用户名: 密码: 验证码:
肺癌呼出气体标志物确定及电子鼻临床诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过检测呼出气体进行疾病诊断的研究已经有将近40年的历史了,近几年有许多研究者将呼出气体中挥发性有机化合物(VOCs)的检测应用于肺癌诊断,但对于肺癌的特征性VOCs成分及其产生机制还没有形成统一的结论。另外,也有许多研究者检测了呼出气体冷凝物(EBC)中肺癌的标志物,如癌胚抗原(CEA)等。呼吸检测是一种快速,无创,新颖的检测手段,具有广阔的应用前景。
     本论文分析了呼出气体中挥发性肺癌标志物和呼出气体冷凝物中非挥发性肺癌标志物,并用自行研制的电子鼻来检测呼出气体中肺癌特征性VOCs。主要内容包括以下几个方面:
     本论文进一步分析了前期於锦等人从采集的85例肺癌患者,70例肺部良性疾病患者以及88例健康人呼吸气体样本的质谱数据中提取出的41种内源性VOCs。分析了每一种VOCs的ROC曲线,并根据它们各自的ROC曲线下面积和统计学差异p值,选出了25种在肺癌组和对照组有统计学差异的VOCs,作为肺癌特征性标志物。然后又采用线性判别式分析,建立最佳肺癌诊断模型,该最佳模型的敏感度和特异性分别达到了95.29%和96.20%。
     我们实验室自行研制了两台电子鼻用来检测呼出气体中的VOCs,一台基于金属氧化物半导体(MOS)传感器,一台基于声表面波(SAW)传感器。本论文开发了两套软件,一套是与基于MOS传感器的CN e-NoseⅡ呼吸检测电子鼻配套的检测分析软件,该软件主要完成对仪器的控制和对传感器数据的处理分析。另一套软件是MOS-SAW复合传感器肺癌诊断软件,该软件实现的是对MOS传感器和SAW传感器的数据进行分析并建立肺癌诊断模型。
     本论文采用这两台电子鼻分析了42例健康人和47例肺癌患者呼出气体样本,从数据处理后的传感器响应曲线中提取出138个特征值。同时分析了这些特征值各自的ROC曲线,根据ROC曲线下面积提取出53个对区分肺癌组和健康组有统计学意义的特征值作为模型的自变量。最后采用主成分分析(PCA)、线性判别式分析(LDA)、人工神经网络(ANN)以及偏最小二乘回归分析(PLS)这四种模式识别算法建立了以下六种模型:LDA模型、ANN模型、PLS模型、PCA-LDA模型、PCA-ANN模型以及PCA-PLS模型。最终发现PCA-ANN模型具有最高的特异性和敏感度,分别为90.48%和93.62%,并具有较高的建模效率。
     本论文还采集分析了肺癌患者的EBC样本,对EBC中的癌胚抗原(CEA),神经元特异性烯醇化酶(NSE)以及鳞状细胞癌抗原(SCC)这三种蛋白质的含量进行了检测分析。虽然EBC中肺癌标志物近年来已被很多研究人员研究,但对这三种标志物的研究还很少见,虽然这些标志物是常见的血清肺癌标志物,但很少有人研究其在EBC中的浓度。本论文检测了EBC中这三种标志物,发现CEA和SCC的检出率达到30%左右,本论文还分析这三种标志物与肺癌病理类型之间的关系。
The research on disease diagnosis through exhaled breath detecting has been almost 40 years. In the recent years, the detection of Volatile Organic Compounds (VOCs) has been applied in lung cancer diagnosis by many researchers. But the researchers don't have an agreement on the VOCs biomarkers for lung cancer and the production mechanism of these VOCs biomarkers. In addition, the biomarkers for lung cancer in Exhaled Breath Condensate (EBC), like Carcinoma Embryonic Antigen (CEA), have also been studied by many researchers in recent years. The detection of biomarkers in VOCs and EBC is a quick, noninvasive and novel way to diagnose lung cancer. Its application in clinical diagnosis for lung cancer has a vast prospect.
     The VOCs biomarkers and the nonvolatile biomarkers for lung cancer in exhaled breath were analyzed in this paper. And the e-Nose was applied in this paper to detect the VOCs biomarkers for lung cancer. This paper includes four parts as in the following.
     The first part is the research on VOCs biomarkers for lung cancer. The exhaled breath of 85 lung cancer patients,70 lung benign disease patients and 88 healthy people were analyzed using GCMS by Jin Yu in the early days, and 41 endogenous VOCs were extracted out from the GCMS data. These data were reanalyzed in this paper. The availablity of every endogenous VOCs was evaluated through their Receiver Operating Characteristic (ROC) curves.25 VOCs biomarkers for lung cancer were selected out according their AUC (Area Under ROC Cureve) and the values of p. The Linear Discriminant Analysis (LDA) was finally employed to build models to discriminate the lung cancer group and the control group. The sensitivity and specificity of the best model are 95.29% and 96.20% respectively.
     Our institute has designed two e-Noses to detect VOCs in exhaled breath. One is based on Metal Oxide Semiconductor (MOS) sensors and the other is based on Surface Acoustic Wave (SAW) sensors. This paper developed two sets of software. One is for the CN e-NoseⅡbreath detecting e-Nose based on the MOS sensors. This software can control the e-Nose and dispose the data of sensors. The other software is used to build lung cancer diagnosis models based on the data of MOS sensors and SAW sensors.
     These two e-Noses were used to analyze the exhaled breath of 42 healthy people and 47 lung cancer patients.138 features were selected out from the sensor curves for every sample. The independent variables of the diagnosis models were selected according the AUC of ROC curve of every feature. Finally, four pattern recognition algorithms:Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Artificial Neural Network (ANN) and Partial Least Squares (PLS), were employed to build six diagnosis models:LDA model, ANN model, PLS model, PCA-LDA model, PCA-ANN model and PCA-PLS model. The PCA-ANN model performed best with high sensitivity and specificity (93.62% and 90.48% respectively) and high efficiency.
     The EBC samples were also collected and the concentrations of Carcinoma Embryonic Antigen (CEA), Neuron Specific Enolase (NSE) and Squamous Cell Carcinoma (SCC) in these samples were measured. Although the lung cancer biomarkers in EBC have been researched by many researchers recently, the detection of these three biomarkers in EBC was rarely researched. According to the result, they all existed in EBC and the detectable ratio of CEA and SCC was about 30%. The relationship between these biomarkers and the types of lung cancer pathology was also analysed)
引文
[1]Pauling L., Robinson A.B., Teranishi R., Cary P.. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Nat Acad Sci USA,1971, 68:2374-2376.
    [2]於锦.呼出气体及其冷凝物中肺癌标志物及其检测方法的研究[D].杭州,浙江大学,2011.
    [3]Phillips M, Gleeson K, Hughes JMB, et al. Volatile organic compounds in breath as markers of lung cancer:a cross-sectional study [J]. The Lancet,1999,353:1930-1933.
    [4]Gordon S.M., Szidon J.P., Krotoszynski B.K., et al. Volatile organic compounds in exhaled air from patients with lung cancer [J]. Clinical Chemistry,1985,31(8):1278-1282.
    [5]O'Neill H.J., Gordon S.M., O'Neill M.H., et al. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer [J]. Clinical Chemistry,1988, 34(8):1613-16188.
    [6]Phillips M, Cataneo RN, Cummin ARC. Detection of lung cancer with volatile markers in the breath [J]. Chest,2003,123:2115-2123.
    [7]Phillips M, Altorki N, Austin JHM, et al. Prediction of lung cancer using volatile biomarkers in breath [J]. Cancer Biomarkers,2007(3):95-109.
    [8]Phillips M, Altorki N, Austin JHM, et al, Detection of lung cancer using weighted digital analysis of breath biomarkers [J]. Clinica Chimica Acta,2008,393(2):76-84.
    [9]Wang P., Tan Y., Xie H.B., et al. A novel method for diagnosis diabetes using an electronic nose [J]. Biosensors & Bioelectronics,1997,12(9-10):1031-1036.
    [10]Zhang Q.T., Wang P., Li J.P., et al. Diagnosis of diabetes by imaging detection of breath using gas-sensitive LAPS [J]. Biosensors & Bioelectronics,2000,15(5-6):249-256.
    [11]Chen X., Cao M.F., Li Y., et al. A study of an electronic nose for detetction of lung cancer based on a virtual SAW gas sensors array and imaging recognition method [J]. Measurement Science and Technology,2005,16(8):1-11.
    [12]Chen X., Xu F.J., Wang Y. et al. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer,2007; 110(4):835-844.
    [13]C. Belda-Iniesta, J. de Castro Carpeno, J. A. Carrasco, et al. New screening method for lung cancer by detecting volatile organic compounds in breath [J]. Clinical and Translational Oncology,2007,9(6):364-368.
    [14]Scheideler L., Manke H.G., Schwulera U., et al. Detection of nonvolatile macromolecules in breath:a possible diagnostic tool? [J]. American Journal of Respiratory and Critical Care Medicine,1993,148(3):778-784.
    [15]Mutlu G.M., Garey K.W., Robbins R.A., et al. Collection and Analysis of Exhaled Breath Condensate in Humans [J]. American Journal of Respiratory and Critical Care Medicine, 2001,164(5):731-737.
    [16]Carpagnano G.E., Resta O., Foschino-Barbaro M.P., et al. Interleukin-6 is increased in breath condensate of patients with non-small-cell lung cancer [J]. The International Journal of Biological Markers,2002,17(2):141-145.
    [17]Christian G., Hartmut K., Katja T.,et al. Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients [J]. Lung Cancer,2004,43(2):215-222.
    [18]Fagan K.A., McMurtry I.F., Rodman D.M.. Role of endothelin-l in lung disease [J]. Respiratory Research,2001,2:90-101.
    [19]Ahmed S.I., Thompson J., Coulson J.M., et al. Studies on the expression of endothelin, its receptor subtypes, and converting enzymes in lung cancer and in human bronchial epithelium [J]. American Journal of Respiratory Cell and Molecular Biology,2000,22(4):422-431.
    [20]Carpagnano G.E., Foschino-Barbaro M.P., Resta O., et al. Endothelin-1 is increased in the breath condensate of patients with non-small-cell lung cancer [J]. Oncology,2004,66(3): 180-184
    [21]Zietkowski Z., Skiepko R., Tomasiak M.M., et al. Endothelin-1 in exhaled breath condensate of stable and unstable asthma patients [J]. Respiratory Medicine,2008,102(3):470-474.
    [22]Carpagnano G.E., Kharitonov S.A., Wells A.U., et al. Increased vitronectin and endothelin-1 in the breath condensate of patients with fibrosing lung disease [J]. Respiration,2003,70(3): 154-160.
    [23]董敬军,陶一江,陈建荣,等.非小细胞肺癌患者呼出气冷凝液中CEA检测的临床意义[J].临床肺科杂志,2008,13(7):828-830.
    [24]D'Amico A., Pennazza G., Santonico M., et al. An investigation on electronic nose diagnosis of lung cancer [J]. Lung Cancer,2010,68(2):170-176.
    [25]Dragonieri S., Annema J.T., Schot R., et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD [J]. Lung Cancer,2009,64(2):166-170
    [26]Zhou X.H., Obuchowski N.A., McClish D.K.. Statistical methods in diagnostic medicine [M]. New York:Wiley-Interscience,2002.
    [27]孙军,陈峰,郑凯尔.ROC曲线分析在放射学中的应用[J].中华放射学杂志,2001,35(8):574-577.
    [28]韩云峰.ROC曲线下面积的计算方法[J].齐齐哈尔医学院学报,2007,28(6):697-698.
    [29]Hanley J.A., McNeil B.J.. The meaning and use of t he area under a receiver operating characteristic (ROC) curve [J]. Radiology,1982,143:29-36.
    [30]邹莉玲,沈其君,等.ROC曲线下面积的ML估计与假设检验[J].中国公共卫生,2003,19(1):127-128.
    [31]David F., Benjamin R.. Estimation of the area under the ROC curve [J]. Statistics in medicine Wiley,2002,21:3093-3106.
    [32]宇传华,徐勇勇.非参数法估计ROC曲线下面积[J].中国卫生统计,1999,16(4):241-244.
    [33]Yu Kai, Wang Yishan, Yu Jin, et al. A portable electronic nose intended for home healthcare based on a mixed sensor array and multiple desorption methods [J]. Sensor Letters,2011,9: 876-883
    [34]王乐,王镝,於锦,等.基于谐振型SAW传感器的呼吸检测系统设计[J].传感技术学报,2011,24(4):498-502
    [35]李偶连,刘翠,童艳丽,等.癌胚抗原(CEA)检测技术的研究进展[J].现代医学仪器与应用,2008,20(2):48-51.
    [36]史芸,王振军,王斌.癌胚抗原与临床疾病的关系研究进展[J].中国医师杂志,2005,增刊:434-436.
    [37]李煊,胡守友.胃癌患者血清CEA、CA724、CA242、vEGF联合测定的临床意义[J].中国血液流变学杂志,2007,17(3):453-455.
    [38]Plavec G., Ninkovic M., Kozlovacki G., et al. Tumor maker sinpleural effusion sinbronchogenic carcinoma and tuberculosis [J]. Vojnosanit Pregl,2002,59(1):23.
    [39]陈香丽,陈小燕.血清肿瘤标记物在肺癌诊断中的意义[J].临床肺科杂志,2004.9(6):590-592.
    [40]高媛,秦军.肺癌的早期诊断及其研究进展[J].临床肺科杂志,2008,13(1):64-65.
    [41]王琨,李彦敏NSE.S-100蛋白与脑损伤关系的研究[J].脑与神经疾病杂志,2009,17(5):396.
    [42]吴春,魏光辉.血清神经元特异性烯醇化酶水平的研究进展[J].重庆医学,2010,39(21):2985-2987.
    [43]孔宪涛.肿瘤特异抗原和相关抗原的研究现状及检测[J].中华医学检验杂志,2000,1(23):56-58.
    [44]Schneider S.S., Schick C., Fish K.E., et al. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene [J]. Proceedings of the National Academy of Sciences of the United States of America,1995, 92(8):3147-3151.
    [45]Catahepe S., Schick C.. Luke CJ., et al. Development of specific monoclonal antibodies and a sensitive discriminatory immunoassay for the circulating tumor markers SCCA1 and SCCA2 [J]. Clinica Chimica Acta,2000,295(1-2):107-127.
    [46]Yasumatsu R., Nakashima T., Azuma K., et al. Serum squamous cell carcinoma antigen is a useful biologic marker in patients with inverted papillomas of the sinonasal tract [J]. Cancer, 2001,94(1):152-158.
    [47]Kato H., Torigoe T.. Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma [J], Cancer,1977,40(4):1621-1628.
    [48]Kagehashi K., Satoh H., Kurishima K., et al. Squamous cell carcinoma antigen in lung caneer and nonmalignant respiratory diseases [J]. Lung,2008,186(5):323-326.
    [49]李卫鹏,张蕾蕾.鳞状细胞癌抗原研究进展[J].放射免疫学杂志,2010,23(1):34-37.
    [50]税莉莉.肺癌患者血清中CEA、CYFRA21-1、NSE. SCC检测的临床意义[J].西安交通大学学报(医学版),2010,31(6):708-710.
    [51]陆国军,于力克,张宇.血清CEA、NSE、SCC-Ag、CYFRA21-1联合检测对肺癌的诊断价值[J].临床肺科杂志.2011,16(8):1282-1283.
    [52]付昕,马芳.血清肿瘤标志物联合检测提高肺癌早期诊断价值的探讨[J].医学检验与临床,2011,22(2):59-61.
    [53]裴丹青,酶联免疫吸附测定法[EB/OL].2011.10/2012.1 http://wenku.baidu.com/view/0eccb9a10029bd64783e2c24.html
    [54]林金明,赵利霞,王栩.化学发光免疫分析[M].北京:化学工业出版社,2008.3,9-22.
    [55]Jobsis Q., Raatgeep H.C., Schellekens S.L., et al. Hydrogen peroxide in exhaled air of healthy children:reference values [J]. European Respiratory Journal,1998,12(2):483-485.
    [56]Corradi M., Rubinstein I., Andreoli R., et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease [J]. American Journal of Respiratory and Critical Care Medicine,2003,167(10):1380-1386.
    [57]Horvath I., Hunt J., Barnes P.J.. Exhaled breath condensate:methodological recommendations and unresolved questions [J]. European Respiratory Journal,2005,26(3): 523-548.
    [58]乔华,王广发,丁翠敏.呼出气冷凝液收集器的设计及其临床应用探讨[J].临床内科杂志.2005,22(9):625-626.
    [59]洪波.对吸烟人群血清CEA RIA的临床分析[J].放射免疫学杂志,2008,21(3):230-231.
    [60]Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer:cross sectional and nested short-term follow-up study [J]. Respiratory Research,2005,6:71-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700