by an animal thermostatic system.
     Simultaneous recording intragastric pressure and NTS gastric motility related neurons, the stabile discharges of NTS were recorded for background30s, and then EA, manual acupuncture (MA) of AA, PC6, CV12and ST36. The acupuncture responses of neurons divided into5groups were injected intravenously with four drugs:β3agonist, BRL37344the Salt Hydrate4-8μg/kg; β2receptor agonist, Clenbuterol Hydrochloride0.05-0.1mg/kg; α2receptor agonist, Clonidine Hydrochloride0.4-0.8mg/kg; Cholinomimetics, carbamyl-B-methylcholine chloridecrystal0.2-0.4mg/kg and the fifth group of intravenous0.2ml0.9%saline. Of these drugs to slow or facilitate gastric motility, at the same time, the NTS neuron discharge activities had excitatory or inhibitory changes, and then they were identified as NTS gastric motility related neurons. Continue to observe the different effects of acupuncture points on the gastric motility and the NTS gastric motility related neurons after drug injection.
     2.3Results
     2.3.1The effects of acupuncture on gastric motility and the NTS gastrointestinal motility related neurons under physiological conditions
     The results showed that EA of AA, PC6, ST36stimulation can promote gastric motility (P<0.01), EA of CV12significantly reduced the gastric motor function (P0.001). MA had the same results with EA (Independent t test, P>0.05).
     Recorded a total of133NTS neuron extracellular discharges,29had no response to MA,104Neurons responded;45neurons responded to intravenous injection of one of the four drugs.
     Acupuncture inhibited neurons in the NTS gastric motility related neurons in normal conditions. Acupuncture of the four acupoints inhibiting effects on the NTS gastric motility related neurons had no significant difference (P>0.05, ONE WAYANNOVA of LSD).
     2.3.2The effects of β3adrenergic agonist on acupuncture regulating gastric motility and NTS related neurons activities
     After intravenous injection of β3adrenergic agonist, EA of AA, PC6and ST36no longer appeared to promote gastric motility, the inhibitory effect of EA of CV12on gastric motility disappeared (P>0.05). MA of AA, ST36increased gastric pressure (P<0.05). MA of CV12decreased the intragastric pressure (P<0.05). MA of PC6in promoting gastric motility disappeared. MA of AA enhanced gastric motility more significantly than EA of AA. MA of CV12had better inhibitory effect on gastric motility than EA. The exciting effect of EA and MA on rest of the acupoints had no significant difference (independent t test, P>0.05).
     After the β3agonist BRL37344drugs intravenously, the acupuncture effects on NTS related neurons were still inhibiting.
     2.3.3The effects of β2adrenergic agonist on acupuncture regulation of gastric motility and NTS neurons discharge activities
     After intravenous drug administration, EA of AA increased intragastric pressure (P<0.05), EA of PC6, CV12and ST36had no effect on gastric motility (P>0.05). MA of AA, PC6and ST36can promote gastric motility (P<0.01), MA of CV12can inhibit gastric motility (P<0.05). MA and EA of AA had no significant difference in the enhancement of gastric motility, MA in the abdominal had more significant inhibitory effect on gastric motility than EA of CV12. MA of PC6and ST36had better gastric motility enhancement than EA of PC6and ST36.(Independent t test, P <0.05).
     Acupuncture of the four points on the NTS gastric motility related neurons discharges before and after Clenbuterol drugs had no significant difference (independent t-test).
     2.3.4The effects of α2receptor agonist on acupuncture in regulating gastric motility and NTS neurons discharge activities
     After intravenous drug administration, EA of A A and ST36can promote gastric motility (P<0.05), EA of PC6, CV12had no significant effect on gastric motility (P>0.05). MA of AA, ST36can promote gastric motility, PC6had no effect on gastric motility (P>0.05). MA and EA had no significant difference on the gastric motility on AA, PC6and ST36after Clonidine injection, MA in the abdomen caused inhibitory effect on gastric motility was more significant than EA in the abdomen (independent t test, P>0.05).
     Before and after the intravenous injection of Clonidine,acupuncture at different acupoints reduced NTS gastric motility related neurons (P<0.01, P<0.05).
     The impact of acupuncture four acupoints on NTS gastric motility related neurons discharges before and after Clonidine drug injection had no significant difference (independent t test, P>0.05).
     2.3.5The effects of Cholinomimetics on acupuncture regulating gastric motility and NTS neurons discharge activities
     Before and after the intravenous injection of Cholinomimetics, EA of AA, PC6, ST36can promote gastric motility (P<0.01, P<0.05), EA of CV12can inhibit gastric motility (P<0.01). MA of AA, PC6, ST36obviously can promote gastric motility (P <0.001), MA of CV12in the abdomen significantly inhibited gastric motility (P <0.01). MA and EA of ST36, PC6had no difference in gastric motility enhancement.
     Acupuncture at different acupoints inhibited NTS gastric motility related neurons (P<0.01, P<0.05). There was no difference in the effects of acupuncture on NTS gastric motility related neuron discharges (independent t test).
     Of the four intravenously injected autonomic agonist drugs, none of them had effects on acupuncture regulating NTS neurons (P<0.001).
     3The effects of NTS colorectal distention (CRD) related "ON cell","OFF cell" neurons and their roles in the acupuncture treatment of visceral pain
     3.1Objective
     To identify NTS CRD related "ON cell" or “OFF cell” neurons by graded CRD in anaesthized rats, to observe the effects of acupuncture on these NTS CRD related neurons, to discover the central nervous mechanism of acupuncture interfering vescral pain in the NTS.
     3.2Methods
     In normal male SD rats, heart rate, blood pressure of the carotid artery, NTS neuronal discharges were monitored. A4cm ballon was placed in rectum connected to a pressure gauge to give the stepping CRD from20to80mmHg. NTS neurons were identified if their spontaneous activities excited(ON cell) or inhibited(OFF cell) by CRD, electroacupuncture (EA,2mA,0.5ms,10Hz) of AA, PC6, ST36was conducted for30s for further discrimination.
     3.3Results
     3.3.1The echelonment responses of NTS neurons to CRD
     The NTS “ON cell”neuronal discharges increased from205.52±30.12/30s to232.2±32.89/30s,279.13±41.28/30s,303.83±40.42/30s,365.81±43.05/30s by stepping CRD stimulation of20to80mmHg, and compared to the basis of discharges, the NTS neuronal discharges were significantly increased by21.10±5.23/30s,56.79±11.93/30s,86.17±13.38/30s,124.27±15.00/30s.
     The NTS "OFF cell"neuronal discharges decreased from196.67±42.36/30s, respectively, to186.36±45.01/30s,123.92±34.10/30s,83.75±23.49/30s,49.83±18.27/30s by stepping CRD stimulation of20to80mmHg, and compared to the basic discharges reduced by25.82±13.43/30s,72.72±14.77/30s,112.91±22.37/30s,146.83±29.83/30s.
     There were2neurons that had excited then inhibited responses to CRD, and3neurons that had firstly inhibited then excited responses to CRD. They were not statistically analyzed.
     3.3.2The effects of EA on NTS CRD related neurons discharges activities before and after CRD
     EA of AA, PC6, ST36can inhibit the "ON cell" NTS CRD related neuronal discharges before and during CRD stimulation.
     EA of AA, PC6, ST36can excite the "OFF cell" NTS CRD related neuronal discharges before and during CRD stimulation.
     4Conclusions
     There are pressor reflex-related and depressor reflex-related neurons in NTS, these neurons'responses to these blood pressure reflexes can be excitation and inhibition, showing the diversity of the reaction. These neurons can be excited by AA. ST36more significantly compared with the acupuncture of PC6, in accordance with the antihypertensive effects of AA and ST36, indicating that the NTS plays an important central integrate role during acupuncture regulating blood pressure process, to regulate blood pressure in central integration of neural signals (cross talk).
     Acupuncture of different acupoints had different effects on gastric motility, acupuncture of AA and gastrointestinal different segmental ST36and PC6can significantly enhance gastric motility, acupuncture of gastrointestinal similar neural segmental CV12can attenuate gastric motility. After i.v. different sympathetic subtypes" receptor agonists, the impact of acupuncture on gastric motility declined; MA affected gastric motility more significantly than EA; while acupuncture of different acupoints on gastric motility changes, AA, ST36can promote gastric motility significantly better than PC6. After i.v. parasympathetic cholinergic drugs, there is no significant change in the effects of different acupoints on gastric motility. Within the NTS, there exists neurons with synchronous changes of gastric motility, different autonomic receptor agonists can excite such neurons in the rat, mainly mediating acupuncture of AA, PC6, ST36enhancement in gastric motility and CV12gastric motility inhibition effect, acupuncture effects after the autonomic receptor agonist has no significant difference in the effects of such neurons during physiological state, mainly inhibited discharges of NTS neurons.
     NTS CRD related neurons had two categories:first class exhibited excited reaction on the stepping CRD stimulation, called "ON cell"; second class exhibited inhibited reaction, called "OFF cell". These two types of neurons mediated acupuncture's anti-nociceptive effects. Acupuncture can make NTS CRD "ON cell" neurons inhibited,"OFF cell" neurons excited. NTS neurons participated the modulatory effect of EA on CRD induced visceral pain in anesthetized rat. Concerning the bilateral regulation of EA on the NTS neuronal activities excited or inhibited by CRD, there may exist cross-talk polysynaptic mechanism. These results suggest acupuncture can interfere in visceral sensation and pain through cross-talk, which is the brainstem nuclei mechanism of acupuncture analgesia.
引文
1 Ballegaard S, Jensen G, Pedersen F, Nissen V H. Acupuncture in severe, stable angina pectoris:a randomized trial. Acta Med Scand,1986,220:307-313.
    2 Ballegaard S, Pedersen F, Pietersen A, Nissen VH, Olsen NV. Effects of acupuncture in moderate stable angina pectoris. J Intern Med.1990,227:25-30.
    3 Ballegaard S, Meyer CN, Trojaborg W. Acupuncture in angina pectoris:does acupuncture have a specific effect? J Intern Med,1991,229:357-362.
    4 Zhang CL. Clinical investigation of acupuncture therapy. Clin J Med,1956,42:514-517.
    5 Tam KC, Yiu HH. The effect of acupuncture on essential hypertension. Am J Chin Med, 1975,3:369-375.
    6 Alshelevich, IuV, Merson, MA. Afanaseva, GA. Serum aldosterone level in patients with hypertension during treatment by acupuncture. Ter Arkh,1985,57:42-45.
    7 Akhmedov T1, Vasilev I M, Masliaeva LV. The hemodynamics and neurohumoral correlaties of the changes in status of hypertension patients under the influence of acupuncture. Ter Arkh, 1993,65:22-24.
    8 Dan N. Clinical observation on the effect of acupuncture on hypertension by ambulatory blood pressure monitor. Chin J Comb Chin West Med,1998,18:26-27.
    9 严季澜.建国40年来高血压病的针灸推拿治疗概况,天津中医,1990(6):37.
    10 佘延芬,十文,夏茜等.近10年针灸治疗高血压病的研究进展.河北中医药学报,2000,15(3):36.
    11 刘锦,乔嘉斌.针刺治疗高血压的研究进展.吉林中医药学报,2008,28(2):152.
    12 王家有,赖新生.原发性高血压针剌降压疗效的研究进展.广州中医药大学学报,2010,27(1):81-84.
    13 Flachskampf FA, Gallasch J, Gefeller O, Gan J, Mao J, Pfahlberg AB, Wortmann A, Klinghammer L, Pflederer W, Daniel WG. Randomized trial of acupuncture to lower blood pressure. Circulation,2007,115(24):3121-9.
    14 Macklin EA, Wayne PM, Kalish LA, Valaskatgis P, Thompson J, Pian-Smith MC, Zhang Q, Stevens S, Goertz C, Prineas RJ, Buczynski B, Zusman RM. Stop Hypertension with the Acupuncture Research Program (SHARP):results of a randomized, controlled clinical trial. Hypertension,2006,48(5):838-45.
    15 Zhang J, Ng D, Sau A. Effects of electrical stimulation of acupuncture points on blood pressure. J Chiropr Med,2009,8(1):9-14.
    16 Cao XD, Xu SF, Lu WX. Inhibition of sympathetic nervous system by acupuncture. Acupunct Electrother Res,1983,8:25-35.
    17 Han JS. The neurochemical basis of pain relief by acupuncture. Beiing:China Medical and Pharmaceutical Technology:1987:79.
    18 Li P, Ayannusi O, Reed C, Longhurst JC. Inhibitory effect of electroacupuncture (EA) on the pressor response induced by exercise stress. Clin Auton Res,2004,14:182-188.
    19 Li P, Longhurst JC. Long-lasting inhibitory effect of EA on blood pressure in patients with mild to moderate hypertension. Soc Neurosci,2007,35:125-131.
    20 Longhurst JC, Kelly AR, Gonyea WJ, et al. Cardiovascular responses to static exercise in distance runners and weight lifters. J Appl Physiol,1980,49:676-683.
    21杨宝峰主编.生理学.北京:人民卫生出版社,2005:91-93.
    22 Spyer RM. Central nervous system mechanisms contributing to cardiovascular control. Am J Physiol,1994,474:1-19.
    23 FeIberg W, Guertzenstein PG. Vasodepressor effects obtained by drugs. J Physiol,1976,258: 337-355.
    24 Dampney RAL. Functional organization of central pathways regulating the cardiovascular system.Am J Physiol Rev,1994,74:323-364.
    25 Blessing WW, Li YW. Inhibitory vasomotor neurons in the caudal ventrolateral region of the medulla oblongata. Prog Brain Res,1989,81:83-97.
    26丁报春,王萍.延髓腹外侧区在降压反射中的作用.生理科学进展,1998,29(3):271-273.
    27顾蕴辉.脑十升压和降压区调节血压的中枢机制及其与延髓头端腹外侧区的机能联系.生理科学进展,]994,25(3):205.
    28季淑梅,刘鹏,李围.血压的中枢调节通路.实用医学杂志,2011,27(17):3241-3242.
    29顾蕴辉.边缘前脑内重要升、降压区调节血压的机制.生理科学进展,2000,31(4):311-316.
    30 De Carvalho Borges B, Carnio E C, Elias L L, et al. Lesion of the anteroventral third ventricle (AV3V) reduces hypothalamic activation and hypophyseal hormone secretion induced by lipopolysaccharide in rats. Brain Res,2006,1115(1):83-91.
    31 Dampney R A. Arcuate nucleus-a gateway for insulin's action on sympathetic activity. J Physiol,2011,589(Pt 9):2109-2110.
    32 Cassaglia P A, Hermes S M, Aicher SA, et al. Insulin acts in the arcurate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol,2011,589(Pt7): 1643-1662.
    33 Li P, Tjen-A-Looi S C, Guo Z L, et al. Long-loop pathways in cardiovascular electroacupuncture responses. J Appl Physiol,2009,106(2):620-630.
    34 Yao T, Andersson S, Thoren P. Long-lasting cardiovascular depression induced by acupuncture-like stimulation of the sciatic nerve in unanaesthetized spontaneously hypertensive rats. Brain Res,1982,240:77-85.
    35 Yao T, Andersson S, Thoren P. Long-lasting cardiovascular depressor response following sciatic stimulation in spontaneously hypertensive rats:Evidence for the involvement of central endorphin and serotonin systems. Brain Res.1982b,244:295-303.
    36 Li P. Mechanism of the modulatory effect of acupuncture on acute experimental hypertension, hypotension and extrasystoles. Acupuncture Res.1984,9:241-249.
    37 Li P, Yao T. Mechanism of the Modulatory Effect of Acupuncture on Abnormal Cardiovascular Functions. Shanghai:Shanghai Medical University Press:1992,42:45-47.
    38 Xie GZ, Zhu DN, Li P. The depressor effect on stress induced hypertensive rat by electro-acupuncture applied on deep peroneal nerve underneath Zusanli (St 36). Shanghai J Acup & Moxib,1997,1G:32-33.
    39 Cheung L, Li P, Wong C. The Mechanism of Acupuncture Therapy and Clinical Case Studies. Taylor and Francis.2001,74:94-97.
    40 Zhou W, Fu LW, Tjen-A-Looi SC, Li P, Longhurst JC. Afferent mechanisms underlying stimulation modality-related modulation of acupuncture-related cardiovascular responses. J Appl Physiol,2005,98:872-880.
    41 Zhou W, Tjen-A-Looi S, Longhurst JC. Brain stem mechanisms underlying acupuncture modality related modulation of cardiovascular responses in rats. J App1 Physiol 2005,99: 851-860.
    42周逸平,王月兰,方志斌等.针刺对SHR血压及NE、DA、5-HT含量的影响和血压与血粘度的关系.针刺研究,1995,2(5):75-79.
    43沈美萍.针刺合谷对家兔血压调整的实验研究.四川中医.1992,(11):42-47.
    44关新民等.针刺治疗“阙脱症”机理初探.中国针灸.1989,3(1):57-59.
    45 Li P, Pitsillides K, Rendig S, Pan HL, Longhurst JC. Reversal of reflex-induced myocardial ischemia by median nerve stimulation:a feline model of electroacupuncture. Circulation, 1998,97:1186-1194.
    46 Tjen-A-Looi SC, Li P, Longhurst JC. Prolonged inhibition of rostral ventral lateral medullary premotor sympathetic neuron by electroacupuncture in cats. Auton Neurosci Basic Clin,2003, 106(2):119-131.
    47 Tjen-A-Looi SC, Li P, Longhurst JC. Role of medullary GABA, opioids, and nociceptin in prolonged inhibition of cardiovascular sympathoexcitatory reflexes during electroacupuncture in cats. Am J Physiol-Heart Circ Physiol,2007,293:H3627-H3635.
    48 Tjen-A-Looi SC, Li P, Longhurst JC. Medullary substrate and differential cardiovascular response during stimulation of specific acupoints. Am J Physiol.2004,287:R852-R862.
    49 Li P, Tjen-A-Looi SC, Longhurst JC. Excitatory projections from arcuate nucleus to ventrolateral periaqueductal gray in electroacupuncture inhibition of cardiovascular reflexes. Am J Physiol,2006,209:H2535-H2542.
    50 Loewy AD. Spyer, KM. Central Regulation of Autonomic Functions. New York:Oxford University Press,1990:P88-103.
    51 Guo Z-L, Moazzami A, Tjen-A-Looi S, Longhurst J. Responses of opioid and serotonin containing medullary raphe neurons to electroacupuncture. Brain Res.2008,1229:125-136.
    52张化星、李楚芬.电针家兔‘足三里’穴对血压和心率的影响及其机制的初步探讨.宁夏医学院学报,1986,01:1-5.
    53 Kazushi Nishijo, Hidetoshi Mori, Keishi Yosikawa, Kazuhiro Yazawa. Decreased heart rate by acupuncture stimulation in humans via facilitation cardiac vagal activity and suppression of cardiac sympathetic nerve. Neuroscience Letters,1997,227:165-168.
    54高听妍,李艳华等,在针刺耳甲区对自发性高血压及正常大鼠血压的影响及其机理探讨.针灸研究,2006,31(2):90-94.
    55 Huangfu DH, Li P. The inhibitory effect of ARC-PAG-NRO system on the ventrolateral medullary neurons in the rabbit. Chin J Physiol Sci,1988,4:I 15-125.
    56 Zhang Z, Lin RJ, Fan W, Gong QL, Li P. Involvement of 5-HT and GABA in the inhibition induced by NRO stimulation of rVLM-defense-reaction-related neurons. Chin J Physiol Sci, 1992,8:208-215.
    57 Li P, Tjen-A-Looi SC, Longhurst JC. Rostral ventrolateral medullary opioid receptor subtypes in the inhibitory effect of electroacupuncture on reflex autonomic response in cats. Auton Neurosci:Basic Clin,2001,89:38-47.
    58 Crisostomo M, Li P, Tjen-A-Looi SC, Longhurst JC. Nociceptin in rVLM mediates electroacupuncture inhibition of cardiovascular reflex excitatory response in rats. J Appl Physiol,2005,98:2056-2063.
    59 Li P, Tjen-A-Looi SC, Guo Z, Longhurst JC. Reciprocal neuronal projections between arcuate and ventrolateral periaqueductal gray participate in long-lasting EA inhibition of reflex blood pressure elevation. FASEB J.2008,22:737.
    60傅立新,赵建国,赵成彬,石学敏.针刺对实验性脑出血大鼠不同脑区及心肌神经递质- 儿茶酚胺、乙酰胆碱含量的影响.中医药学刊,2003,(7):1037-1039.
    61尚钫,赵志敏,王翰如,高建新.迷走神经在电针刺激“内关”区调整失血性休克中对家兔血压的作用.山东大学学报(医学版),1982,01:11.
    62李鹏,林树新,肖永福,王长录,邓子夫.缓冲神经在电针抑制犬急性实验性高血压中的作用.基础医学与临床,1983,(1):7-9.
    63 Dean C, Woyach VL. Serotonergic neurons of the caudal raphe nuclei activated in response to hemorrhage in the rat. Brain Res.2004,1025:159-168.
    64 Dean C. Sympathoinhibition from ventrolateral periaqueductal gray mediated by the caudal midline medulla. Am J Physiol Regul Integr Comp Physiol,2005,289:R1477-R1481.
    65 Moazzami A, Tjen-A-Looi SC, Guo ZL, Longhurst JC. Serotonergic projections from nucleus raphe pallidus to rostral ventrolateral medulla participate in acupuncture modulation of cardiovascular excitatory reflexes. FASEB J,2007,582:23.
    66 Guo ZL, Moazzami A, Longhurst J. Electroacupuncture induces c-Fos expression in the rostral ventrolateral medulla and periaqueductal gray in cats:relation to opioid containing neurons. Brain Res.2004,1030:103-115.
    67 Longstreth GF, Wilson A, Knight K, Wong J, Chiou CF, Barghout V, Frech F, Ofman JJ.Irritable bowel syndrome, health care use, and costs:a U.S. managed care perspective. Am J Gastroenterol.2003,98(3):600-607.
    68 H Ouyang, J D Z Chen. Review article:therapeutic roles of acupuncture in functional gastrointestinal disorders. Aliment Parmacol Ther,2004,20:831-841.
    69 Forbes A, Jackson S, Walter C, Quraishi S, Jacyna M, Pitcher M. Acupuncture for irritable bowel syndrome:a blinded placebo-controlled trial. World J Gastroenterol.2005,11: 4040-4044.
    70 Schneider A, Enck P, Streitberger K, et al. Acupuncture treatment in irritable bowel syndrome. Gut.2006,55:649-654.
    71 Fireman Z, Segal A, Kopelman Y, Sternberg A, Carasso R. Acupuncture treatment for irritable bowel syndrome. A double-blind controlled study. Digestion.2001,64(2):100-3.
    72 Lembo AJ, Conboy L, Kelley JM, et al. A treatment trial of acupuncture in IBS patients. Am J Gastroenterol.2009,104:1489-1497.
    73 Dundee JW, McMillan CM. Clinical uses of P6 acupuncture antemesis. Acupunct Electrother Res,1990,15:211-215.
    74 Parfitt A. Acupuncture as an antiemetic treatment. J Altern Complement Med.1996,2: 167-174.
    75 Jewell D, Young G. Interventions for nausea and vomiting in early pregnancy. Cochrane Database Syst Rev,2003,4:CD000145.
    76 Carlsson CP, Axemo P, Bodin A, et al. Manual acupuncture reduces hyperemesis gravidarum:a placebo-controlled, randomized, single-blind, crossover study. J Pain Symptom Manage, 2000,20:273-279.
    77 Ho RT, Jawan B, Fung ST, Cheung HK, Lee JH. Electroacupuncture and postoperative ernes is. Anaesthesia,1990,45:327-329.
    78 Roscoe JA, Matteson SE. Acupressure and acustimulation bands for control of nausea:a brief review. Am J Obstet Gynecol,2002,186(Suppl.5 Understanding):S244-247.
    79 Coloma M, White PF, Ogunnaike BO, et al. Comparison of acustimulation and ondansetron for the treatment of established postoperative nausea and vomiting. Anaethesiology,2002,97: 1387-1392.
    80 Schlager A, Offer T, Baldissera I. Laser stimulation of acupuncture point P6 reduces postoperative vomiting in children undergoing strabismus surgery. Br J Anaesth,1998,81: 529-532.
    81 Dundee JW, Chestnutt WN, Ghaly, RG, Lynas AG. Traditional Chinese acupuncture:a potentially useful antiemetic? Br Med J (Clin Res Ed),1986,293:583-584.
    82 Ghaly RG, Fitzpatrick KT, Dundee JW. Antiemetic studies with traditional Chines acupuncture. A comparison of manual needling with electrical stimulation and commonly used antimetics. Anaestheis,1987,42:1108-1110.
    83 Zhang AL, Chen RX, Kang MF, Fan HL, Wang WL. Clinical investigation of acupuncture in the treatment of gastric dymotiligy. Chin Acupunt,1994,14:1-3.
    84史永奋,王丹华.针刺内关公孙为主治疗术后胃瘫综合征疗效观察.针灸临床杂志,2005,21(7):44-45.
    85张亚玲.针刺特定穴治疗腹部手术后胃瘫综合征46例.中国民间疗法,2009,17(4):5.
    86蒋晗.针刺治疗术后胃肠功能紊乱综合征105例.时珍国医国药,2003,14(6):364-365.
    87王燕,蔡红荣.针刺治疗术后胃瘫综合征疗效观察.中国中医急症,2008,17(3):306-308.
    88陈捷,孙立明,马尚伟.针刺治疗胆囊结石术后胃肠功能紊乱临床观察.上海针灸杂志,2010,29(5):298-299.
    89林松青.远端取穴针刺治疗术后胃肠动力不足疗效观察.针灸临床杂志,2009,25(10):24-25.
    90林庆学.电针加TDP照射治疗术后胃瘫综合征36例.特色疗法中医民间疗法,2010,18(9):21.
    91王军武,陈理国,张显华.针剌治疗对开腹手术后胃肠蠕动恢复的影响.西南国防医药,2009,19(8):63-64.
    92杨臻,侯宗立,龚东明.电针治疗腹部术后功能性胃排空障碍临床评价.河北中医药学报, 2010,25(3)32-33.
    93池田和久(日).电针刺激对大鼠胃运动的影响:有关植物神经和外周传入途径的研究.明治针灸医学,2000,27:15-26.
    94刘俊岭,陈振荣,胡翔龙,荣培晶.2000年度经络研究进展.针剌研究,2001;26(1):72-76.
    95赵艳玲,常小荣,严洁等.针刺足阳明经穴对大鼠胃肌电穴位特异性及胃电传出途径的实验研究[J].中医药学刊,2005,23(10):1788-1790.
    96常小荣,严洁,赵艳玲等.电针四白穴对神经阻断大鼠胃肌电的影响.世界华人消化杂志,2006:14(18):1762-1765.
    97汪克明,周美启,王月兰等.电针“脾俞”对胃窦部溃疡大鼠胃肠平滑肌电活动的干预作用及其机制探讨.安徽中医学院学报,2003,22(6):29-30.
    98王景杰,黄裕新,王键等c-fos在电针调控大鼠胃运动中的表达及其意义.针刺研究,2001;26(4):274-278.
    99王景杰,黄裕新,秦明等.辣檄素对电针调控胃运动的影响作用及意义.胃肠病学和肝病学杂志,2005,14(2):129-133.
    100李江山,严洁,何军锋.针刺对胃扩张模型大鼠孤束核c-fos表达及胃内压的影响.中国现代医生基础研究,2009,47(15):62-64.
    101黄裕新,王景杰,王晓斌等.胃经穴位电针调节胃运动的神经作用机制.胃肠病学和肝病学杂志,2004,13(4):358-362.
    102王述菊,孙国杰,杜艳军.针剌对胃运动异常大鼠调节作用的神经机制研究.中国中医急症,2008,17(3):352-356.
    103王述菊,孙国杰,吴绪平等.孤束核在针刺“内关”调节胃运动中的作用研究.针灸临床杂志,2010,26(1):47-50.
    104王述菊,孙国杰,杜艳军.孤束核在针刺“足三里”调节胃运动中的作用机制.中国中医药信息杂志,2007,14(9):28-30.
    105陈香梅,刘志敏,王新梅等.电针对家兔胃运动、胃电的影响及与中缝大核关系的研究.针灸临床杂志,2002,18(1):49-51.
    106于航,贾庆波,王晶.电针“足三里”穴对家兔胃运动、胃电的影响及与蓝斑核关系的研究.四川解剖学杂志,2004,12(3):208-211.
    107金淑英,张绪东,郑学芝.弓状核与电针调节家兔胃运动的关系.针灸临床杂志,2001,17(17):54-55.
    108王景杰,刘琳娜,秦明等.胃经穴位电针对胃运动的调切及对星形胶质细胞GFAP、小胶质细胞OX42表达的影响.胃肠病学和肝病学杂志,2008;17(12):1006-1009.
    109黄裕新,王景杰,王胜智.胶质细胞参与电针是三里对胃运动的调节作用.山西医科大学学报,2007;38(10):886-889.
    110牛淑冬,王月飞,李成军.尾核中P物质参与电针“足三里”穴对家兔胃运动、胃电的抑制效应.齐齐哈尔医学院学报,2003,24(6):604-605.
    111刘健华,李江山,严洁等.针刺“足三里”对大鼠孤束核P物质的影响.针刺研究,2003,28(1):5-9.
    112 Jyoti N. Sengupta. Visceral Pain:The Neurophysiological Mechanism. Handb Exp Pharmacol.2009,194:31-74.
    113 Ranieri F, Mei N, Crousillat J. Splanchnic afferent arising from gastrointestinal and peritoneal mechanoreceptor. Exp Brain Res.1973,16:276-290.
    114 Mayer EA, Gebhart GF. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994,107:271-293.
    115 Lynn PA, Blackshaw LA. In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon. J Physiol.1999,518:271-282.
    116 Jyoti N. Sengupta. Visceral Pain:The Neurophysiological Mechanism. Handb Exp Pharmacol,2009, (194):31-74
    117陈京红,滕国玺.内脏痛的中枢感觉及传导机制.解剖科学进展,1998,4(2):119-126.
    118张建梁,张宏启.内脏痛的脊髓通路研究进展.国外医学·生理、病理科学与1临床分册。2005:25(3):211-214.
    119 Sengupta, JN. G1 motility online Nature. New York:2006. Esophageal sensory physiology.
    120秦明.大鼠延髓内脏带及脊髓中神经元和胶质细胞对腹腔注射乙酸致内脏痛的反应及其相互关系的形态学研究.博士学位论文,2006,10-12.
    121 Momfikes H, Ruter J, Konig M, et al. Differential induction of c-fos expression in brain nuclei by noxious and non—noxious colonic distension:role of afferent C-fibers and 5-HT3 receptors. Brain Research,2003,966:253-264.
    122 SnowbalL R.K, Semenenko F.M, Lumb B.M.Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray:a functional anatomical and electrophysiological study.Neuroscience,2000,99(2):351-361.
    123吴敏范,滕国玺.猫扣带回前部内脏伤害与非伤害感受神经元自发放电特性的胞内记录. 针刺研究,2000,25(3):179-183.
    124 Gioia M, Galbiati S, Rigamonti L, et al. Extracellular signal-regulated kinases 1 and 2 phosphorylated neurons in the tele-and dieucephalon of rat after visceral pain stimulation: the immunocytochemical study.Neuroscience Letters,2001,308:177-180.
    125 Sedan O, Sprecher E, Yarnitsky D. Vagal stomach afferents inhibit somatic pain perception. Pain.2005,113:354-359.
    126 Thurston CL, Randich A. Electrical stimulation of the subdiaphragmatic vagus in rats: inhibition of heat-evoked responses of spinal dorsal horn neurons and central substrates mediating inhibition of the nociceptive tail flick reflex. Pain.1992,51:349-365.
    127 Ren K, Randich A, Gebhart GF. Effects of electrical stimulation of vagal afferents on spinothalamic tract cells in the rat. Pain.1991,44:311-319.
    128 Ren K, Zhuo M, Randich A, Gebhart GF. Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats. J Neurophysiol.1993,69(5):1530-1540.
    129 Multon S, Schoenen J. Pain control by vagus nerve stimulation:from animal to man... and back. Acta Neural Belg.2005,105(2):62-67.
    130 Kirchner A, Birklein F, Stefan H, Handwerker HO. Left vagus nerve stimulation suppresses experimentally induced pain. Neurology.2000,55(8):1167-1171.
    131 Janig W, Khasar SG, Levine JD, Miao FJ. The role of vagal visceral afferents in the control of nociception. Prog Brain Res.2000,122:273-287.
    132 Brierley SM, Jones RCW, Gebhart GF, Blackshaw LA. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology.2004,127:166-178.
    133 Brierley SM, Carter R, Jones W 3rd, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA.Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol.2005a,567:267-281.
    134 Traub RJ, Pechman P, Iadarola MJ, Gebhart GF. Fos-like proteins in the lumbosacral spinal cord following noxious and non-noxious colorectal distention in the rat. Pain.1992,49: 393-403.
    135 Wang G, Tang B, Traub RJ. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol.2005,94: 3788-3794.
    136 Wang G, Tang B. Traub RJ. Pelvic nerve input mediates descending modulation of homovisceral processing in the thoracolumbar spinal cord of the rat. Gastroenterology.2007, 133:1544-1553.
    137荣培晶.针刺信号与内脏伤害性传入的会聚与相互作用.博士论文.2004,32.
    138 Bing, Z., Villanueva, L., Le Bars, D.,1990. Acupuncture and diffuse noxious inhibitory controls:naloxone-reversible depression of activities of trigeminal convergent neurons. Neuroscience 37,809-818.
    139 Han JS. Acupuncture:neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci,2003,26:17-22.
    140 Kim JH, Min BI, Schmidt D, Lee HJ, Park DS,2000. The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats. Neurosci Lett.279,149-152.
    141 Pan B, Castro-Lopes JM, Coimbra A. Chemical sensory deafferentiation abolishes hypothalamic pituitary activation induced by noxious stimulation or electroacupuncture but not only decreases that caused by immobilization stress. A c-fos Study. Neuroscience,1997, 78:1059-1068.
    142 Toda K. Afferent nerve characteristics during acupuncture stimulation. Int.Congress Ser, 2002,1238,49-61.
    143 Millan MJ. The induction of pain:an integrative review. Prog Neurobiol,1999,57:1-164.
    144 Millan MJ. Descending control of pain. Prog Neurobiol,2002,66:355-474.
    145 Hu SJ, Hu JJ, Fan JZ. The influence of dorsal half transection of the spinal cord on inhibitory effect of electroacupuncture upon the medbrain discharges. Acta Zool Sin,1980,26:115-120.
    146 Shen E, Cai TD, Lan Q. Effects of supraspinal structures on acupunctureinduced inhibition of visceral-somatic reflex. Chin J Med,1974,10:628-633.
    147 Shen E, Cai TD, Lan Q. Supraspinal participation in the inhibitory effect of acupuncture on visceral-somatic reflex discharges. Chin J Med,1975,1:431-440.
    148 Shen E, Ma WH, Lan Q. Involvement of descending inhibition in the effect of acupuncture on the splanchnically evoked potential in the orbital cortex of cat. Sci Sin,1978,21:677-685.
    149 Du HJ, Zhao YF. Central localization of descending inhibition of visceralsomatic reflex produced by acupuncture. Sci Sin (B),1975,18:631-639.
    150 Du HJ, Zhao YF. Localization of central structures involved in descending inhibitory effect of acupuncture on visceral-somatic reflex discharges. Sci. Sin. (B),1976,19:137-148.
    151 Fields HL, Basbaum Al, Heinricher MM. Central nervous system mechanisms of pain modulation. In:Wall, Melzack, (Eds.), Text book of Pain, fifth ed. Elsevier,2005:172-175.
    152 Wang J, Chen ZF. The action of medullary tail-flick related neurons in electroacupuncture analgesia. Acta Physiol. Sin,1993,45:299-304.
    153 Bing Z, Villanueva L, Le Bars D. Acupuncture-evoked responses of subnucleus reticularis dorsalis neurons in the rat medulla. Neuroscience,1991b,44:693-703.
    154 Guo HF, Tian JH, Wang XM, Fan Y, Hou YP, Han JS. Brain substrates activated by electroacupuncture EA of different frequencies Ⅱ:role of Fos/Jun proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes. Mol. Brain Res,1996.43:167-173.
    155 Hui K K, Liu J, Marina O, Napadow V, Haselgrove C, Kwong K K, Kennedy D N, Makris N. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage,2005,27:479-496.
    156 Lee JH, Beitz AJ. The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia. Pain,1993,52:11-28.
    157 Takeshige C, Tsuchiya M, Guo SY, Sato T. Dopaminergic transmission in the hypothalamic arcuate nucleus to produce acupuncture analgesia in correlationwith the pituitary gland. Brain Res. Bull.,1991,26:113-122.
    158 Takeshige C, Oka K, Mizuno T, Hisamitsu T, Luo CP, Kobori M, Mera H, Fang TQ. The acupuncture point and its connecting central pathway for producing acupuncture analgesia. Brain Res. Bull.,1993,30:53-67.
    159 Wu GC, Zhu J, Cao XD. Involvement of opioid peptides of the preoptic area during electroacupuncture analgesia. Acupunct Electrother Res,1995,20:1-6.
    160 Yan B, Li K, Xu J X., Wang W, Li K, Liu H, Shan B, Tang X. Acupointspecific fMRI patterns in human brain. Neurosci Lett,2005,383:236-240.
    161 Yang J, Song CY, Lin BC, Zhu HN. Effects of stimulation and cauterization of hypothalamic paraventricular nucleus on acupuncture analgesia. Acta Physiol Sin,1992,44:455-460.
    162严洁,朱兵主编.针灸的基础与临床.2010,湖南科学技术出版社.61-62.
    163 Tarn KC, Yiu HH.The effect of acupuncture on essential hypertension. Am J Chin Med,1975, 3(4):369-75.
    164张红星,张唐法,刘悦平.针剌“曲池”与药物即时降压的对比观察.中国针灸,2001,21(11):645-646.
    165 Ku YH, Zou CJ.Tinggong(ST19), a novel acupoint for 2Hz electroacupuncture-induced depressor response.Acupunct Electrother Res,1993,18(2):89-96.
    166李汉先,蒋兆健,程汉兰.电针兔“内关”穴抗降压作用及对血浆中血管紧张素系统的影响.针刺研究,2000,25(3):200-202.
    167尹士东,曹英杰,张君.电针内关、公孙穴治疗原发性低血压100例临床观察.针灸临床杂志,2000,16(2):34-35.
    168王宗江.针刺百会治疗原发性低血压19例.上海针灸杂志.2000,19(1):47.
    169 Al-Sadi M, Newman B, and Julious SA. Acupuncture in the prevention of postoperative nausea and vomiting. Anaesthesia,1997,52:658-661.
    170 Lin X, Liang J, Ren J, Mu F, Zhang M, and Chen JD. Electrical stimulation of acupuncture points enhances gastric myoelectrical activity in humans. Am J Gastroenterol,1997,92: 1527-1530.
    171 Diehl DL. Acupuncture for gastrointestinal and hepatobiliary disorders. J Altern Complement Med,1999,5:27-45.
    172 Gu Y. Treatment of acute abdomen by electro-acupuncture—a report of 245 cases. J Tradit Chin Med,1992,12:110-113.
    173 Kimura A, Ohsawa H, Sato A, et al. Somatocardiovascular reflexes in anesthetized rats with the central nervous system intact or acutely spinalized at the cervical level. Neurosci Res, 1995,22(3):297-305.
    174 Li YQ, Zhu B, Rong PJ, Ben H, Li YH. Neural mechanism of acupuncture-modulated gastric motility. World J Gastroenterol,2007,13(5):709-716.
    175 Li P and Longhurst J C. Neural mechanism of electroacupuncture's hypotensive effects. Auton Neurosci,2010,157(1-2):24-30.
    176 Diz D I, Barnes K L, Ferrario C M. Functional characteristics of neuropeptides in the dorsal medulla oblongata and vagus nerve. Fed Proc,1987,46(1):30-35.
    177 Leslie R A.Neuroactive substance in the dorsal vagal complex of the medulla oblongata: neucleus of the tractus solitarius area postrema, and dorsal motor nucleus of the vagus.Neurochem Int,1985,7(2):191-212.
    178 Mifflin S W, Felder R B. Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol,1990,259(3 pt 2):653-661.
    179孟卓.足三里穴与三叉神经核间神经联系的电生理学研究.针刺研究,1995,20(3):29-32.
    180孟卓,吕国蔚.“足三里”-脊髓背角-孤束核的机能联系.中国科学:B辑,1992,00B(4):393-399.
    181梅志刚,朱兵,高听妍.耳针作用的形态学基础-来自HRP神经示踪法的证据.时珍国医国药,2009,20(11):2675-2677.
    182 Noguchi E. Mechanism of reflex regulation of the gastroduodenal function by acupuncture. Evid Based Complement Alternat Med,2008,5(3):251-256.
    183余曙光,郭义.实验针灸学.上海:上海科学技术出版社,2009:149-156.
    184 Hegarty AA, Felder RB. Antagonism of vasopressin V1 receptors in NTS attenuates baroreflex control of renal nerve activity. Am J Physiol,1995,269(3 Pt 2):H1080-1086.
    185 Deuchars J, Li YW, Kasparov S, et al. Morphological and electrophysiological properties of neurones in the dorsal vagal complex of the rat activated by arterial baroreceptors. J Comp Neurol.2000,417(2):233-249.
    186 Lan CT, Wu WC, Ling EA, et al. Evidence of a direct projection from the cardiovascular-reactive dorsal medulla to the intermediolateral cell column of the spinal cord in cats as revealed by light and electron microscopy. Neuroscience,1997,77(2):521-533.
    187 Xie Q, Itoh M, Miyamoto K, Li L, Takeuchi Y. Cardiac afferents to the nucleus of the tractus solitarius:A WGA-HRP study in the rat. Ann Thorac Cardiovasc Surg,1999,5(6):370-375.
    188 Chuang KS, Liu WC, Liou NH, Liu JC. Horseradish peroxidase localization of sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart. Chin J Physiol.2004,30,47(2):95-99.
    189 Zanutto BS, Valentinuzzi ME, Segura ET. Neural set point for the control of arterial pressure: role of the nucleus tractus solitaries.Biomedical Engineering Online,2010,9:1-4.
    190 Zanutto BS, Frias BC, Valentinuzzi ME. Blood pressure long term regulation:A neural network model of the set point development. Biomedical Engineering Online,2011,10:54.
    191 Miura M, Reis DJ. Termination and secondary projections of carotid sinus nerve in the cat brain stem. Am J Physiol,1969,217(1):142-53.
    192 Palkovits M, Zaborszky L. Neuroanatomy of central cardiovascular control-Nucleus tractus solitarii:afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. Prog Brain Res.1977,47:9-34.
    193 Meeley MP, Underwood MD, Talman WT, Reis DJ. Content and in vitro release of endogenous amino acids in the area of the nucleus of the solitary tract of the rat. J Neurochem.1989,53(6):1807-17.
    194 Guyenet PG, Filtz TM, Donaldson SR. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res.1987,407(2):272-284.
    195 Talman WT, Perrone MH, Scher P, Kwo S, Reis DJ. Antagonism of the baroreceptor reflex by glutamate diethyl ester, an antagonist to L-glutamate. Brain Res.1981,217(1):186-191.
    196 Criscione L, Reis, DJ, Talman, WT. Cholinergicmechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat. Eur J Pharmacol.1983,88,47-55.
    197 Shihara M, Hori N, Hirooka Y, Eshima K, Akaike N, Takeshita A. Cholinergic systems in the nucleus of the solitary tract of rats. Am J Physiol.,1999,276:R1141-R1148.
    198 Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol,2003,139(2):191-202.
    199 Colombari E, Sato MA, Cravo SL, Bergamachi CT, Campos RR JR, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension,2001,38:549-554.
    200 De Wardener H. The hypothalamus and hypertension. Physiol. Rev.2001,81:1559-1658.
    201 Berechek KH, Kirk KA, Nagahama S, Oparil S. Sympathetic function in spontaneously hypertensive rats after chronic administration of captopril. Am J Physiol.1987,252: H796-H806.
    202 Huang BS, Leenen FH. Both brain angiotensin Ⅱ and 'ouabain' contribute to sympathoexcitation and hypertension in Dahl S rats on high salt intake. Hypertension,1998, 32:1028-1033.
    203 Kagiyama S, Varela A, Phillips MI, Galli SM. Antisense inhibition of brain rennin-angiotensin system decreased blood pressure in chronic 2-kidney,1 clip hypertensive rats. Hypertension,2001,37:371-375.
    204 Park CG, Leenen FH. Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. J Korean Med Sci,2001,5:553-537.
    205 Obermuller N, Unger T, Culman J, Gohlke P, Bottari SP. Distribution of angiotensin Ⅱ receptor subtypes in rat brain nuclei. Neurosci Lett,1991,132:11-15.
    206 Tsutsumi K, Saveedra JM. Characterization and development of angiotensin Ⅱ receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol,1991,216:R209-R216.
    207 Phillips MI, Shen L, Richards EM, Raizada MK. Immunohistochemical mapping of angiotensin AT1 receptors in the brain. Regul Pept,1993,44:95-107.
    208 Allen AM, Macgregor DP, Mckinley MJ, Mendelsohn FA. Angiotensin Ⅱ receptors in the human brain. Regul Pept,1999,79:1-7.
    209 Veerasingham S J, Raizada M K. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol,2003,139(2):191-202.
    210 Colombari E, Sato M A, Cravo S L, et al. Role of the medulla oblongata in hypertension, Hypertension,2001,38(3 pt 2):549-554.
    211 John Ciriello, Monica M C. Bilateral cardiac connections between ventrolateral medulla and nucleus of solitary tract. Brain Res,1986,367(1-2):273-281.
    212 Mifflin S W, Felder R B.An intracellular study of time-dependent cardiovascular afferent interactions in nucleus tractus solitaries. J Neurophysiol,1988,59(6):1798-1813.
    213 Takakura A C, Moreira T S, Menani J V, et al. Inhibition of the caudal pressor area reduces cardiorespiratory chemoreflex responses. Neurosci,2011,177:84-92.
    214 AM Degtyarenko, MP Kaufman. Barosensory cells in the nucleus tractus solitarius receive convergent input from group Ⅲ muscle afferents and central command. Neuroscience,2006, 140(3):1041-1050.
    215 Ruggiero DA, Mtui EP, Otake K, Anwar M. Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat. Brain Res,1996,16,743(1-2): 294-302.
    216 Porter JD, Balaban CD. Connections between the vestibular nuclei and regions that mediate autonomic function in the rat. J Vest Res,1997,7:63-76.
    217 Spyer KM. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol,1981,88:24-124.
    218 Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters:10 years on. J Hypertens,2002,20(9):1675-1688.
    219 Sved AF, Ito S, Sved JC. Brainstem mechanisms of hypertension:role of the rostral ventrolateral medulla. Curr Hypertens Rep,2003,5(3):262-268.
    220 Blessing WW. Lower brain stem regulation of visceral, cardiovascular, and respiratory function. Amsterdam:Elsevier Academic Press,2004,651-658.
    221 Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci,2006,7(5): 335-46.
    222 Zhang J and Mifflin S W. Responses of aortic depressor nerved neurons in rat nucleus of the solitary tracts to changes in blood pressure. J Physio,2000,529(2):431-443.
    223 Hayward L F, Felder R B. Cardiac rhythmicity among NTS neurons and its relationship to sympathetic outflow in rabbits. Am J Physiol,1995,269(3 pt 2):923-933.
    224周吕,柯美云,神经胃肠病学与动力:基础与临床,北京:科学出版社,2005:116-119.
    225 Rogers RC, McTigue DM, Hermann GE. Vagal control of digestion:modulation by central neural and peripheral endocrine factors. Neurosci Biobehav Rev,1996,20:57-66.
    226 Gillis RA, Quest JA, Pagani FD, and Norman WP. Control centers in the central nervous sytem for regulating gastrointestinal motility. Am. Physiol. Soc,1989,621-683.
    227 Chang HY, Mashimo H, and Goyal RK. Musings on the wanderer:what's new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol,2003,284:G357-G366.
    228 Hornby PJ. Receptors and transmission in the brain-gut axis. Ⅱ. Excitatory amino acid receptors in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol,2001,280: G1055-G1060.
    229 Travagli RA, Hermann GE, Browning KN, and Rogers RC. Musings on the wanderer:what's new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol,2003, 284:G180-G187.
    230 Krowicki ZK, Sharkey KA, Serron SC, Nathan NA, and Hornby PJ. Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function. J Comp Neurol,1997,377:49-69.
    231 Krowicki ZK, Sivarao DV, Abrahams TP, and Hornby PJ. Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation. J Auton Nerv Syst,1999, 77:83-89.
    232 Berthoud HR, Kressel M, Neuhuber WL. An anterograde tracing study of the vagal innervation of rat liver, portal vein, and biliary system. Anat Embryol (Berl),1992,186: 431-442.
    233 Hsieh JH, Chen RF, Wu JJ, Yen CT, Chai CY. Vagal innervation of the gastrointestinal tract arises from dorsal motor nucleus while that of the heart largely from nucleus ambiguus in the cat. J Auton Nerv Syst,1998,28,70(1-2):38-50.
    234 Cruz Maureen T, Erin C. Murphy, Niaz Sahibzada, Joseph G. Verbalis, and Richard A. Gillis. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat. AM J Physiol Regul Integr Comp Physiol.2007,292:R291-R307.
    235 S M Altschuler, X M Bao, D Bieger, D A Hopkins, R R Miselis. Viscerotopic representation of the upper alimentary tract in the rat:sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol,1989,283:248-268.
    236 D van der Kooy, LY Koda, JF McGinty, CR Gerfen, FE Bloom. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat, J Comp Neurol.1984,224:1-24.
    237 Gai WP, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW. Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol.1995,357(3):348-61.
    238 Emch GS, Hermann GE, Rogers RC. Tumor necrosis factor-alpha:effects on identified neurons of the dorsal vagal complex (Abstract). Soc Neurosci Abstr,1999,25(674):14.
    239 Scott F Davis, Andrei V Derbenev, Kevin W Williams, Nicholas R Glatzer, Bret N Smith. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitaries. Brain Res,2004,1017(1-1),208-217.
    240 Choo LK, Mitchelson F. Comparison of the affinity constant of some muscarinic receptor antagonists with their displacement of [3H] quinuclidinyl benzilate binding in atrial and ileal longitudinal muscle of the guinea-pig. J Pharm Pharmacol,1985,37(9):656-658.
    241 Eglen RM, Harris GC. Selective inactivation of muscarinic M2 and M3 receptors in guinea-pig ileum and atria in vitro. Br J Pharmacol,1993,109(4):946-952.
    242 Baudiere B, Monferini E, Giraldo E, et al. Characterization of the muscarinic receptor subtype in isolated gastric fundic cells of the rabbit. Biochem Pharmacol,1987, 36(18):2957-2961.
    243 Toney GM, Miff!in SW. Sensory modalities conveyed in the hindlimb somatic afferent input to nucleus tractus solitarius. J Appl Physiol.2000,88(6):2062-2073.
    244 Lee CH, Jung HS, Lee TY, Lee SR, Yuk SW, Lee KG, Lee BH. Studies of the central neural pathways to the stomach and Zusanli (ST36). Am J Chin Med.2001,29(2):211-220.
    245 Ness TJ, Gebhart GF. Visceral pain:a review of experimental studies. Pain,1990,41(2): 167-234.
    246 Giamberardino IvlA, Vecchiet L. Visceral pain, referred hyperalgesia and outcome:new concepts Ear J Anaesthesiol Suppl,1995, 10(Suppl):61-66.
    247 Ness TJ. Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain,2000,87:83-88.
    248 Wang HY, Huang TK. Experiment study of the visceral pain. Jiepouxue Zazhi 1995,18: 282-287.
    249 Yang JP, Yao M, Jiang XH, Wang LN. Establishment of model of visceral pain due to colorectal distension and its behavioral assessment in rats. World J Gastroenterol,2006, 12(17):2781-2784.
    250 Haupt P, Janig W, Kohler W. Response pattern of visearal afferent fibres, supplying the colon, upon chemical and mechanical stimuli. Pflugers Arch,1983,398:41-47.
    251 Lipkin M, Sleisenger M H, Studies of viscera/pain:measurements of stimulus intensity and duration associated with the onset of pain in esophagus, ileum and colon. J Clin Invest,1957, 37:28-34.
    252 Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus:physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res 1988,450: 153-169.
    253 Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 2000, 119:1276-1285.
    254 Ness TJ. Evidence for ascending visceral nociceptive information in the dorsal midline and lateral spinal cord. Pain,2000,87(1):83-88.
    255 Boscan P, Paton JF. Role of the solitary tract nucleus in mediating nociceptive evoked cardiorespiratory responses. Auton Neurosci,2001,86(3):170-182.
    256 Gamboa-Esteves FO, Lima D, Batten TF. Neurochemistry of superficial spinal neurones projecting to nucleus of the solitary tract that express c-fos on chemical somatic and visceral nociceptive input in the rat. Metab Brain Dis.2001,16(3-4):151-64.
    257孙燕,柳锋霖,宋耿青,钱伟,侯晓华.伤害和非伤害性直肠扩张时脊髓和部分脑干核团的c-fos表达.胃肠病学和肝病学杂志.2006.15(2):113-115.
    258 Hubscher CH, Berkley KJ. Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon. Brain Res.1994,664(1-2):1-8.
    259 Bouhassira D.Villanueva, L. Le Bars D. Effects of systemic morphine on diffuse noxious inhibitory controls:role of the periaqueductal grey, For J Pharmacol,1992,216(2):149-156.
    260 Powley TL.Vagal input to the enteric nervous system. Gut,2000,47(Suppl Ⅳ):30-32.
    261 Saito K, Kanazawa M, Fukudo S.Colorectal distention induces hippocampal noradrenaline release in rats:an in vivo microdialysis study. Brain Res.2002,947(1):146-149.
    262 Kotani N, Hashimoto H, Sato Y, et al. Preoperative intradermal acupuncture reduces postoperative pain, nausea and vomiting, analgesic requirement, and sympathoadrenal responses.Anesthesiology,2001,95(2):349-356.
    263安珂,田玉科,杨辉等.人前脑啡肽原丛囚修饰的永生化大鼠星形胶质细胞株的构建.中国疼痛医学杂志,2005,11(3):167-170.
    264张维峰.针刺对大鼠结直肠扩张内脏痛的镇痛作用及机制.温州医学院硕士学位论文.2008:20-22.
    265 Iwa M, Strickland C, Nakade Y, Pappas TN, Takahashi T. Electroacupuncture reduces rectal distension-induced blood pressure changes in conscious dogs. Dig Dis Sci.2005,50(7): 1264-1270.
    266 Xu GY, Winston JH, Chen JD. Electroacupuncture attenuates visceral hyperalgesia and inhibits the enhanced excitability of colon specific sensory neurons in a rat model of irritable bowel syndrome. Neurogastroenterol Motil,2009,21 (12):1302-1325.
    267 Liu JH, Li J, Yan J, Chang XR, Cui RF, He JF, Hu JM. Expression of c-fos in the nucleus of the solitary tract following electroacupuncture at facial acupoints and gastric distension in rats. Neurosci Lett.2004,366(2):215-219.
    268 Ohsawa H, Okada K, Nishijo K, Sato Y. Neural mechanism of depressor responses of arterial pressure elicited by acupuncture-like stimulation to a hindlimb in anesthetized rats. J Auton Nerv Syst.1995,51(1):27-35.
    269 Xin-Yan Gao, Lu Wang, Ingrid Gaischek, Yvonne Michenthaler, Bing Zhu, and Gerhard Litscher. Brain-modulated effects of auricular acupressure on the regulation of autonomic function in healthy volunteers. Evid Based Complement Alternat Med.2012,2012:(714391): 1-7.
    270 Gao XY, Liu K, Zhu B, Litscher G. Sino-European transcontinental basic and clinical high-tech acupuncture studies-part 1:auricular acupuncture increases heart rate variability in anesthetized rats. Evid Based Complement Alternat Med,2012,2012(817378):1-7.
    271 Imai K, Ariga H, Chen C, Mantyh C, Pappas TN, Takahashi T. Effects of electroacupuncture on gastric motility and heart rate variability in conscious rats. Auton Neurosci,2008,138: 91-98.
    272 Iwa M, Tateiwa M, Sakita M, Fujimiya M, Takahashi T. Anatomical evidence of regional specific effects of acupuncture on gastric motor function in rats. Auton Neurosci,2007,137: 67-76.
    273 Chen S, Ma SX. Nitric oxide in the gracile nucleus mediates depressor response to acupuncture (ST36). J Neurophysiol,2003,90:780-785.
    274 Gao XY, Li YH, Liu K, Rong PJ, Ben H, Li L, Zhu B, Zhang SP. Acupuncture-like stimulation at auricular point Heart evokes cardiovascular inhibition via activating the cardiac-related neurons in the nucleus tractus solitarius. Brain Res,2011,1397:19-27.
    275 J H Schild, S Khushalani, J W Clark, M C Andresen, D L Kunze, and M Yang. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input. J Physio],1993,469:341-363.
    276 Williams CA, Loyd SD, Hampton TA, Hoover DB. Expression of c-fos-like immunoreactivity in the feline brainstem in response to isometric muscle contraction and baroreceptor reflex changes in arterial pressure. Brain Res,2000,852(2):424-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700