用户名: 密码: 验证码:
人鼻腔生物力学模型的基础研究及其临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻腔是给人体提供氧气来源的主要通道,除了承担呼吸的主要功能外,还有对吸入气流进行加温、加湿、滤过清洁等作用,以保护下呼吸道粘膜;同时又是防止呼吸系统疾病入侵人体的第一道防线。临床医疗实践和研究工作证明:鼻腔结构几何形态与鼻腔能否保持正常功能以及鼻腔疾病有着密切关系。近年来人们已经开始注意到鼻腔结构异常是导致鼻腔某些常见病的原发因素之一,然而鼻腔结构复杂,由于缺少生物模型和数值量化的计算模型,无法深入细致了解和掌握,影响了疾病的临床预测、诊断、治疗方案优选与手术疗效的估计。
     根据CT扫描获取的鼻腔结构数据,构建鼻腔的数值模型对鼻腔内的气流场进行研究。通过大量鼻腔模型的建立与数值模拟,对鼻腔结构几何形态与鼻腔内气流流场的关系进行研究;进而模拟鼻腔某部位结构变化导致整个鼻腔气流场的变化。在此基础上设计两个临床应用的医疗器件,用以减轻医生的工作量和患者的痛苦。论文工作分为以下五个部分:
     第一部分介绍了一种重建鼻腔模型的有效方法,根据一名健康志愿者的CT图像,用表面重建的方法对该患者的鼻腔结构进行三维重建,用有限元的方法对鼻腔域中的气体流动进行了数值模拟及分析,并把得到的结果与医学文献中记载的数据相比较,证明重建鼻腔模型与气体流场数值模拟的可行性。
     第二部分主要研究鼻腔结构的几何形态与鼻腔内气体流场的关系,应用三维重建和数值模拟的方法对24例健康成年人鼻腔的气流流场进行了分析和比较,总结健康成年人鼻腔气体流场的特点并对其按照一定规律进行分类。通过数值模拟方法分析鼻腔在鼻甲部分切除后的气流流场,并与原始模型的模拟结果进行比较,研究鼻腔结构的变化对鼻腔内气流分布的影响。
     第三部分主要研究正常成年人的鼻腔气道几何尺寸和鼻腔阻塞程度的关系,对17个志愿者进行鼻阻力测试,得到鼻腔的阻塞系数与气流量的关系。对测试数据进行函数拟合,确定鼻腔的阻塞系数。根据每个志愿者的鼻腔的CT扫描图像,提取鼻腔结构的几何数据。对鼻腔阻塞系数和鼻腔结构几何数据进行分析对比,建立气道几何尺寸与鼻腔阻塞系数的关系式,并确定其中的待定系数。结果表明,可以通过鼻腔气道的截面积、气道长度、湿周长等几何尺寸大致的确定鼻腔的阻塞程度。
     第四部分设计一种应用于功能性内窥镜鼻窦手术后的引流器,在术后放入窦口鼻道复合体处,防止窦口的粘连,保证鼻腔通气,通过鼻腔呼吸气流自动将上颌窦内的积液引出,将液体药剂输送到上颌窦,方便术后的管理。根据重建的三维鼻腔模型进行数值模拟的结果和鼻阻力仪测量的结果得到窦口鼻道复合体处的气流流动情况。通过两相流理论和建立的引流器计算模型,对于“引流和注药过程”进行数值模拟和定量分析。在数值模拟过程中,改变引流器的管径以及引流物质的粘性系数,分别计算并比较结果,对引流器形状进行优选,确保本文设计的引流器可以完成通气、引流,注药和保持上颌窦窦口不粘连的功能。
     第五部分设计一种鼻用塞固器,在鼻中隔粘骨膜下矫正术后,放入鼻腔替代传统的填塞材料,起到固定鼻中隔、压迫止血和保持鼻腔通气的作用。通过有限单元法模拟塞固器和膨胀海绵在鼻腔中的工作情况,分析两者的模拟结果,比较鼻中隔粘骨膜的压应力和第一主应力。由模拟结果可知,鼻用塞固器可以起到固定鼻中隔、压迫止血和保持鼻腔通气的作用,同时不会导致鼻腔粘膜的破裂。
Nasal cavity is the main passage of oxygen airflow. Except the main function of respiration nasal cavity provides the functions to filters, warms, and humidifies inspired air and protects the delicate structure of the lower respiratory system. The nasal cavity places itself at risk from the respiratory system sickness. Clinical medical treatment and research work demonstrate that nasal functions and nasal diseases are related to the structure of nasal cavity. In recent years it has been proved that the abnormal nasal structure will lead to some nasal diseases. The complex nasal structure and the lack of biomechanical model and numerical model make it is difficult to deeply explore. It has influenced the clinical forecast, diagnose, selection of treatment project and estimation of curative effect for the disease.
     In this paper, the nasal cavity structure is reconstructed based on the CT images and the numerical simulation for nasal airflow is performed. The relationship between nasal cavity structure and distribution of nasal airflow is investigated based on many reconstructed nasal cavity models. Then the change of distribution of nasal airflow is investigated that caused by the partly change of nasal structure. Based on these works two medical wares are designed to help the doctors and the patients. Five parts of this paper are summarized as follows:
     In the first part an efficient method for building nasal model is introduced. The nasal cavity structure of a healthy volunteer is reconstructed by the method of surface rendering based on his CT images. The numerical simulation and the analysis for the airflow in the nasal cavity was made by the finite element method and the results are compared with the data from the literature. The comparison indicates that the result is believable and this method is feasible.
     In the second part the relationship between nasal structure and distribution of nasal airflow is investigated. Numerical simulation for the airflow in 24 nasal models is performed. The characters of airflow distribution in all nasal models are investigated and classified. The numerical simulation and analysis for airflow field in the nasal models with turbinate removed partly are performed by the numerical simulation method. The simulation results from new models are compared with that from the original model to study the influence of change of nasal structure on the distribution of nasal airflow.
     In the third part the relationship between nasal airway dimension of normal adults and the degree of nasal obstruction will be investigated. The nasal airway resistance of 17 volunteers is measured through active anterior rhinomanomety. Curve fitting for the rhinomanometer data is performed to find the obstruction coefficient of nasal airway. We obtain the geometry dimensions of the nasal cavities from the CT images of volunteers. Nasal obstruction coefficient is considered as a function of the nasal airway dimensions. The undetermined coefficient is identified by curves fitting for the data of geometry dimensions and obstruction coefficients. It can be concluded that the nasal obstruction coefficient can be identified closely by geometry dimensions of nasal cavity such as nasal coronal section area, length of nasal airway and perimeter of coronal section of nasal airway.
     In the fourth part the drainage ware is designed for postoperative care after functional endoscopic sinus surgery. It can prevent the ostium of maxillary sinus from closing, drain the empyemata from maxillary sinus and send the medicament to the field of ostiomeatal complex. Based on the results of numerical simulation of airflow in nasal cavity and the data obtained from Rhinomanometry the characters of airflow in the middle nasal meatus are acquired. The numerical model of drainage ware is generated. Based on the tow-phase flow theory numerical simulation for the liquid in the drainage ware is performed to explain how the drainage ware dose its work. Changing the tube diameter or viscosity parameters of liquid-phase flow different results of numerical simulation are acquired. Comparing the computational results the fit diameter of drainage tube is obtained. The drainage ware designed in this study can accomplish the work of keeping ventilation, draining the empyemata, sending medicament and preventing the ostium of maxillary sinus from closing.
     In the fifth part the packing-fixer is designed as packing material for nasal that can keep breathing, fix the nasal septum and arrest bleeding after nasal septum mucous membrane surgery. Numerical simulation is performed to study the function of packing-fixer and expansive sponge in nasal cavity by means of finite element method. The compression stress and the first principal stress are compared between tow conditions. From the simulation results it can be demonstrated that the packing-fixer designed in this study can keep breathing, fix the nasal septum and arrest bleeding after nasal septum mucous membrane surgery and would not break the nasal septum mucous membrane.
     The study would contribute to nasal clinical application in clinical diagnose, design of treatment project and estimation of curative effect for the disease.
引文
[1]Zwartz G J,Guilmette R A.Effect of flow rate on particle deposition in a replica of a human nasal airway.Inhal Toxicol,2001,13:109-127.
    [2]李咸龙,温湘玲.鼻中隔偏曲治疗的沿革和现状.临床耳鼻咽喉杂志,2004,18(11):701-704.
    [3]Yaggi H,Mohsenin V.Obstructive sleep apnoea and stroke.Lancet Neurol,2004,3(6):333-342.
    [4]陶泽璋.鼻中隔偏曲两侧窦口鼻道复合体解剖变异的差异.中华耳鼻喉科杂志,2001,36(2):132-134.
    [5]Hornung D E,Denald A,Leopold M D et al.Airflow Patterns in a Human Nasal Model.Arch Otolaryngol Head Neck Surg,1987,113:169-172.
    [6]Patra A L,Gooya A,Morgan K T.Airflow characteristics in a baboon nasal passage cast.J Appl Physiol,1986,61(5):1959-1966.
    [7]Morgan K T,Kimbell J S,Monticello T M et al.Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds:relevance to formaldehyde toxicity.Toxicol Appl Pharmacol,1991,110(2):223-240.
    [8]Kelly J T,Prasad A K,Wexler A S.Detailed flow patterns in the nasal cavity.J Appl Physiol,2000,89(I):323-337.
    [9]Schreck S,Sullivan K J,Ho C M et al.Correlation between flow resistance and geometry in a model of human nose.J Appl Physiol,1993,75(4):1767-1775.
    [10]Horschler I,Meinke M,Schroder W et al.Numerical simulation of the flow field in a model of the nasal cavity.Computers & Fluids,2003,32(1):39-45.
    [11]Kimbell J S,Subramanium R P.Use of Computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages.Inhal Toxicol,2001,13(5):325-334.
    [12]Subramaniam R P,Richardson R B,Morgan K T et al.Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx.Inhal Toxicol,1998,10:473-502
    [13]Andersen M E,Green T,Frederick C B.Physiologically based pharmacokinetic(PBPK)models for nasal tissue dosimetry of organic esters:Assessing the state-of-knowledge and risk assessment applications with methyl methacrylate and vinyl acetate.Regul Toxicol Pharmacol,2002,36(3):234-245.
    [14]黄文华.鼻腔及鼻窦螺旋CT仿真内镜成像质量控制.放射学实践,2002,17(3):254-255.
    [15]Keyhani K,Scherer P W,Mozell M M.A numerical model of nasal odorant transport for the analysis of human olfaction.J Theor Biol,1997,186(3):279-301.
    [16]Keyhani K,Scherer P W,Mozell M M.Numerical simulation of airflow in the human nasal cavity.J Biomech Eng 1995,117(4):429-441.
    [17]Van Reimersdahl T,Horschler I,Gerndt A,et al Airflow simulation inside a model of the human nasal cavity in a virtual reality based rhinological operation planning system.International Congress Series,2001,1230:87-92.
    [18]于晓华,钱晓凌,潘功茂等.腰椎体后缘骨块的CT三维重建.中国脊柱脊髓杂志,2001,11(4):243-244.
    [19]王鸣鹏.螺旋CT的基本原理和成像方式.上海医学影像杂志,1995,4(3):115-117.
    [20]林曰增,张雪林,卢晶.螺旋CT原理、扫描参数和图像重建.CT理论与应用研究,1999,8(2):23-25.
    [21]王东,张挽时,熊明辉等.螺旋CT三维重建方法的探讨.中国医学影像技术,2000,16(10):889-892.
    [22]宦怡,郭苏晋,伏晓等.泌尿系疾病螺旋CT三维重建技术.第三军医大学学报,2001,23(9):1121-1123.
    [23]万里洲,王博亮,黄绍辉.三维重建中表面平滑算法的应用研究.厦门大学学报,2002,41(1):17-20.
    [24]滑炎卿.三维CT图像重建的研究进展.现代医用影像学,1994,6(3):134-137.
    [25]姜佩珍.表面显示法在重建三维图像技术中的新进展.CT理论与应用研究,1992,1(1):43-47.
    [26]Boissonnat J D.Shape Reconstruction from Planar Cross Sections.Computer vision,Graphic,and Image Processing,1988,44:1-29.
    [27]Chen S C,Lin W C,Chert C T.Improvement on Dynamic Elastic Interpolation Technique for Reconstruction 3D Objects from Serial Cross Sections.IEEE Transactions on Medical Imaging,1990,9(1):71-83.
    [28]Lorensen W E,Cline H E.Marching Cubes:A high resolution 3D surface construction algorithm.Computer Graphics,1987,21(4):163-169.
    [29]Chan S L,Purisima E O.A new tetrahedral tesselation scheme for isosurface generation.Computers and Graphics,1998,22(1):83-90.
    [30]顾耀林,吕理伟.移动立方体算法中的三角剖分.计算机工程与设计,2006,27(1):120-123.
    [31]秦绪佳,欧宗瑛,张勇等.医学图像三维重建系统的数据结构表达及表面模型的构建.生物医学工程学杂志,2002,19(2):239-243.
    [32]秦绪佳,欧宗瑛,纪凤欣等.三维医学图像MT表面重建的相关性处理及模型简化.中国生物医学工程学报,2001,20(5):398-403.
    [33]安新伟,张晓兵,尹涵春.医学图像三维重建的研究.电子器件,2001,24(3):207-212.
    [34]黄绍辉,王博亮,黄晓阳.基于表面与基于体素的医学图像三维重建方法研究.厦门大学学报,2002,41(6):744-746.
    [35]朱云翔,何亚奇,高起学等.螺旋CT多层面重建矢状位图像对鼻内镜鼻窦手术的价值.中华耳鼻咽喉科杂志,2003,38(3):233-235.
    [36]张玮,李杉.生物组织连续切片图像的计算机三维重建研究的进展.生物医学工程学杂志,1999,16(3):377-381.
    [37]宦怡,葛雅丽,石明国.螺旋CT多平面重建技术的临床应用.实用放射学杂志,17(7):500-503.
    [38]Klevansky A.The efficacy of multiplanar reconstructions of helical CT of the paranasal sinuses.Am J Roentgenol,1999,173(2):493-495.
    [39]韩萍,冯敢生,Brambs H J等.CT仿真鼻腔镜.临床放射学杂志,2000,19(1):10-13.
    [40]古润英,刘万怀.螺旋CT扫描三维重建.中国误诊学杂志,2001,1(7):1094-1095.
    [41]郎军添,萧璧君.窦口鼻道复合体的影像学研究进展.解剖学杂志,1997,20(6):609-611.
    [42]刘智,李恒国.鼻腔鼻窦影像学研究进展(综述).暨南大学学报(医学版),2003,24(4):101-106.
    [43]鲜军舫,燕飞,王振常等.鼻窦粘液囊肿的CT和MRI表现及其诊断价值.中华放射学杂志,1999,33(4):275-277.
    [44]Lanzieri C F,Levine H L,Rosenbloom S A et al.Three-dimensional surface rendering of nasal anatomy from computed tomographic data.Arch Otolaryngol Head Neck Surg,1989,115(12):1434-1437.
    [45]Gilanni s,Norbash A M,Ringl H et al.Virtual endoscopy of the paranasal sinuses using perspective volume rendered helical sinus computed tomography.Laryngoscope,1997,107:25-29.
    [46]杨智云,蒋爱云,杨旭峰等.螺旋CT三维重建在鼻科的临床应用.影像诊断与介入放射学,2001,10(3):129-132.
    [47]韩萍.仿真内窥镜对鼻腔结构与病变显示能力的研究.中华放射学杂志,1999,33(1):7-11.
    [48]Di Rienzo L,Coen Tirelli G,Turchio P et al.Comparison of virtual and conventional endoscopy of nose and paranasal sinuses.Ann Otol Rhinol Laryngol,2003,112(2):139-142.
    [49]Girardin M,Bilgen E,Arbour P et al.Experimental study of velocity fields in a human nasal fossa by laser anemometry.Ann Otol Rhinol Laryngol,1983,92(3pt1):231-236.
    [50]Courtiss E H,Goldwyn R W.The effects of nasal surgery on airflow.Plast ReconstrSrug,1983,72(1):9-21.
    [51]Hahn I,Scherer P W,Mozell M M et al.Velocity profiles measured for airflow through a large scale model of he human nasal cavity.J Appl Physiol,1993,75(5):2273-2287.
    [52]Hahn I.A mass transport model of olfaction.J Theor Biol,1994,167(2):115-128.
    [53]李佩忠,黄选兆,项济生等.运动和鼻粘膜减充血剂对鼻气道阻力作用的比较.临床耳鼻咽喉科杂志,1994,8(5):262-264.
    [54]Laine M T,Warren D W.Perceptual and respiratory responses to added nasal airway resistance loads in older dults.Laryngoscope,1995,105(4):425-428.
    [55]Ulyanov Y P.variants of nasal aerodynamics.Otolaryngol Head Neck Surg,1998,119(2):152-153.
    [56]Ulyanov Y P.Nose aerodynamics.Arch Otolaryngol Head Neck Surg,1995,121(3):352.
    [57]Hornung D E.Effect of nasal dilators on perceived odor intensity.Chem Senses,1997,22(2):177-180.
    [58]Hornung D E.Relationship between uninasal anatomy and uninasal olfactory ability.Arch Otolaryngol Head Neck Surg,1999,125(1):53-58.
    [59]马有祥,于德林.健康成人鼻声测量结果.中华耳鼻咽喉科杂志.1997,32(3):177-179.
    [60]Naftali S,Rosenfeld M,Shiner R J et al.Transport pattern in the human nasal cavity.Annual Fall Meeting of the Biomedical Engineering Soc,Atlanta,GA,USA,1999:347.
    [61]Naftali S.The air-conditioning capacity of the human nose.Ann Biomed Eng,2005,33(4):545-553.
    [62]Naftali S.Transport phenomena in the human nasal cavity:a computational model.Ann Biomed Eng,1998,26(5):831-839.
    [63]Frederick C B,Bush M L,Lomax L G et al.Application of a Hybrid Computational Fluid Dynamics and Physiologically Based Inhalation Model for Interspecies Dosimetry Extrapolation of Acidic Vapors in the Upper Airways.Toxicol Appl Pharmacol,1998,152(1):211-231.
    [64]Frederick C B,Lomax L G,Black K A et al.Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors.Toxicol Appl Pharmacol,2002,183(1):23-40.
    [65]Siren D,Scherrer J L,Moe K et al.A dynamic and direct visualization model for the study of nasal airflow.Arch Otolaryngol Head Neck Surg,1999,125(9):1015-1021.
    [66]蒋双庆.鼻气道阻力测定在鼻腔疾病诊疗中的意义.临床耳鼻咽喉科杂志,2000,14(4):179-180.
    [67]刘争,王春芳.鼻腔气流测定在鼻中隔偏曲矫正术中的应用.临床耳鼻咽喉科杂志,1999,13(5):204-205.
    [68]刘争,王春芳,高起学等.内窥镜鼻窦手术中不同中鼻甲处理方法对鼻气道阻力的影响.临床耳鼻咽喉科杂志,2002,16(5):201-203.
    [69]Zwartz G J,Guilmette R A.A Charge Coupled Device System to Image Local Particle Deposition Patterns in a Model of a Human Nasal Airway.Aerosol Science & Technology,1999,30(5):489-504.
    [70]Zwartz G J.Measurement of particle deposition patterns in a human nasal airway model using a Charge Coupled Device imaging system.Biomed Sci Instrum,1999,35:347-352.
    [71]Kelly J T.In vivo measurement of fine and coarse aerosol deposition in the nasal airways of female Long-Evans rats.Toxicol Sci,2001,64(2):253-258.
    [72]Kelly J T.Deposition of fine and coarse aerosols in a rat nasal mold.Inhal Toxicol,2001,13(7):577-588.
    [73]李宁炜,张湘民.鼻腔最大吸气流量在临床中的应用.临床耳鼻咽喉科杂志,2002,16(5):217-218.
    [74]Horschler I,Brucker C,Schroder W et al.Investigation of the impact of the geometry on the nose flow.European Journal of Mechanics-B/Fluids,2006,25(4):471-490.
    [75]Cole P.The four components of the nasal valve.Am J Rhinol,2003,17(2):107-110.
    [76]Kim S K,Chung S K.An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PⅣ.Measurement Science and Technology,2004,15(6):1090-1096.
    [77]吴禹,周向东.香烟烟雾可吸入微粒对大鼠支气管肺组织的氧化损伤研究.临床肺科杂志,2006,11(6):703-704.
    [78]Elad D,Liebenthal R.Analysis of air flow patterns in the human nose.Medical&Biological Engineering&Computing,1993,31(3):585-592.
    [79]Suzuk H,Nakai T,Sakakibara H et al.Analysis of acoustic properties of the nasal tract using.International Conference on Spoken Language Processing,Philadelphia,PA,USA,Sponsored by:Univ of Delaware IEEE,1996:1285-1288.
    [80]马珩,安亦然,庄宁等.外呼吸道入口的气流场计算.水动力学研究与进展(A辑),1999,14(4):504-509.
    [81]栾兆高,谭小苹,裴觉民等.人体气道内氧及二氧化碳的对流扩散.生物医学工程学杂志,2002,19(1):57-59.
    [82]Martonen T B,Zhang Z,Yue G et al.3-D Particle transport within the human upper respiratory tract.Journal of Aerosol Science,2002,33(8):1095-1110.
    [83]Martonen T B.Fine particle deposition within human nasal airways.Inhal Toxicol,2003,15(4):283-303.
    [84]Martonen T B.Flow simulation in the human upper respiratory tract.Cell Biochem Biophys,2002,37(1):27-36.
    [85]张健,谭小苹,裴觉民等.肺支气管树的DLA分形生长模拟.四川大学学报(工程科学版),2003,35(1):66-68.
    [86]石志标.鼻腔结构影响人体嗅觉反应的数值模拟.生物物理学报,2004,20(4):329-333.
    [87]黄秀义,谭小苹,裴觉民等.右肺支气管树的三维分形模拟.生物医学工程学杂志,2004,21(3):377-380.
    [88]曾敏捷,胡桂林,樊建人等.微颗粒在人体上呼吸道中运动沉积的数值模拟.浙江大学学报(工学版),2006,40(7):1164-1167.
    [89]曾敏捷,胡桂林,郑峰等.电厂排放烟气中的小颗粒在呼吸道内运动沉积的数值模拟.能源与环境,2005:36-41.
    [90]张楚华,闻苏平,刘阳等.人体呼吸道的二级及三级支气管内吸气流动的数值研究.生物医学工程学杂志,2006,23(4):748-752.
    [91]Brekelmans W A,Poort H W,Slooff T J.A new method to analyse the mechanical behaviour of skeletal parts.Acta Orthop Scand,1972,43:301-317.
    [92]Rybicki E F,Simonen F A,Weis E B.On the mathematical analysis of stress in the human femur.J Biomech,1972,5:203-215.
    [93]Viviani G R,Ghista D N,Lozada P J et al.Biomechanical analysis and simulation of scoliosis surgical correction.Clin Orthop Relat Res,1986,208:40-47.
    [94]Gignac D,Aubin C E,Dansereau J,et al.Optimization method for 3D bracing correction of scoliosis using a finite element model.Eur Spine J,2000,9(3):185-190.
    [95]Farah J W,Craig R G,Sikarskie D L.Phctcelastic and finite element stress ansalysis of a restored axisymmetric first molar.J Biomech.1973,6(5):511-520.
    [96]Vawter D L.A finite element model for macroscopic deformation of the lung.J Biomech Eng,1980,102(1):1-7.
    [97]Belytschko T,Kulak R F,Schultz A B.Finite element stress analysis of an intervertebral disc.J Biomech,1974,7(3):277-285.
    [98]Yang K H.Quantitative anatomy of the lumbar musculature,American Society of Mechanical Engineers Biomechanics Symposium,1983:127-140.
    [99]张立峰,刘锋,吕维雪.虚拟心脏的研究与应用.中国生物医学工程学报,2000,24(2):93-96.
    [100]白净.血液循环系统仿真.长春:吉林省科技出版社,1996.
    [101]张富强,魏斌,李玲.牙颌组织及修复体三维几何学、有限元模型的设计.上海口腔医学,2002,11(3):240-242.
    [102]Bohnke F,hrnold W.Finite element model of the stapes-inner ear interface,Adv Otorhinolaryngol,2007,65:150-154.
    [103]David G,Humphrey J D.Finite element model of stresses in the anterior lens capsule of the eye.Comput Methods Biomech Biomed Engin.2007,10(3):237-243.
    [104]Burd H,Judge S,Cross J.Numerical modeling of the accommodating lens.Vision Research,2002,42:2235-2251.
    [105]Pedrigi R M,David G,Dziezyc J et al.Regional mechanical properties and stress analysis of the human anterior lens capsule.Vision Research,2007,47(13):1781-1789.
    [106]孔维佳,王斌全.耳鼻咽喉科学.北京:人民卫生出版社.2001.
    [107]胡凯,荣起国,方竞等.人颞下颌关节CT三维重建及其有限元实体建模.中国医学影像学杂志.1999,7(2):137-139.
    [108]胡凯,周继林,洪民等.建立模拟功能状态下的下颌骨三维有限元模型.口腔颌面外科杂志.1997,7(3):183-186.
    [109]杨桂通,陈维毅,徐晋斌,等.生物力学.四川:重庆出版社,2000.
    [110]王胜资.口鼻气流阻力一部位、功能及评价.国际耳鼻咽喉头颈外科杂志.1993,17(2):97-98.
    [111]Chometon F,Gillieron P,Laurent J,et al.Aerodynamics of Nasal Airways with Application to Obstruction.Proceeding of Sixth Triennial International Symposium on Fluid Control,Measurement and Visualization,Sherbrooke,Canada,2000:6-11.
    [112]李晓明,卜国铉,郭晓峰.鼻部气道的限流节段.中华耳鼻咽喉科杂志.1993,29(1):48-49.
    [113]黄选兆.耳鼻咽喉科学.北京:人民卫生出版社.1995:24.
    [114]Warren D W.Effect of airway obstruction upon facial growth.Otolaryngol Clin North Am,1990,23:699-712.
    [115]李晓明,杜宝东,郭晓峰.鼻病理状态对鼻气道阻力的影响.临床耳鼻咽喉科杂志,1995,9(4):195-197.
    [116]Bicakci AA,Agar U,Sokucu O,et al.Nasal Airway Changes Due to Rapid Maxillary Expansion Timing.Angle Orthod,2005,75(1):1-6
    [117]高起学,刘争,王春芳,等.内窥镜鼻窦手术前后鼻气道阻力的变化.中华耳鼻咽喉科杂志,1999,34(3):141-142
    [118]王鸿,张伟,韩德民,等.内镜鼻窦手术前后鼻气道阻力和嗅觉功能的测试结果.中华耳鼻咽喉科杂志,2002,37(3):177-179
    [119]李佩忠.下鼻甲黏膜下凝固术对鼻气道阻力的影响.临床耳鼻咽喉科杂志,2001,15.354-355.
    [120]王永臻.下鼻甲部分切除术后并发空鼻综合症16例报告.临床耳鼻咽喉科杂志,2003,17:566-567.
    [121]李佩忠,黄选兆,项济生.鼻中隔偏曲对鼻气道阻力的影响.临床耳鼻咽喉科杂志,1997,11:317-319.
    [122]Grymer L F,Hilberg O,Pedersen O F,et al.Acoustic rhinometry:values from adults with subjective normal nasal patency.Rhinology.1991,29(1):35-47.
    [123]Grymer L F,Hilberg O,Elbrond O,et al.Acoustic rhinometry:evaluation of the nasal cavity with septal deviations,before and after septoplasty.Laryngoscope.1989,99(11):1180-1187.
    [124]Lenders H,Scholl R,Brunner M.Acoustic rhinometry:the bat principle of the nose.HNO.1992,40(7):239-247.
    [125]Fouke J M,Jackson A C.Acoustic rhinometry:effects of decongestants and posture on nasal patency.J Lab Clin Med.1992,119(4):371-376.
    [126]郑春泉,Pochon N,Lacroix JS.鼻声反射测量法.中华耳鼻咽喉科杂志,1995,30:343-346.
    [127]王轶鹏,郑军,董震,等.声反射鼻测量曲线类型及其临床应用.中华耳鼻咽喉科杂志,1998,33:228-231.
    [128]Zhao K,Scherer P W,Hajiloo S A,et al.Effect of Anatomy on Human Nasal Air Flow and Odorant Transport Patterns:Implications for Olfaction.Chem Senses,2004,29(5):365-379.
    [129]Churchill S E,Shackelford L L,Georgi J N,et al.Morphological variation and airflow dynamics in the human nose.Am J Hum Biol,2004,16(6):625-638.
    [130]吴慧云,潘玲芝.鼻阻力和鼻的免疫功能.医学综述,1998,4(8):442-444.
    [131]Barrabe P,Roux-Buisson H,Tamisier R,et al.Analysis of the collapsibility of the upper airway in a spectrum of sleep-disordered breathing:a modelling approach.C R Biol,2002,325(4):465-471.
    [132]Eccles R.A role for the nasal cycle in respiratory defence.Eur Respir J,1996,9(2):371-376.
    [133]郑军,王轶鹏,董震.体位变化对鼻腔几何形态的影响.临床耳鼻咽喉科杂志,1998,12(10):445-447.
    [134]Schumacher M J.Nasal congestion and airway obstruction:the validity of available objective and subjective measures.Curr Allergy Asthma Rep,2002,2(3):245-251.
    [135]檀慧芳.不同状态下的鼻阻力测定及临床意义.临床耳鼻咽喉科杂志,2001,15(9):416-417.
    [136]郝晓民,陈荷英,周小林,等.鼻压力计对解除鼻阻塞手术疗效的评价.临床耳鼻咽喉科杂志,1996,10(3):161-162.
    [137]乐建新,孔维佳,黄选兆,等.鼻音与鼻阻力之间关系的研究.中华耳鼻咽喉科杂志,2001,36(1):66.
    [138]周传辉,翁维安.流体阻力系数的计算方法.制冷与空调,2004,3:35-36.
    [139]黄云华,李星.一种新型流体阻力测试装置制作与研究.化工生产与技术,2006,13(5):21-24.
    [140]刘迎曦,于申,孙秀珍,等.鼻腔结构形态对鼻腔气流的影响.中华耳鼻咽喉头颈外科杂志,2005,40(11):846-849.
    [141]Henry DC,Moller DJ Jr,Adelglass J,et al.Comparison of sparfloxacin and clarithromycin in the treatment of acute bacterial maxillary sinusitis.Clin Ther,1999,21(2):340-352.
    [142]Dubreuil C,Gehanno P,Goldstein F,et al.Treatment of acute maxillary sinusitis in adult outpatients:comparison of a five versus ten day-course of cefuroxime axetil.Med Mal Infect,2001,(31):70-78.
    [143]Albu S,Tomescu E.Small and large middle meatus antrostomies in the treatment of chronic maxillary sinusitis.Otolaryngol Head Neck Surg,2004,131(4):542-547.
    [144]许庚,李源,谢民强,等.功能性内窥镜鼻窦手术后术腔粘膜转归阶段的划分及处理原则.中华耳鼻咽喉头颈外科杂志,1999,34(5):302-305.
    [145]张绪纲.内窥镜鼻窦手术后上颌窦口开放状况对疗效的影响.中华实用中西医杂志,2004,4(17):2521-2522.
    [146]孙秀珍,刘璟.内窥镜鼻窦手术后中鼻道置“T”型管30例临床应用体会.大连医科大学学报,1999,21(3):187-188.
    [147]李海青.两相流参数检测及应用.杭州:浙江大学出版社,1991.
    [148]吕霞付,蔡绍皙.血液密度测量及其在基础医学和临床中的应用.国外医学·生物医学工程分册,2001,24(4):165-168.
    [149]杨俊,郭涛.血液粘度正常值探讨.中国血液流变学杂志,1998,8(1):59-60.
    [150]曲德伟,李幼琼,郭京丽等.中国人鼻旁窦三维重建及测量.吉林大学学报医学版,2007,33(2):366-368.
    [151]谢民强,许庚,李源等.四种鼻腔填塞材料的疗效比较.中国内镜杂志,2003,9(12):19-22.
    [152]赵慎林,赵玉风.鼻腔置管在鼻腔填塞中的应用.临床耳鼻咽喉科杂志,2003,17(2):91.
    [153]董仲林,张鲁新,尹承江等.鼻中隔粘膜固定夹的研制及临床应用.中国耳鼻喉科头颈外科,1997,4(5):310-311.
    [154]白国荣,任正心,黎万荣等.鼻中隔粘膜固定夹板的研制及临床应用.中国耳鼻喉科头颈外科,2003,10(2):116-118.
    [155]初日德,李润,马洪顺.鼻额筛眶复合体损伤导致失明机理的实验研究.吉林工业大学学报,1993,22(4):31-35.
    [156]王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究.实验力学,2007,22(1):1-6.
    [157]Auregan Y,Depollier C.Snoring:Linear stability analysis and in-vitro experiment.Journal of Sound and Vibration,1995,188(1):39-54.
    [158]Payan Y,Pelorson X,Perrier P.Physical modelling of the airflow-walls interactions to understand the sleep apnea syndrome.Lecture Notes in Computer Science,2003,2673:261-269.
    [159]Chao KK,Ho KH,Wong BJ.Measurement of the elastic modulus of rabbit nasal septal cartilage during Nd:YAG(lambda=1.32 microm) laser irradiation.Lasers in Surgery and Medicine,2003,32(5):377-383.
    [160]刘永义,覃开蓉,包亚军,等.上气道低阻力鼾症模型猪咽组织的生物力学重建.江苏大学学报(医学版),2007,17(4):277-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700