用户名: 密码: 验证码:
FePt和Fe_3O_4及其复合材料的化学合成、自组装与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料因其独特的物理化学性质被广泛应用于磁记录材料、永磁材料、吸波材料、生物医药及化学催化等领域,随着对磁性纳米材料研究的不断深入,人们更加期望其向高性能、新功能方向发展,本课题以合成面心四方(fct)相FePt磁性纳米颗粒、Fe3O4立方颗粒为基础,以制备出FePt/Fe3O4双元磁性纳米颗粒自组装薄膜和基于软硬磁耦合的FePt-Fe3O4纳米复合材料为主要内容,以提高材料的磁性能为目标,开展了以下研究工作:
     1.以制备高矫顽力高剩磁的高密度分立FePt磁记录介质为目标,创新性的加入Mo(CO)6作为形貌诱导剂,利用高温液相法合成出了尺寸均一的具有立方形貌的FePt纳米颗粒;并且利用自组装的方式,简易有效地使10mFePt立方颗粒作为分立磁记录单元自发地组装为长程有序的纳米超晶格阵列薄膜,为高密度长程磁有序薄膜的制备奠定技术基础。
     2.基于磁性材料中软硬磁交换耦合而引发的剩磁增强效应,本论文在此基础上合成出与FePt立方颗粒尺寸相当的10nmFe3O4立方颗粒,采用自组装技术制备出了一系列FePt/Fe3O4双元薄膜,构筑了硬软磁纳米双相复合薄膜,为新型纳米双相耦合磁体开发和制备提供了一种更新的途径。
     3.通过优化合成路径和和调控制备参数,获得了一系列基于软硬磁耦合的纳米复合材料(FePt-Fe3O4异质结构、FePt@Fe3O4核壳结构的纳米线及纳米球、PtCo纳米颗粒等),并对其微观结构及磁性能进行表征,对开发新型磁性纳米材料有一定的借鉴意义。
Nano-magnetic materials were widely used in magnetic recording materials, nano permanent magnet materials propertiesabsorbing materials, biomedical, chemical catalysis and other fields, because of their unique physical and chemical properties. Along with the deepening of the research on magnetic nanomaterials, people expect the emergence of higher performance magnetic materials. This topic based on the synthesis of Face-centered tetragonal(fct) FePt nanocubes and Fe3O4nanocubes, take the preparation of FePt/Fe3O4magnetic nanoparticles membrane as the main content, take the enhancing of magnetic properties as the main purpose.The main researchs of our work include the following aspects:
     (1) The goal of our topic is to prepared the FePt super-high density magnetic recording medium with high coercive force and high remanence.Using the method of high temperature liquid phase to synthesize a10nm fept cubic nanoparticles with uniform size, here we have creatively modified the synthesis by employing Mo(CO)6as the inducing agent. As-synthesized FePt nanocubes are lOnm and be assembled into arrays, thermal annealing of the FePt nanocube superlattice induces FePt structure transformation from fcc to fct phase. Thus, this work demonstrates progress in the development of magnetic recording media based on FePt nanoparticles.
     (2) We adopt the "bottom-up" self-assembly technique to prepare a series of FePt/Fe3O4dual membranes, and use10nm FePt and10nm Fe3O4to construct the hard and soft magnetic exchange coupling double magnetic nanoparticle arrays, the recent studies has found that through the soft and hard magnetic nanoparticles, the exchange coupling effect between medium can improve the residual magnetism. It provides a new way to develop the preparation of nanometer coupling magnet.
     (3) This dissertation is devoted to the design and controlled synthesis of exchange coupling nanocomposite magnets, such as heterogeneous FePt-Fe3O4nanoparticles, core-shell FePt@Fe3O4nanowires and nanospheres, PtCo nanoparticles. It's beneficial to the develop of new nano-magnetic materials.
引文
[1]周寿增,董清飞,超强永磁体—稀土铁系永磁材料,北京:冶金工业出版社,1999。
    [2]姜寿亭,李卫,凝聚态磁性物理,北京:科学出版社,2003。
    [3]戴道生,钱昆明,铁磁学(上),北京:科学出版社1987。
    [4]钟文定,铁磁学(中),北京:科学出版社,1987。
    [5]Jun Chen, Angang Dong, Jing Cai. Collective Dipolar Interactions in Self-Assembled Magnetic Binary Nanocrystal Superlattice Membranes.Nano Lett.2010,10 (12):5103-5108.
    [6]Tianlong Wen, Ryan A Booth, Sara A Majetich. Ten-Nanometer Dense Hole Arrays Generated by Nanoparticle Lithography.Nano Lett,2012,12 (11):5873-5878.
    [7]Ke Tao, Huirui Zhou, Hongjing Dou. Direct Deposition of Fluorescent Emission-Tunable CdSe on Magnetite Nanocrystals. J Phys Chem C,2009,113 (20):8762-8766
    [8]Maksym V Kovalenko, Maryna I Bodnarchuk, Dmitri V Talapin. Nanocrystal Superlattices with Thermally Degradable Hybrid Inorganic-Organic Capping Ligands. J Am Chem Soc,2010,132 (43):15124-15126.
    [9]Hao Zeng, Jing Li, Z L Wang.Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles a) Nano Lett,2004,4 (1):87-190.
    [10]Dmitri V, Talapin, Elena V. Quasicrystalline order in self-assembled binary nanoparticle superlattices. NATURE,2009,461(15):964-967.
    [11]Tang ZY, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science.2002; 297:237-240.
    [12]Ningzhong Bao, Liming Shen, Wei An. Formation Mechanism and Shape Control of Monodisperse Magnetic CoFe2O4 Nanocrystals. Chem Mater,2009,21:3458-3468.
    [13]O. Margeat, M Tran M Spasova. Magnetism and structure of chemically disordered FePt3 nanocubes. PHYSICAL REVIEW B,2007,75:134410-6.
    [14]Dong Zhou, Mingge Zhou, Minggang Zhu. Electrodeposition and magnetic properties of FeCo alloy films.JapplPhys,2012,111:319.
    [15]Duan XF, Niu CM, Sahi V. High-performance thin-film transistors using semiconductor nanowires and nanoribbons.Nature.2003; 425:274-278.
    [16]Abe E, Yan Y,Pennycook S J,Quasicrystals as cluster aggregates. Nature Mate,2004, 3:759-767, Conrad M, Krumeich F, Harbrecht B. A dodecagonal quasicrystalline chalcogenide. Angew Chem Int Ed,1998,37:1383-1386.
    [17]Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature,2004,428: 157-160.
    [18]Hayashid K,Dotera T,Takano A. Polymeric quasicrystal:mesoscopic quasicrystalline tiling in ABC star polymers. Phys Re Lett,2009,98:195.
    [19]Mikhael, J., Roth, J., Helden, L.& Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454,501-504 (2008).
    [20]Murray, C. B., Kagan, C. R.& Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.30,545-610 (2000).
    [21]Shevchenko, E. V., Talapin, D. V, Kotov, N. A., O'Brien, S.& Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439,55-59(2006).
    [22]Eldridge, M. D., Madden, P. A.& Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365,35-37 (1993).
    [23]Shevchenko, E. V., Talapin, D. V., Murray, C. B.& O'Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc.128,3620-3637 (2006).
    [24]Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature,437,235-240 (2005).
    [25]Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312,420-424 (2006).
    [26]Gru nbaum, B.& Shephard, G. C. Tilings and Patterns (Freeman,1986). Ueda, K., Dotera, T.& Gemma, T. Photonic band structure calculations of two dimensional Archimedean tiling patterns. Phys. Rev. B 75,195122 (2007).
    [27]Frank, F. C.& Kasper, J. S. Complex alloy structures regarded as sphere packing. II.Analysis and classification of representative structures. Acta Crystallogr,1959,12, 483-499.
    [28]Sopousek, J.& Kruml, K. Sigma-phase equilibrium and nucleation in Fe-Cr-Ni alloys at high temperature. Scripta Mater.35,689-693 (1996).
    [29]Widom, M. Bethe ansatz solution of the square-triangle random tiling model. Phys.Rev. Lett.70,2094-2097 (1993).
    [30]Oxborrow, M.& Henley, C. L. Random square-triangle tilings:a model for twelve fold-symmetric quasicrystals. Phys. Rev. B 48,6966-6998 (1993).
    [31]Min Chen, Jaemin Kim, J P Liu. Synthesis of FePt Nanocubes and Their Oriented Self-Assembly. J Am Chem Soc,2006,128 (22):7132-7133.
    [32]C Wang, Y Hou, J Kim, S Sun. A general strategy for synthesizing FePt nanowires and nanorods. Angewandte Chemie International Edition.2007,46, 6333-6335
    [33]Chen, Z. O'Brien, S. Structure direction of the semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2,1219-1229 (2008).
    [34]Joseph, D.& Elser, V. A model of quasicrystal growth. Phys. Rev. Lett.79,1066-1069 (1997).
    [35]Zoorob M E, Charlton M D B, Parker G J, Baumberg J J. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404,740-743 (2000).
    [36]Hyeon T, Lee S S, Park J, Chung, Y.& Na H B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process.J Am Chem Soc.123,12798-12801 (2001).
    [37]Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable nearinfrared emission:observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater.15,1844-1849 (2003).
    [38]Maryna I, Bodnarchuk, Maksym V. Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices:Temperature as the Structure-Directing Factor. J. AM. CHEM. SOC.2010,132,11967-11977.
    [39]Anwar Ahniyaz, Yasuhiro Sakamoto, Lennart Bergstrom, Magnetic field-induce assembly of oriented superlattices from maghemite nanocubes, PNAS,2007,104, 17570-17574.
    [40]Albert Figuerola, Angela Fiore, Riccardo Di Corato, One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePt-Iron Oxide Heterodimer Nanocrystals, J. AM. CHEM. SOC.2008,130,1477-1487
    [41]Angang Dong, Xingchen Ye, Jun Chen.Two-Dimensional Binary and Ternary Nanocrystal Superlattices:The Case of Monolayers and Bilayers.Nano Lett.,2011,11 (4),1804-1809.
    [42]Angang Dong, Jun Chen, Soong Ju Oh, and Christopher B. Murray Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface, Nano Lett., 2011,11 (2):841-846.
    [43]Yun Wang, Haimin Zhang, Xiangdong Yao. Edges of FeO/Pt(111) Interface:A First-Principle Theoretical Study.J Phys Chem C,2013,117 (4):1672-1676.
    [44]Takayoshi Ishimoto, Teppei Ogura, Minoru Umeda. Theoretical Study on Dissolution and Reprecipitation Mechanism of Pt Complex in Pt Electrocatalyst. J Phys Chem C, 2011,115 (7):3136-3142.
    [45]Jun Zhang Jiye Fang.A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni) Nanocubes. J. AM. CHEM. SOC.2009,131,18543-18547.
    [46]Mehmed Z. Ertem, Steven J. Konezny, C. Moyses Araujo, Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). J Phys Chem C,2013,4 (5):745-748.
    [47]Barbara L Mojet, Jeffrey T Miller, and Diederik C. The Effect of CO Adsorption at Room Temperature on the Structure of Supported Pt Particles. J Phys Chem B,1999, 103 (14):2724-2734.
    [48]Stefanos Mourdikoudis and Luis M. Liz-Marzan.Oleylamine in Nanoparticle Synthesis.Chem Mater,2013,25 (9):1465-1476.
    [49]Shuangyin Wang, San Ping Jiang. Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells. T J White, J Phys Chem C,2009,113 (43):18935-18945
    [50]Eunae Kang, Hyunok Jung, Je-Geun Park. Block Copolymer Directed One-Pot Simple Synthesis of L10-Phase FePt Nanoparticles inside Ordered Mesoporous Aluminosilicate/Carbon Composites.ACS Nano,2011,5 (2):1018-1025.
    [51]Yufang Zhu, Emanuel Kockrick, Stefan Kaskel.Nanocasting Route to Ordered Mesoporous Carbon with FePt Nanoparticles and Its Phenol Adsorption Property J Phys Chem C,2009,113 (15):5998-6002.
    [52]Jaemin Kim, Chuanbing Rong, Youngmin Lee. From Core/Shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles. Chem Mater,2008,20 (23): 7242-7245.
    [53]Kazuaki Yano,Vikas Nandwana, Girija S Chaubey. Synthesis and Characterization of Magnetic FePt/Au Core/Shell Nanoparticles. J Phys Chem C,2009,113 (30): 13088-13091.
    [54]Shishou Kang, G X Miao, S Shi. Enhanced Magnetic Properties of Self-Assembled FePt Nanoparticles with MnO Shell. J Phys Chem C,2006,128 (4):1042-1043.
    [55]Jae Sung Son, Jong-Soo Lee, Elena V. Magnet-in-the-Semiconductor Nanomaterials: High Electron Mobility in All-Inorganic Arrays of FePt/CdSe and FePt/CdS Core-Shell Heterostructures. J Phys Chem Lett,2013, Articles ASAP (As Soon As Publishable):1918-1923.
    [56]Angang Dong, Jun Chen, Xingchen Ye. Enhanced Thermal Stability and Magnetic Properties in NaCl-Type FePt-MnO Binary Nanocrystal Superlattices. J Am Chem Soc, 2011,133 (34):13296-13299.
    [57]Xiaowei Teng and Hong Yang. Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films from Pt@Fe2O3 Core-Shell Nanoparticles. J Am Chem Soc,2003,125 (47):14559-14563.
    [58]Min Chen, J P Liu, and Shouheng Sun. One-Step Synthesis of FePt Nanoparticles with Tunable Size.J Am Chem Soc,2004,126 (27):8394-8395.
    [59]Vismadeb Mazumder, Miaofang Chi, Karren L. Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction J Am Chem Soc,2010, 132 (23), pp 7848-7849.
    [60]Matthew S Wellons, William H Morris, Zheng Gai. Direct Synthesis and Size Selection of Ferromagnetic FePt Nanoparticles.Chem Mater,2007,19(10):2483-2488.
    [61]Junzhong Wang, Kian Ping Loh, Yu Lin Zhong. Bifunctional FePt Core-Shell and Hollow Spheres:Sonochemical Preparation and Self-Assembly.Chem Mater,2007,19 (10), pp 2566-2572.
    [62]Min Chen, Timothy Pica, Ying-Bing Jiang. Synthesis and Self-Assembly of fcc Phase FePt Nanorods.J Am Chem Soc,2007,129 (20):6348-6349.
    [63]Z. R. Dai, Shouheng Sun, and Z. L. Wang. Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals.Nano Lett,2001,1 (8):443-447.
    [64]Shouheng Sun, Simone Anders, Thomas Thomson. Controlled Synthesis and Assembly of FePt Nanoparticles. J Phys Chem B,2003,107 (23):5419-5425.
    [65]Thomas D Schladt, Tanja Graf, Oskar Kohler. Synthesis and Magnetic Properties of FePt@MnO Nano-heteroparticles. Chem Mater,2012,24 (3):525-535.
    [66]Chao Liu, Xiaowei Wu, Timothy Klemmer. Polyol Process Synthesis of Monodispersed FePt Nanoparticles. J Phys Chem B,2004,108 (20):6121-6123.
    [67]Shinpei Yamamoto, Yasumasa Morimoto, Yoshinori Tamada, Preparation of Monodisperse and Highly Coercive L10-FePt Nanoparticles Dispersible in Nonpolar Organic Solvents.Chem Mater,2006,18 (22):5385-5388.
    [68]Hanbin Wang, Minjie Zhou, Fujun Yang. Monolayer Assembly and Fixation of FePt Nanoparticles:Microstructure and Magnetic Properties.Chem Mater,2009,21 (2):404-409.
    [69]Shishou Kang, J W Harrell and David E. Nikles. Reduction of the fcc to L10 Ordering Temperature for Self-Assembled FePt Nanoparticles Containing Ag. Nano Lett,2002, 2(10):1033-1036.
    [70]Shik Chi Tsang, Chih H Yu, Huili Tang. Assembly of Centimeter Long Silica Coated FePt Colloid Crystals with Tailored Interstices by Magnetic Crystallization. Chem Mater,2008,20 (14):4554-4556.
    [71]Huimeng Wu, Ou Chen, Jiaqi Zhuang. Formation of Heterodimer Nanocrystals: UO2/In2O3 and FePt/In2O3. J Am Chem Soc,2011,133 (36):14327-14337.
    [72]Guanhua Gao, Xiaohe Liu, Rongrong Shi. Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes.Crystal Growth & Design,2010,10 (7): 2888-2894.
    [73]Chunnian He, Shan Wu, Naiqin Zhao.Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material. ACS Nano,2013,7(5):4459-4469.
    [74]B Y Geng, J Z Ma and J H You. Controllable Synthesis of Single-Crystalline Fe3O4 Polyhedra Possessing the Active Basal Facets.Crystal Growth & Design,2008,8(5): 1443-1447.
    [75]Shouhu Xuan, Yi-Xiang J Wang, Ken Cham-Fai Leung and Kangying Shu. Synthesis of Fe3O4@Polyaniline Core/Shell Microspheres with Well-Defined Blackberry-Like Morphology. J Phys Chem C,2008,112 (48):18804-18809.
    [76]Jun Chen, Xingchen Ye, Soong Ju Oh. Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4-Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing. ACS Nano,2013,7 (2):1478-1486.
    [77]Chien Hsin Ho, Chih Pin Tsai, Chia Chi Chung. Shape-Controlled Growth and Shape-Dependent Cation Site Occupancy of Monodisperse Fe3O4 Nanoparticles Chem Mater,2011,23 (7):1753-1760.
    [78]Feng Jiao, Jean Claude Jumas, Manfred Womes. Synthesis of Ordered Mesoporous Fe3O4 and y-Fe2O3 with Crystalline Walls Using Post-Template Reduction/Oxidation. J Am Chem Soc,2006,128 (39):12905-12909.
    [79]Zhihui Ai, Kejian Deng, Qianfen Wan. Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe3O4 Nanoroses. J Phys Chem C,2010,114 (14), pp 6237-6242.
    [80]Dabin Yu, Xiaoquan Sun, Jiwei Zou.Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres. J Phys Chem B,2006,110 (43): 21667-21671.
    [81]Young Soo Kang, Subhash Risbud, John F Rabolt. Synthesis and Characterization of Nanometer-Size Fe3O4 andγ-Fe2O3 Particles. Chem Mater,1998,10 (6):1733-1733.
    [82]Don Keun Lee, Young Hwan Kim, Chang Woo Kim. Vast Magnetic Monolayer Film with Surfactant-Stabilized Fe3O4 Nanoparticles Using Langmuir-Blodgett Technique.J Phys Chem B,2007,111 (31), pp 9288-9293.
    [83]Liqiang Xu, Jin Du, Peng Li. In Situ Synthesis, Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes. J Phys Chem B,2006,110 (9):3871-3875.
    [84]Rui Hao, Ruijun Xing, Zhichuan Xu. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Adv Mater,2010,22: 2729-2742.
    [85]Jongnam park, Kwangjin an, Yosun Hwang. Ultra-large-scale syntheses of monodisperse nanocrystals. nature materials,2004,3:891-895.
    [86]Hyeon, T. et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J Phys Chem B,106,6831-6833 (2002).
    [87]Joo, J. et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc,125,6553-6557 (2003).
    [88]Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater,2,145-150 (2003).
    [89]Stoeva S, Klabunde K J, Sorensen C M. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two-and three-dimensional structures. J Am Chem Soc,124, 2305-2311 (2002).
    [90]Park S J. et al. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc,112,8581-8582 (2000).
    [91]Sun S, Murray C B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys,1999,85:4325-4390.
    [92]Hyeon T. et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J Phys Chem B,106,6831-6833 (2002).
    [93]Guanhua Gao, Xiaohe Liu, Rongrong Shi. Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes. Crystal Growth & Design,2010,10(7): 2888-2894.
    [94]Hoang Tri Hai, Hai Tao Yang, Hiroaki Kura.Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. Journal of Colloid and Interface Science,2010,346:37-42.
    [95]Zhichuan Xu, Chengmin Shen, Yanglong Hou. Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chem Mate,2009, 21:1778-1780.
    [96]Qiu Dai, Alshakim Nelson. Magnetically-responsive self-assembled composites.Chem Soc Rev,2010,39:4057-4066.
    [97]Feng Xu, Chungan Max Wu, Venkatakrishnan Rengarajan. Three-Dimensional Magnetic Assembly of Microscale Hydrogels. Adv Mater,2011,23:4254-4260.
    [98]Tandra Ghoshal, Tuhin Maity, Jeffrey F Godsell. Large Scale Monodisperse Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots:A Facile Block Copolymer Inclusion Method.Adv Mater,2012,24:2390-2397.
    [99]Chien Hsin Ho, Chih Pin Tsai, Chia Chi Chung. Shape-Controlled Growth and Shape-Dependent Cation Site Occupancy of Mono disperse Fe3O4 Nanoparticles.Chem Mater,2011,23,1753-1760.金属学原理余永宁北京:冶金工业出版社2000
    [100]En Yang, David E Laughlinand Jian Gang Zhu. Multiple oxide content media for columnar grain growth in L10 FePt thin films.Appl Phys Lett,102,112411 (2013)
    [101]K W Lin, C Shueh, C H Liu, Using different Mn-oxides to influence the magnetic anisotropy of FePt in bilayers with little change of the exchange bias field. J Appl Phys, 2013,113(17):104
    [102]J Y Zhang, Z L Wu, S G Wang. Effect of interfacial structures on anomalous Hall behavior in perpendicular Co/Pt multilayers. Appl Phys Lett,102,102404 (2013).
    [103]S Couet, Demeter, E Menendez.The magnetic structure of exchange coupled FePt/FePt3 thin films. J App Phys,113,013909 (2013).
    [104]A T McCallum, D Kercher, J Lille. Prevention of dewetting during annealing of FePt films for bit patterned media applications.Appl Phys Lett,101,092402 (2012).
    [105]V. D. Nguyen, L. Vila, A. Marty. Dimensionality effects on the magnetization reversal in narrow FePt nanowires Appl Phys Lett,100,252403 (2012).
    [106]Zhu Minggang, Li wei, Zhang Jingjing,Guo yong quan. coercivity and exchange coupling of Nd4.5(Fe,Ga,Co)77.5B18 nanocrystalline magnets.material science forum Vols,2005,475,2147-2150
    [107]朱明刚,李卫,李岫梅,纳米复合Nd4.5(Fe,Ga,Co)77.5B18磁体的矫顽力和交换耦合作用,金属学报,2003,39:217-220。
    [108]Jun Zhang, Yang Liu, Fang Wang. Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film.J Appl Phys,111,073910 (2012).
    [109]冯维存,高汝伟,李卫。晶粒尺寸分布对纳米硬磁材料有效各向异性和矫顽力的影响,金属学报,2005,41:347-350。
    [110]H H Guo, J L Liao, B Ma.Microstructure and magnetization reversal of L10-FePt/[Co/Pt]N exchange coupled composite films. Appl Phys Lett,100,142406 (2012).
    [111]冯维存,李卫,朱明刚.3种相分布模型中纳米复合永磁体矫顽力与晶粒尺寸的关系,金属学报,2008,44(1):8-12.
    [112]W Li, G C Hadjipanayis, R Skomski. One-step fabrication of L10 FePt nanocubes and rods by cluster beam deposition. J Appl Phys,111,07B535 (2012).
    [113]T Tanaka, A Kato, Y Furomoto. Microwave-assisted magnetic recording simulation on exchange-coupled composite medium.J Appl Phys,111,07B711 (2012).
    [114]T J Zhou, K Cher, J F Hu. The concept and fabrication of exchange switchable trilayer of FePt/FeRh/FeCo with reduced switching field.J Appl Phys,111,07C116 (2012).
    [115]齐海萍,磁场下Fe304粒子的合成及其有序组装,中国科学技术大学博士学位论文,2009
    [116]Shouheng Sun, Simone Anders, Hendrik F. Polymer Mediated Self-Assembly of Magnetic Nanoparticles. J Am Chem Soc,2002,124 (12):2884-2885.
    [117]Wei Chen, Jaemin Kim, Li Ping Xu. Langmuir-Blodgett Thin Films of Fe20Pt80 Nanoparticles for the Electrocatalytic Oxidation of Formic Acid. J Phys Chem C,2007, 111 (36):13452-13459.
    [118]Hiroaki Wakayama, Hirotaka Yonekura, and Yasuaki Kawai. Three-Dimensional Periodically Ordered Nanohetero Metallic Materials from Self-Assembled Block Copolymer Composites. ACS Macro Lett,2013,2 (4):284-287.
    [119]Raffaella Buonsanti, Teresa E Pick, Natacha Krins. Assembly of Ligand-Stripped Nanocrystals into Precisely Controlled Mesoporous Architectures Nano Lett,2012,12 (7):3872-3877.
    [120]Hao Zeng, Shouheng Sun, T S Vedantam. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett,2002,80(14):2583-2585.
    [121]Kyung Sig Lee, Rahman Md Anisur, Ki Woong Kim. Seed Size-Dependent Formation of Fe3O4/MnO Hybrid Nanocrystals:Selective, Magnetically Recyclable Catalyst Systems.Chem Mater,2012,24 (4):682-687.
    [122]Chao Wang, Hideo Daimon and Shouheng Sun. Dumbbell-like Pt-Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction.Nano Lett, 2009,9 (4), pp 1493-1496.
    [123]Shutang Chen, Rui Si, Eric Taylor. Synthesis of Pd/Fe3O4 Hybrid Nanocatalysts with Controllable Interface and Enhanced Catalytic Activities for CO Oxidation. J Phys Chem C,2012,116 (23):12969-12976.
    [124]Christopher E Bunker and John J Karnes. Low-Temperature Stability and High-Temperature Reactivity of Iron-Based Core-Shell Nanoparticles. J Am Chem Soc, 2004,126(35):10852-10853.
    [125]Shang Wei Chou, Chun Ling Zhu, Sonnathi Neeleshwar. Controlled Growth and Magnetic Property of FePt Nano structure:Cuboctahedron, Octapod, Truncated Cube, and Cube.Chem Mater,2009,21 (20), pp 4955-4961.
    [126]Albert Figuerola, Angela Fiore, Riccardo Di Corato. One-Pot Synthesis and Characterization of Size-Controlled Bimagnetic FePt-Iron Oxide Heterodimer Nanocrystals.J Am Chem Soc,2008,130 (4):1477-1487.
    [127]Marco Faustini, Aldo Capobianchi, Gaspare Varvaro, and David Grosso. Highly Controlled Dip-Coating Deposition of fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films:An Easy Way To Tune Magnetic and Optical Properties. Chem Mater,2012,24 (6):1072-1079.
    [128]Hao Zeng, Jing Li, Z L Wang, J P Liu, and Shouheng Sun. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Lett,2004,4 (1):187-190.
    [129]Girija S. Chaubey, Vikas Nandwana, Narayan Poudyal, Chuan-bing Rong and J Ping Liu. Synthesis and Characterization of Bimagnetic Bricklike Nanoparticles. Chem Mater,2008,20 (2):475-478.1
    [130]Jinhao Gao, Bei Zhang, Yuan Gao, Yue Pan, Xixiang Zhang, and Bing Xu. Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:A Simple Preparation for Multifunctional Nanostructures. J Am Chem Soc,2007,129(39):11928-11935.
    [131]Hongwei Gu, Rongkun Zheng, Xi Xiang Zhang, and Bing Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles. J Am Chem Soc,2004,126 (18):5664-5665.
    [132]Galyna Krylova, Lisandro J Giovanetti, Felix G Requejo, Nada M Dimitrijevic, Alesia Prakapenka, and Elena V Shevchenko. Study of Nucleation and Growth Mechanism of the Metallic Nanodumbbells. J Am Chem Soc,2012,134 (9): 4384-4392.
    [133]Shaojun Guo, Sen Zhang, Xiaolian Sun, and Shouheng Sun. Synthesis of Ultrathin FePtPd Nanowires and Their Use as Catalysts for Methanol Oxidation Reaction. J Am Chem Soc,2011,133 (39):15354-15357.
    [134]Andrew T Heitsch, Doh C Lee and Brian A Korgel. Antiferromagnetic Single Domain L12 FePt3 Nanocrystals. J Phys Chem C,2010,114 (6):2512-2518.
    [135]Andrew H. Latham and Mary Elizabeth Williams. Versatile Routes toward Functional, Water-Soluble Nanoparticles via Trifluoroethylester-PEG-Thiol Ligands Langmuir,2006,22 (9):4319-4326.
    [136]Sen Zhang, Shaojun Guo, Huiyuan Zhu, Dong Su, and Shouheng Sun. Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles J Am Chem Soc,2012,134 (11), pp 5060-5063.
    [137]Craig C. Jolley, Masaki Uchida, Courtney Reichhardt. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles. Chem Mater,2010,22 (16):4612-4618.
    [138]Elena V Shevchenko, Dmitri V alapin, Heimo Schnablegger. Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals:The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals. J Am Chem Soc,2003, 125 (30):9090-9101.
    [139]Min Chen and David E Nikles. Synthesis, Self-Assembly, and Magnetic Properties of FexCoyPt100-x-y Nanoparticles. Nano Lett,2002,2 (3):211-214.
    [140]Xin-Bo Zhang, Jun-Min Yan, Song Han. Magnetically Recyclable Fe@Pt Core-Shell Nanoparticles and Their Use as Electrocatalysts for Ammonia Borane Oxidation:The Role of Crystallinity of the Core.J Am Chem Soc,2009,131 (8): 2778-2779.
    [141]Hongwei Gu, Zhimou Yang, Jinhao Gao. Heterodimers of Nanoparticles: Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules. J Am Chem Soc,2005,127 (1):34-35.
    [142]Balamurugan Balasubramanian, Ralph Skomski, Xingzhong Li, Shah R. Valloppilly, Jeffrey E. Shield, George C. Hadjipanayis, and David J. Sellmyer. Cluster Synthesis and Direct Ordering of Rare-Earth Transition-Metal Nanomagnets. Nano Lett,2011,11 (4):1747-1752.
    [143]D. Zhou, M G Zhu, M G Zhou. Preparation and magnetic properties of hard-magnetic (CoPt)/soft-magnetic (FeCo) composite nanocable array. J Appl Phys, 2011,109:720.
    [144]Nelli S Sobal, Ursula Ebels, Helmuth Mohwald, and Michael Giersig. Synthesis of Core-Shell PtCo Nanocrystals. J Phy Chem B,2003,107 (30):7351-7354.
    [145]Doh C. Lee, Ali Ghezelbash, Cynthia A. Stowell, and Brian A. Korgel. Synthesis and Magnetic Properties of Colloidal MnPt3 Nanocrystals J Phy Chem B,2006,110 (42):20906-20911.
    [146]Yong Wang and Hong Yang. Synthesis of CoPt Nanorods in Ionic Liquids J Am Chem Soc,2005,127 (15):5316-5317.
    [147]Rikako Tsukamoto, Masahiro Muraoka, Munetoshi Seki, Hitoshi Tabata, and Ichiro Yamashita. Synthesis of CoPt and FePt3 Nanowires Using the Central Channel of Tobacco Mosaic Virus as a Biotemplate. Chem Mater,2007,19 (10):2389-2391.
    [148]Teresa Pellegrino, Angela Fiore and Liberato Manna. Heterodimers Based on CoPt3-Au Nanocrystals with Tunable Domain Size. J Am Chem Soc,2006,128 (20): 6690-6698.
    [149]Vassilios Tzitzios, Dimitrios Niarchos, Margariti Gjoka, Nikos Boukos, and Dimitrios Petridis. Synthesis and Characterization of 3D CoPt Nanostructures. J Am Chem Soc,2005,127 (40):13756-13757.
    [150]Matthew J Bradley, Adam J Biacchi, and Raymond E Schaak. Chemical Transformation of Pt-Fe3O4 Colloidal Hybrid Nanoparticles into PtPb-Fe3O4 and Pt3Sn-Fe3O4 Heterodimers and (PtPb-Fe3O4)n Nanoflowers. Chem Mater,2013,25 (9):1886-1892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700