用户名: 密码: 验证码:
旱作水稻/西瓜间作抑制西瓜枯萎病的生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间作是我国传统农业的组成部分,具有增大光合面积,提高土地利用率及避免根系在同一层次的养分竞争等间作优势。此外,间作种植还可以抑制植物的病虫害。西瓜枯萎病是西瓜生产中易发的病害,而且危害严重。前期的盆栽试验表明,旱作水稻/西瓜间作能够抑制西瓜枯萎病的发生。对其作用机制进一步的研究,证实了水稻根分泌物能够抑制西瓜枯萎病病原菌尖孢镰刀菌的生长和繁殖,这是水稻根分泌物从改善西瓜生长环境方面抑制西瓜枯萎病发生的机制,但是,水稻根分泌物能否到达西瓜根际、到达根际后能否提高西瓜自身的抗病能力,需要我们做进一步的研究。香豆酸是水稻根系分泌的酚酸,能显著抑制西瓜专化型尖孢镰刀菌的生长和繁殖。阿魏酸是西瓜根系分泌的酚酸,它促进西瓜专化型尖孢镰刀菌的生长和繁殖。水杨酸是水稻和西瓜根系都分泌的酚酸,同时也是一种激素,对西瓜专化型尖孢镰刀菌的生长和繁殖没有显著的影响。香豆酸、阿魏酸和水杨酸很可能对西瓜植株的系统获得性抗性有不同的影响,从而影响西瓜自身的抗枯萎病的能力。本研究采用盆栽、分隔盆栽和14C标记等方法,从微生物环境到生理水平和转录水平,研究了14C的放射活性、西瓜根际病原菌数量、西瓜根际微生物区系、水稻和西瓜对磷素的吸收、西瓜植株几丁质酶基因和苯丙氨酸解氨酶(PAL)基因的表达、西瓜植株几丁质酶活性和β-1,3-葡聚糖酶活性,具体采用的方法和主要结果如下:
     1.采用根箱和14C标记的方法,研究了水稻同化的碳在水稻和西瓜之间的传递,以及丛枝菌根真菌对旱作水稻同化的碳素向西瓜根际传递的影响。将根箱分为标记侧和采样侧,在箱子中间插入30μm尼龙网。结果表明,与旱作水稻单作相比,旱作水稻和西瓜间作时,有更多的C分配到根系并分泌到水稻根际土壤中。无论旱作水稻单作还是旱作水稻/西瓜间作,当接种丛枝菌根真菌时,水稻同化的C会有更多的量传递到邻近作物根际(单作时是水稻,间作时为西瓜),并被邻近植物吸收、转运到地上部分。
     2.采用中间不同分隔的大盆钵试验,研究在西瓜/旱作水稻间作系统中西瓜和旱作水稻根系之间不同的分隔方式对西瓜枯萎病的影响,并从西瓜根际病原菌及微生物区系方面探讨其作用机制。结果表明,与隔膜相比,当西瓜和旱作水稻根系之间没有分隔时,西瓜枯萎病的发病时间晚6-7天,发病程度最轻;当西瓜和旱作水稻根系之间用尼龙网隔开时,西瓜和旱作水稻的根系之间没有根系接触,而根分泌物可以自由穿过尼龙网,与隔膜的处理相比,西瓜枯萎病的发病时间推迟3-4天,发病程度也减轻,根际尖孢镰刀菌数量降低,真菌数量降低,细菌数量升高。当西瓜和旱作水稻之间用塑料膜隔开时,西瓜枯萎病的发病时间最早,发病程度最深,与不分隔的处理相比,西瓜根际的尖孢镰刀菌数量升高,真菌和细菌数量升高,放线菌数量降低。因此,在西瓜/旱作水稻间作系统对西瓜枯萎病的抑制中,旱作水稻根分泌物对西瓜枯萎病病原菌尖孢镰刀菌的抑制,和旱作水稻根分泌物改善西瓜根际微生物区系都起着重要的作用。
     3.采用盆栽的方法向西瓜外源施加不同浓度的香豆酸,研究在水稻分泌的酚酸作用下能否提高西瓜自身抗枯萎病的能力。结果表明,西瓜根际接种尖孢镰刀菌下调了西瓜叶片几丁质酶基因和PAL基因的表达,叶片β-1,3-葡聚糖酶活性降低了75.80%,降低了西瓜的抗病能力;在西瓜外源施加香豆酸提高了西瓜根系几丁质酶基因和叶片PAL基因的表达,提高了根系中的几丁质酶和β-1,3-葡聚糖酶的活性,提高了根系分泌肉桂酸的量,从而提高了西瓜抗枯萎病的能力。当西瓜根际接种尖孢镰刀菌同时施加香豆酸时,随着香豆酸施加量的增加,叶片中的几丁质酶基因的表达逐渐升高,PAL基因表达量逐渐提高。当香豆酸的施加量为100μmol L-1时根系β-1,3-葡聚糖酶活性达到最高,比对照提高了53.7%。所以,香豆酸的施加提高了西瓜抗枯萎病的能力,而且在施加量在100μmol L-1时效果最好。
     4.采用盆栽的方法,向西瓜植株外源施加阿魏酸,以模拟西瓜根分泌物对西瓜自身生理代谢以及西瓜抗病能力的影响。结果表明,西瓜植株外源施加阿魏酸下调西瓜叶片几丁质酶基因和根系PAL基因的表达,当施加阿魏酸浓度为100μmol L-1时,对几丁质酶基因抑制最强,使西瓜叶片几丁质酶活性降低65.2%;施加30μmol L-1阿魏酸时,根系PAL基因下调最显著;单独接种尖孢镰刀菌,西瓜叶片β-1,3-葡聚糖酶活性降低75.8%,当接种尖孢镰刀菌同时施加30μmol L-1-300μmol L-1阿魏酸时,西瓜叶片β-1,3-葡聚糖酶活性比对照处理降低了32%-37%。总之,外源施加阿魏酸抑制西瓜叶片和根系几丁质酶活性,抑制西瓜叶片β-1,3-葡聚糖酶活性,从而降低西瓜植株的抗病能力,诱导西瓜枯萎病的发生。
     5.采用盆栽的方法,向西瓜外源施加水杨酸,研究了西瓜叶片和根中几丁质酶基因和PAL基因的表达,以及几丁质酶活性和β-1,3-葡聚糖酶的活性,探讨外源激素对西瓜植株叶片和根系中与抗性相关基因的表达及其功能蛋白几丁质酶和β-1,3-葡聚糖酶活性的影响,揭示水杨酸的施用对西瓜自身抗枯萎病能力的影响。结果表明,西瓜外源施加300μmol L-1水杨酸9天后,刺激了西瓜根系的生长;上调了西瓜叶片和根系中的PAL基因的表达,也上调了根系几丁质酶基因的表达,而对西瓜根系中的几丁质酶基因却有下调的趋势。与对照相比,施加30μmol L-1和100μmol L-1水杨酸时,西瓜叶片几丁质酶的活性分别提高了2.25倍和2.45倍,施加300μmol L-1水杨酸时,西瓜苗根系几丁质酶活性提高了52.2%。施加30μmol L-1和100μmol L-1水杨酸时,西瓜叶片中β-1,3-葡聚糖酶的活性分别提高了56.7%和50.7%,当施加浓度达到300μmol L-1时,西瓜叶片β-1,3-葡聚糖酶活性反而比对照降低了76.6%;西瓜外源施加水杨酸提高了根系分泌肉桂酸的量,当施加浓度为100μmol L-1时,其分泌量最高,与对照处理相比,提高了9.63倍。因此,外源施加100μmol L-1水杨酸在上调西瓜植株几丁质酶和PAL基因的表达,提高几丁质酶和β-1,3-葡聚糖酶的活性,提高根系对肉桂酸的分泌等方面效果最好,以提高西瓜的抗病能力。
     综上所述,本文阐述了碳素在土壤中的传递,AM菌根真菌对植物碳素传递的影响,旱作水稻和西瓜根系之间的分隔对西瓜根际微生物和西瓜枯萎病的影响,水稻根分泌的香豆酸对西瓜苗抗病能力的影响,西瓜根分泌物的阿魏酸对自身抗病能力的影响以及外源激素对西瓜苗抗病能力的影响。旱作水稻和西瓜间作时,旱作水稻的根分泌物一方面直接抑制尖孢镰刀菌的生长和繁殖,改善了西瓜生长的外界环境;另一方面,通过分泌的化感物质刺激西瓜根系,改善西瓜自身的生理代谢,产生系统获得抗性,提高抗病能力。
Intercropping mode is a traditional agricultural management in China, with the advantages such as enhancing photosynthesis areas, increasing land use efficiency and avoiding nutrient competition by roots. In addition, intercropping can also control plant disease. Watermelon is susceptive to wilt disease, which usually results in reducing its yield and quality. Previous pot experiment showed that intercropping with aerobic rice could suppress wilt disease occurrence in watermelon, which is related to that rice root exudates suppressed F. oxysporum. Intercropping with aerobic rice or arbuscular mycorrhizal fungi (AMF) colonization alleviated watermelon wilt disease, which is likely attributed to rice root exudates or AMF depressing watermelon wilt pathogen. Coumaric acid is the specific substance in rice root exudates, with the ability to inhibit spore germination and spore procreation of F. oxysporum. However, further research is needed to investigate whether rice root exudates can transfer to watermelon rhizosphere soil, whether rice root exudates can induce systemic resistance against wilt disease in watermelon and whether AMF can affect the transfer of rice root exudates to watermelon rhizosphere soil. Ferulic acid is the specific substance in watermelon root exudates, with the ability to improve spore germination and spore procreation of F. oxysporum. Salicylic acid is exudated by both rice and watermelon roots. It has no effect on spore germination and spore procreation of F. oxysporum. Salicylic acid is an essential hormone in plant immunity. A pot experiment with14C labeling method was performed to investigate the transfer of rice root exudates to watermelon rhizosphere. A pot experiment with separation between rice and watermelon roots was conducted to detect the role of rice root exudates in alleviating watermelon wilt disease. Exogenous coumaric acid, ferulic acid and salicylic acid were applied to watermelon to investigate the effect of these phenolic acids on watermelon disease resistance. Chitinase gene and PAL gene expression as well as enzymatic acitvities were determined to show watermelon disease resistance.The methods and results were listed as below:
     1.A rhizobox experiment,with aerobic rice under14C02,was conducted to investigate the effect of AMF colonization on carbon(C)transfer from rice to watermelon and phosphorus(P)uptake by both watermelon and rice.The rhizobox was separated into labelling side(L side)and sampling side(S side)by inserting nylon mesh in the middle of the box.The L side was planted with aerobic rice,and the S side was aerobic rice (monocropping)or watermelon(intercropping).When14CO2was added to rice canopy at the L side,14C activities of rice roots and rhizosphere soils in the L side were increased by intercropping with watermelon or AMF colonization.The14C was detected in roots and rhizosphere soils of rice and watermelon in the S side,but no differences were found among different treatments.14C activities in leaves were improved by AMF inoculation in the S side,regardless of rice or watermelon.Mycorrhizal colonization stimulated P absorption and translocation to rice in intercropping system.These findings suggest that AMF colonization could increase C transfer from rice to watermelon while intercropping with watermelon could promote AMF colonization and P uptake by rice.
     2. Pot experiment with different separation methods between aerobic rice and watermelon was performed to investigate the effect of separation methods on watermelon wilt disease and its mechanism.The results showed that the wilt disease occurrence was delayed6-7days and was alleviated in the treatment with no separation between aerobic rice and watermelon roots,compared with film separation treatment.The wilt disease occurrence was delayed3-4days in the treatment with nylon mesh separation between aerobic rice and watermelon roots.Compared to film separation,the F. oxysporum number, bacterial number and fungal number decreased while the actinomycetes number increased in watermelon rhizosphere soil in no separation treatment.The similar results were obtained in nylon mesh separation treatment.
     3.Pot experiment was carried out to investigate the effect of exogenous coumaric acid supply to watermelon rhizosphere on chitinase and phenylalanine ammonia lyase (PAL) genes expression and related enzymatic activities.The results showed that chitinase and PAL genes in watermelon leaf were down regulated.The β-1,3-glucanase activityin leaf was decreased by75.8%with F. oxysproum inoculation.Chitinase gene in root and PAL gene in leaf were up-regulated with exogenous supply of coumaric acid to watermelon.The activities of chitinase and β-1,3-glucanase in roots were increased,and more cinnamic acid was excreted from watermelon root with supplying exogenous coumaric acid. Under supplying both F. oxysporum and coumaric acid, chitinase gene and PAL gene expression in leaf increased with increasing the supply. Compared with control, the activity of β-1,3-glucanase in leaf was increased by53.7%when100μmol L-1coumaric acid was applied to watermelon. Therefore, exogenous coumaric acid improved watermelon disease resistance and100μmol L-1is the best dose for exogenous supply.
     4. Pot experiment was carried out to investigate the effect of exogenous ferulic acid supply on watermelon resistance. The results showed that chitinase gene in leaf and PAL gene in root were down-regulated with ferulic acid supply. Compared with control, chitinase activity in leaf was decreased by65.2%with100μmol L-1ferulic acid supply. The β-1,3-glucanase activity in watermelon leaf was reduced by75.8%with F. oxysporum inoculation, and decreased by32%-37%under supplying both F. oxysporum and30-300μmol L-1ferulic acid, compared with the control. Therefore, supplying exogenous ferulic acid decreased chitinase activity in leaves and roots and β-1,3-glucanase activity in leaves of watermelon, and thus decreased disease resistance throuth down regulating chitinase gene and PAL gene, and induced wilt disease occurrence in watermelon.
     5. Exogenous supply of salicylic acid to watermelon rhizosphere was performed to study the effect of hormone secreted by rice and watermelon roots on watermelon disease resistance. The results showed that watermelon root growth was improved by300βmol L-1salicylic acid supply for9days. In addition, the PAL gene expression in watermelon leaf and root was up regulated, as well as the chitinase gene in root with300μmol L-1salicylic acid supply for9days. Compared with control, the chitinase activity in leaf was promoted by2.25and2.45times with30μmol L-1and100μmol L-1salicylic acid application, respectively. The chitinase activity in root was increased by52.2%with300μmol L-1exogenous salicylic acid. Compared with control, the β-1,3-glucanase activity in leaf was enhanced by56.7%and50.7%with adding exogenous30μmol L-1and100μumol L-1salicylic acid, respectively. However, the β-1,3-glucanase activity decreased by76.6%with300μmol L-1salicylic acid. Commanic acid concentration in watermelon root exudates was improved by salicylic acid, and with the highest at100μmol L-1. The commanic acid concentration was increased by9.63times with100μmol L-1salicylic acid supply, compared with the control. Therefore,100μmol L-1salicylic acid aupply was better in up-regulating chitinase gene and PAL gene expression, in improving chitinase and β-1,3-glucanase activities and in secreting more cinnamic acid to improve watermelon wilt disease resistance.
     The present study demonstrated the mechanism of suppression watermelon wilt disease by intercropped with aerobic rice. Rice root exudates transferred to watermelon rhizosphere to inhibit F. oxysporum growth. On the other hand, rice root exudates induced systemic acquired resistance of watermelon to decrease wilt disease incidence.
引文
Akiyama T, Jin S, Yoshida M. Expression of an endo-(1,3; 1,4)-β-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings. Journal of Plant Physiology.2009, 166 (16):1814-1825
    Allen M F, Swenson W, Querejeta J I, Egerton-Warburton L M, Treseder K K. Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual review of phytopathology.2003,41:271-303
    Amato M. Determination of carbon 12C and 14C in plant and soil. Soil Biology and Biochemistry.1983, 15:611-612
    Amora-Lazcano E, Azcon R. Response of sulphur cycling microorganisms to arbuscular mycorrhizal fungi in the rhizsophere of maize. Appllied Soil Ecology.1997,6:217-222
    Amore R D, Morra L, Parisi B. Grafted watermelon:production results culture Protette.1996,25:29-31
    Anand A, Uppalapati S R, Ryu C M. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiology.2008,146 (2):703-715
    Ananieva E A, Christov K N, Popova L P. Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. Plant Physiol.2004,161 (3) 319-328
    Antoniw J F, White R F. The effects of asoirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathologische Zeitschrift.1980,98: 331-341
    Armengol J, Jose C M, Moya M J. Fusarium solani f sp. cucumbitae race 1, a potential pathogen of grafted watermelon production in Spain Bulletin OEPP 2000,0:179-183
    Badri D V, Vivanco J M. Regulation and function of root exudates. Plant, Cell and Environment.2009, 32:666-681
    Bais H P, Prithiviraj B, Jha A K, Ausubei F M, Vivanco J M. Mediaition of pathogen resistance by exudation of antimicrobials from roots. Nature.2005,434:217-221
    Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology.2006,57:233-266
    Ben D M. The effect of grafting watermelon (.citrullus vulgaris shr) on several rootstocks, on plant growth, fruit production, quality and resistance to Fusarium wilt. Centre International de Hautes Etudes Agronomiques Mediterraneennes.1994,130
    Bevivino A, Peggion V, Chiarini L, Tabacchioni S, Cantale C, Dalmastri C. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Research in Microbiology.2005,156:974-983
    Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. Journal of Chemical Ecology.2007.33(5):1089-103
    Bily A C, Reid L M, Taylor J H, Johnston D, Malouin C, Burt A J, Bakan B, Regnault-Roger C, Pauls K P, Arnason J T, Philogene B J. Dehydrodimers of Ferulic Acid in Maize Grain Pericarp and Aleurone:Resistance Factors to Fusarium graminearum. Phytopathology.2003,93 (6):712-9
    Bonfante-Fasolo P. Vesicular-arbuscular mycorrhizae:Fugus-plant interactions at the cellular level. Symbiosis.1987,3:249-268
    Borowicz V A. Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology.2001,82: 3057-3068
    Borrero C, Trillas M I, Ordovas J, Tello J C, Aviles M. Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology.2004,94:1094-1101
    Boulter J I, Trevors J T, Boland G J. Microbial studies of compost:Bacterial identification and their potential for turf grass pathogen suppression. World Journal of Microbiology and Biotechnology. 2002,18:661-671
    Boutigny A L, Barreau C, Atanasova-Penichon V, Verdal-Bonnin M N, Pinson-Gadais L, Richard-Forget F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Research.2009,113:746-753
    Bowling S A, Guo A, Cao H, Gordon A S, Klessig D F, Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell.1994,6:1845-1857
    Brussaard L, de Ruiter P C, Brown G G. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment.2007,121:233-244
    Burgess L W, Summerell B A, Bullock S, Gott K P, Backhous D. Laboratory manual for Fusarium Research. University of Sydney and Royal Botanic Gardens:Sydney, Australia.1994, pp.133
    Burgess L W, Summerell B A, Bullock S, Gott K P, Backhous D. Laboratory manual for Fusarium research. University of Sydney and Royal Botanic Gardens, Sydney, Australia.1994
    Burken J G, Schnoor J L. Phytoremediation:Plant uptake of atrazine and role of root exudates. Journal of Environmental Engineering.1996,122:958-963
    Camacho-Cristobal J J, Anzellotti D, Gonzalez-Fontes A. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiology and Biochemistry.2002,40:997-1002
    Cameron D D, Johnson I, Read D J, Leake J R. Giving and receiving:measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist.2008,180:176-184
    Cameron D D, Leake J R, Read D J. Mutualistic mycorrhiza in orchids:Evidence from plant fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist.2006,171:405-416
    Campos-Soriano L, Garcia-Garrido J M, San Segundo B. Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytologist.2010,188 (2):597-614
    Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M. Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Applied and Environmental Microbiology.2000,66:4785-4789
    Carey E V, Marler M J, Callaway R M. Mycorrhiza transfer carbon from a native grass to an invasive weeds:Evidence from stable isotopes and physiology. Plant Ecology 2004,172:133-141
    Caron M, Fortin J A, Richard C. Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Candian Journal of Plant Pathology.1986,8:12-16
    Caron M, Fortin J A, Richard C. Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f.sp. radicis-lycopersici on tomatoes. Plant and Soil.1985,87:233-239
    Catska V. Interrelationships between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum.1994,36:99-104
    Catska V. Interrelationships between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum.1994,36:99-104
    Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P. Plant-borne flavonoids released into the rhizosphere:Impact on soil bio-activities related to plant nutrition. A review. Biology and Fertility of Soils.2012,48:123-149
    Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil.2010,329:1-25
    Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Applied Microbiology and Biotechnology.2011,89(5):1653-63
    Chen Y M, Wang M K, Zhuang S Y, Chiang P N. Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma.2006,136:378-387
    Chifflot V, Rivest D, Olivier A, Cogliastro A, Khasa D. Molecular analysis of arbuscular mycorrhizal community structure and spores distribution in tree-based intercropping and forest systems. Agriculture, Ecosystems and Environment.2009,131:32-39
    Clarke S M, Mur L A, Wood J E, Scottlan M. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The plant Journal.2004,38:432-447
    Crombie W M L, Crombie L. Distribution of avenocins A-1, A-2, B-1 and B-2 in oat roots:Their fungicidal activity towards 'talk-all' fungus. Phytochemistry.1986,25:2069-2073
    De Giovanni G D, Watrud L S, Seidler R J, Widmer F. Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence PCR(ERIC-PCR). Microbial Ecology.1999,37:129-139
    Dean R A, Kuc J. in:Fungal infection of plants. Page F, Qyers P G. (eds), Cambridge University Press, Cambridge.1987, pp.383-410
    Dihazi A, Jaiti F, Kilani-Feki O, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini M A. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiology and Biochemistry.2012,55:7-15
    Dommergues Y R. The plant-microorganism system. In Interactions between Nonpathogenic soil microorganisms and plants. Elsevier:Amsterdam. Netherlands,1978, pp.1-37
    Dommergues Y R. The plant-microorganism system. Interactions between nonpathogenic soil microorganisms and plants. the Netherlands:Elsevier, Amsterdam.1978
    Drigo B, Kowalchuk G A, van Veen J A. Climate change goes underground:Effects of elevated atmospheric CO2 on microbialcommunity structure and activities in the rhizosphere. Biology and Fertility of Soils.2008,44:667-679
    Drigo B, Pijl A S, Duyts H, Kielak A M, Gamper H A, Houtekamer M J, Boschker H T, Bodelier P L, Whiteley A S, van Veen J A, Kowalchuk G A. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, USA.2010,107:10938-10942
    Eschen-Lippold L, Landgraf R, Smolka U, Schulze S, Heilmann M. Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytologist.2012,193 (4):985-996
    Ezawa T, Saito M, Yoshida T. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant and Soil.1995,176:57-63
    Fitter A H. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytologist.2006,172:3-6
    Fujii Y. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens)and Hairy vetch(Vicia villosa). Biological Sciences in Space. 2003,17 (1):6-13
    Fukasawa-Akada T, Kung S D, Watson J C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Molecular Biology.1996,30:711-722
    Funamoto R, Saito K, Oyaizu H, Saito M, Aono T. Simultaneous in situ detection of alkaline phosphatase activity and polyphosphate in arbuscules within arbuscular mycorrhizal roots. Functional Plant Biology.2007,34:803-810
    Garcia-Palazon A, Suthanthangjai W, Kajda P, Zabetakis I. The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria ananassa). Food Chemistry.2004,88:7-10
    Gardener B B M, Weller D M. Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology.2001,67:4414-4425
    Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Ilarduya O M. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology.2010,10:232
    Gomez-Rodriguez O, Zavaleta-Mejia E, Gonzalez-Hernandez V A, Livera-Munoz M, Cardenas-Soriano E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Research.2003,83:27-34
    Grayston S J, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology.1996,5:29-56
    Grayston S J, Wang S, Campbell C D, Edwards A C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry.1998,30:369-378
    Gryndler M, Kapulnik Y, Douds J D. Interactions of arbuscular mycorrhizal fungi with other soil organisms. Arbuscular mycorrhizal:Physiological and function (eds). Kluwer, Dordrecht, the Netherlands.2000, pp.239-262
    Gryndler M. Interactions of arbuscular mycorrhizal fungi with other soil organisms. In Arbuscular Mycorrhizal:physiological and function. Kapulnik Y, Douds D. eds. Kluwer Academic publishers, Netherlands.2000,239-262
    Hamel C and Smith D L. Interspecific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biology and Biochemistry.1991,23:661-665
    Hammer E C, Pallon J, Wallander H, Olsson P A. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiology Ecology.2011,76:236-244
    Hammond-Kosack K E, Jones J D G. Resistance Gene-Dependent Plant Defense Responses. The Plant Cell.1996,8:1773-1791
    Hao Z P, Christie P, Qin L, Wang C X, Li X L. Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhizal fungus. Journal of Plant Nutrition.2005,28: 1961-1974
    Harrier L A, Watson C A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science.2004,60:149-157
    Harrison M J. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology.2005, 59:19-42.
    Hassan H M, Marschenr P, McNeill A, Tang C. Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biology and Fertility of Soils.2012,48:151-159
    Hervds A, Landa B, Datnoff L E, Jimenez-Diaz R M. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpeal. Biological Control.1998,13: 166-176
    Hervs A, Landa B, Datnoff L E, Jimnez-Daz M R. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea 1. Biological Control.1998,13: 166-176
    Hodge A, Campbell C D, Fitter, A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic matter. Nature.2001,413:297-299
    Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, USA. 2010,107:13754-13759
    Hogberg P, Hogberg M N, Gottlicher S G, Betson N R, Keel S G, Metcalfe D B, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytologist.2008, 177:220-228
    Hogberg P, Read D J. Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution.2006,21:548-554
    Hohnson D, Leake J R. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist.2002,153: 327-334
    Hoitink H A J, Boehm M J. Importance of physical and chemical soil properties in the suppressiveness of soils to plant disease. European Journal of Soil Biology.1999,32:41-58
    Hu H, Tang C, Rengel Z. Influence of phenolic acids on phosphorus mobilisation in acidic and calcareous soils. Plant and Soil.2005,268:173-180
    Hyun I H, Lee S D, Hwang B C, Ko K I, Chung H S, Kim B K. Occurrence of stem rot caused by Bipolaris cactivora on different species of cactus and its pathogenicity. Research in Plant Disease. 2001,7:56-59
    Ikram A, Jensen E S, Jakobsen I. No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biology and Biochemistry.1994, 26:1541-1547
    Ismail Y, Hijri M. Induced resistance in plants and the role of arbuscular mycorrhizal fungi. In Thangadurai D., Busso C. A., Hijri M. Mycorrhizal Biotechnology. Science Publishers. Taylor and Francis Group.2010, Page 77-99
    Iwai T, Seo S, Mitsuhara I. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant and Cell Physiology.2007,48 (7):915-924
    Iwashina T. Flavonoid function and activity to other plants and microorganisms. Biological Sciences in Space.2003,17:24-44
    Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology.1999,57:231-245
    Jakobsen I, Rosendah L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist,1990,115:77-83
    Jalali B L, Jalali I, Arora K, Rai B, Mukerji K G, Knudsen G R. Mycorrhiza in plant disease control. In Handbook of applied mycology (eds). Dekker, New York.1991, pp.131-154
    Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C. Soil health through soil disease suppression:Which strategy from descriptors to indicators? Soil Biology and Biochemistry.2007,39:1-23
    Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology.2004,48:1-13
    Johnson D, Leake J, Read D J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland:short-term respiratorylossed snd accumulation of 14C. Soil Biology and Biochemistry. 2002,34:1521-1524
    Johnson E, Leake J R, Ostle N, Ineson P, Read D J. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist.2002,153:327-334
    Kato T, Tsunakawa M, Sasaki N, Aizawa H, Fujita K, Kitahara Y, Takahashi N. Growth and germination inhibitors in rice husks. Phytochemistry.1977,16:45-48
    Khaosaad T, Garca-Garrido J M, Steinkellner S, Vierheilig H. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry.2007,39:727-734
    Kim M J, Hyun J N, Kim J A, Park J C, Kim M Y, Kim J G, Lee S J, Chun S C, Chung IM. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry.2007,55:4802-4809
    Koide R T, Kapulnik Y, Douds D. Mycorrhizal symbiosis and plant reproduction. Arbuscular mycorrhizas:Physiological and function (eds). Kluwer, Dordrecht, the Netherlands.2000, pp. 21-30
    Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural Soil. Review of Plant Protection Research.1975,8:114-125
    Kong C H, Xu X H, Hu F, Chen X H, Ling B, Tan Z W. Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chinese Science Bulletin 2002,47:839-843
    Kong C H, Xu X H, Zhou B, Hu F, Zhang C X, Zhang M X. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry.2004,65: 1123-1128
    Kong C H. Chemical interactions between plant and other organisms:a potential strategy for pest management. Scientia Agricultura Sinica.2007,40 (4):712-720 (In Chinese)
    Koske R E, Gemma J M. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research.1989,92:486-505
    Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry.2010,42:162-168
    Landerman R G. Effects of mycorrhizas on plant tolerance to diseases. In Arbuscular mycorrhizas: Physiology and function. Kluwer Academic Publishers, Dordrecht, the Netherlands.2000, pp. 345-365
    Lanoue A, Burlat V, Henkes G J, Koch I, Schurr U, Rose U S R. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytologist.2010,185:577-588
    Lavelle P, Lattaud C, Trigo D, Barois I. Mutualism and biodiversity in soils. Plant and Soil.1995,170: 23-33
    Leake J R, Ostle N J, Rangel-Castro J I, Johnson D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Applied Soil Ecology.2006,33: 152-175
    Lekberg Y, Hammer E C, Olsson P A. Plants as resource islands and storage units--adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiology Ecology.2010,74: 336-345
    Lerat S, Gauci R, Catford G G, Vierheilig H, Piche Y, Lapointe L. C-14 transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia.2002,132:181-187
    Leyva A, Jarillo J A, Salinas J, Martinez-Zapater J M. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiology.1995,108:39-46
    Li L, Steffens J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta.2002,215:239-247
    Li W, Sheng X, Li J, Qin X. Study on NPR1 gene transformation by ovary injection pathway into watermelon (citrullus vulgaris). Remote Sensing, Environment and Transportation Engineering (RSETE), International Conference.24-26 June 2011 p 7136-7138. 1109/RSETE.2011.5966010.
    Li Y F, Ran W, Zhang R P, Sun S B, Xu G H. Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant and Soil.2009,315:285-296
    Lingua G, Agostino G, Massa N, Antosiano M, Berta G. Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza.2002,12:191-198
    Liu F L, Andersen M N, Jensen C R. Root signal controls pod growth in drought-stressed soybean during the critical, abortiorr-sensitive phase of pod development. Field Crops Research.2004,85: 159-166
    Liu H, Jiang W, Bi Y, Luo Y. Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biology and Technology.2005,35:263-269
    Lucy A, Christine A, Watson H. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science.2004,60:149-157
    Luna E, Bruce T J, Roberts M R, Flors V, Ton J. Next-generation systemic acquired resistance. Plant Physiology.2012,158 (2):844-53
    Lynn H D, Udo B. Efects of exogenously applied ferulie acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. Journal of Chemical Ecology.1991,17:865-886
    Macario B J, Sara A F, Elsa V Z. Chemical characterization of root exudates from rice(Oryza sativa)and their effects on the chemotactic response of endophytic bacteria. Plant and Soil.2003,249: 271-277
    Malamy J, Carr J P, Klessig D F. Salicylic Acid:A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection. Science.1990,250 (4983):1002-1004
    Malamy J, Hennig J K, lessig D F. Temperature depended induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infect ion. Plant Cell.1992,359-365
    Marschner H. Mineral Nutrition of Higher Plants. Academic Press, London, UK.1995
    Marschner P, Crowley D E, Lieberei R. Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza.2001,11:297-302
    Marschner P, Timonen S. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Applied Soil Ecology.2005,28:23-36
    Martin F, Botton B. Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Advances in Plant Pathology 1993,9:83-102
    Matern U, Kneusel R E. Phenolic compounds in plant disease resistance. Phytoparasitica.1988,16: 153-170
    Maurya S, Singh R, Singh D P, Singh H B, Singh U P, Srivastava J S. Management of collar rot of chickpea (.cicer arietinum) by trichoderma harzianum and plant growth promoting rhizobacteria. Journal of Plant Protection Research.2008,48 (3):347-353
    Mayers C N, Lee K C, Moore C A. Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana:contrasting mechanisms of induction and antiviral action. Molecular Plant-Microbe Interactions.2005,18 (5):428-434
    Miethling R, Wieland G, Backhaus H, Tebbe C C. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microbial Ecology.2000,40:43-56
    Miguel A, Maroto J V, San Bautista A, Baixauli C, Cebolla V, Pascual B, L6pez S, Guardiola J L. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulture.2004,103:9-17
    Nakano-Hylander A, Olsson P A. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonization of plant seedlings. Soil Biology and Biochemistry.2007,39:1450-1458
    Ng G, Seabolt S, Zhang C, Salimian S. Genetic dissection of salicylic acid-mediated defense signaling networks in arabidopsis. Genetics.2011,189:851-859
    Noutoshi Y, Jikumaru Y, Kamiya Y, Shirasu K. Imprimatin Cl, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid. Scientific Reports.2012 (2):705. doi: 10.1038/srep00705. Epub.2012 Oct 4
    Nurmiaho-Lassila E L, Timonen S, Haahtela K, Sen R. Bacterial colonization patterns of intact Finus sylvestris mycorrhizospheres in dry pine forest soil-an electron microscopy study. Canadian Journal of Microbiology.1997,43:1017-1035
    Odunfa V S A. Root exudation in cowpea and sorghum and the effect on spore germination and growth of some soil Fusaria. New Phytolist.1978,80:607-612
    Olsson P A, Hansson M C, Burleigh S H. Effect of P availability on temporal dynamics of carbon allocation and Clomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Applied and Environment Microbiology.2006,72:4115-4120
    Oostendorp M, Kunz W, Dietrich B, Staub T. Induced disease resistance in plants by chemicals. European Journal of Plant Pathology.2001,107:19-28
    Orcaray L, Igal M, Zabalza A, Royuela M. Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides. Journal of Agricultural and Food Chemistry.2011,59(18):10162-8
    Pateson E. Osler G. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil:Independent of the presence of roots and mycorrhizal fungi. Soil Biology and Biochemistry. 2008,40:1103-1113
    Pavlou G C, Vakalounakis D J. Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Protection. 2005,24:135-140
    Pereira P, Nesci A, Etcheverry M. Effects of biocontrol agents on Fusarium verticillioides count and fumonisin content in the maize agroecosystem:Impact on rhizospheric bacterial and fungal groups. Biological Control.2007,42:281-287
    Perry L G, Alford E L, Horiuchi J, Paschke M W, Vivanco J M. Chemical signals in the rhizospher: root-root and root-microbe communication. In Pinton R, Varanini Z, Nannipieri P (Eds). The rhizosphere:biochemistry and organic molecules at the soil-plant interface. CRC Press, Boca Raton, FL.2007, pp 297-330
    Peter M G. Chemical modifications of biopolymers by quinines and quinone methides. Angewandte Chemie International Edition in English.1989,28:555-570
    Petriacq P, de Bont L, Hager J, Didierlaurent L, Mauve C. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpml. the Plant Journal.70 (4):650-65
    Pfeffer P E, Douds D D, Bucking H, Schwartz D P, Shachar-Hill Y. The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytologist.2004,163:617-627
    Philip L J, Simard S W. Minimum pulses of stable and radioactive carbon isotopes to detect belowground carbon transfer between plants. Plant and Soil.2008,308:23-35
    Pozo M J, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea J M, Azcon-Aguilar C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to infection in tomato plants. Journal of Experimental Botany.2002,53:525-534
    Pozo M J, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar, C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophtora infection in tomato plants. Journal of Experimental Botany.2002,53:525-534
    Qu X H, Wang J G. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Applied Soil Ecology.2008,39:172-179
    Radwan D E, Fayez K A, Mahmoud S Y. Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiology and Biochemistry.2007,45 (6-7):480-489
    Radwan D E, Lu G Q, Fayez K A. Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Plant Physiology.2008,165 (8):845-857
    Rahman M, Punja Z K. Biochemistry of ginseng root tissues affected by rusty root symptoms. Plant Physiology and Biochemistry.2005,43:1103-1114
    Rasmussen J B, Hammerschmidt R, Zook M N. Systemic induction of salicylic acid accumulat ion in cucumber after inoculation with Pseudomonas pv. syringae. Plant Physiology.1991,97: 1342-1347
    Rasmussen J, Sauheitl L, Eriksen J, Kuzyakov Y. Plant uptake of dual-labeled organic N biased by inorganic C uptake:Results of a triple labelling study. Soil Biology and Biochemistry.2010,42: 524-527
    Read D J, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems:A journey towards relevance? New Phytologist.2003,157:475-492
    Ren L, Su S, Yang X, Xu Y, Huang Q, Shen Q. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology and Biochemistry.2008,40:834-844
    Rivas-San Vicente M, Larios-Zarate G, Plasencia J. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. Planta.2012,19
    Rodriguezat W, Ramirezma H, Cardenasrm L. Induction of defense response of Oryza sativa L. against Pyricularia grisea (Cooke) Sacc. by treating seeds with chitosan and hydrolyzed chitosan. Pesticide Biochemistry and Physiology.2007,89 (3):206-215
    Rogers J B, Laidlaw A S, Christie P. The role of arbuscular mycorrhizal fungi in the transfer of nutrients between white clover and perennial ryegrass. Chemosphere.2001,42:153-159
    Romeroi H, Fernandez-caballeroc F, Escribanomi P. Functionality of a class I beta-1,3-glucanase from skin of table grapes berries. Plant Science.2008,174 (6):641-648
    Santiago R, Malvar R A, Baamonde M D, Revilla P, Souto X C. Free phenols in maize pith and their relationship with resistance to Sesamia nonagrioides (Lepidoptera:Noctuidae) attack. Journal of Economic Entomology.2005,98 (4):1349-56
    Santiago R, Reid L M, Arnason J T, Zhu X, Martinez N, Malvar R A. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Journal of Agricultural and Food Chemistry.2007,55 (13):5186-93
    Saravanan T, Muthusamy M, Marimuthu T. Development of integrated approach to manage the fusarial wilt of banana. Crop Protection.2003,22:1117-1123
    Selosse M A, Richard F, He X H, Simard S W. Mycorrhizal networks:des liaisons dangereuses? Trends in Ecology and Evolution.2006,21:621-628
    Selosse M A, Roy M. Green plants that feed on fungi:facts and questions about mixotrophy. Trends in Plant Science.2009,14 (2):64-70
    Shadle G L, Wesley S V, Korth K L, Chen F, Lamb C, Dixon R A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry.2003,64:153-161
    Shah J, Tsui F, Klessig D F. Characterization of a salicylic acid insensitive mutant (sail) of Arabidop sis thaliana, identified in a selective screen utilizing t he SA inducible expression of the Ims2 gene. Molecular Plant-Microbe Interact.1997,10:69-78
    Shaul O, Galili S, Volpin H, Ginzberg 11, Elad Y, Chet 11, Kapulnik Y. Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Molecular Plant-Microbe Interact. 1999,12 (11):1000-7
    Shen P, Fan X R, Li G W. Media preparation. In Analysis of microbiology, Higher Education Publishers: Beijing, China.2003, pp.49-57
    Shi Z, Maximova S, Liu Y, Verica J, Guiltinan M J. The Salicylic Acid Receptor NPR3 Is a Negative Regulator of the Transcriptional Defense Response during Early Flower Development in Arabidopsis. Molecular Plant.2012 Sep 30
    Shirasu K, Schulze-Lefert P. Regulators of cell death in disease resistance. Plant Molecular Biology. 2000,44 (3):371-385
    Simard S W, Durall D M. Mycorrhizal networks:a review of their extent, function, and importance. Canadian Journal of Botany.2004,82:1140-1165
    Simard S W, Jones M D, Durall D M. Carbon and nutrient fluxes within and between mycorrhizal plants van der Heijden M G A, Sanders I R. Mycorrhizal ecology.2nd ed. Berlin,Heidelberg: Spring-Verlag.2003,33-74
    Simard S W, Perry D A, Jones M D, Myrold D D, Durall D M, Molinak R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature.1997,388:579-582
    Singh R, Adholeya A, Mukerji K G, Mukerji K G, Chamola B P, Singh J. Mycorrhiza in control of soil-borne pathogens. In Mycorrhizal Biology. Mukerji K G, Chamola B P, Singh J. (eds). Kluwer Academic Plenum Publishers. New York..2000, pp.173-196
    Smith S E, Read D J. Mycorrhizal symbiosis. Academic Press.1997
    Song W T, Zhou L G, Yang C Z, Cao X D, Zhang L Q, Liu X L. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection.2004,23:243-247
    Song Y Y, Cao M, Xie L J, Liang X T, Zeng R S. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza.2011,21 (8):721-31
    Sood S G. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiology Ecology.2003,45:219-227
    Steinberg C, Edel-Hemann V, Guillemaut C, Pdrez-Piqueres A, Singh P, Alabouvette C. Impact of organic amendments on soil suppressiveness to diseases. In Multitrophic Interactons in Soil and Integrated Control; Sikora R A, Gowen S, Hauschild R, Kiewnick S. eds. IOBC wprs Bulletin. 2004,27:259-266
    Sturz A V, Christie B R. Beneficial microbial allelopathies in the root zone:The management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research.2003,72:107-123
    Subramaniam S, Maziah M, Sariah M, Puad M P, Xavier R. Bioassay method for testing Fusarium wilt disease tolerance in transgenic banana. Scientia Horticulturae.2006,108:378-389
    Teste F F P, Simard S W, Durall D M, Guy R D, Berch S M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. Journal of Ecology. 2010,98:429-439
    Thipyapong P, Joel D M, Steffens J C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiology.1997,113: 707-718
    Tian D, Babadoost M. Host range of Phytophthora capsici from pumpkin and pathogenicity of isolates. Plant Disease.2004,88:485-489.
    Timonen S, Jorgensen K S, Haahtela K, Sen R. Bacterial community structure at defined locations of Pinus sylvestris Suillus bovines and Pinus sylvestris Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Canadian Journal of Microbiology.1998,44:499-513
    Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology.2005,7:581-591
    Troshina N B, Iarullina L G, Valeev A sh. Salicylic acid induces resistance to Septoria nodorum Berk, in wheat. Izvestiia Akademii nauk-Seriia Biologicheskaia.2007,5:545-550
    Trotta A, Varese G C, Gnavi E, Fusconi A, Samp S, Berta G. Interactions between the soil-borne root pathogen var. parasitica and the arbuscular mycorrhizal fungus in tomato plants. Plant and Soil. 1996,185:199-209
    Trotta A, Varese G C, Gnavi E, Fusconi A, Sampo S, Berta G. Interactions between the soil-borne root pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant and Soil.1996,185:199-209
    Trouvelot A, Kough J L, Gianinazzi-Pearson V, Gianinazzi-Pearson V, Gianinazzi S. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionelle. In:Physiological and Genetical Aspects of Mycorrhizae. Gianinazzi-Pearson V, Gianinazzi S (eds). INRA Press, Paris.1986, pp.217-221
    Tuitert G, Szezech M, Bollen G J. Suppression of Rhizoetonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology.1998,88:764-773
    Umamaheswari C, Sankaralingam A, Nallathambi P. Induced systemic resistence in watermelon by biocontrol agents against Alternaria alternate. Archives of Phytopathology and Plant Protection. 2009,42 (12):1187-1195
    Vallad G E, Goodman R M. Review and interpretation systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science.2004,44:1920-1934
    Voets L, Goubau I, Olsson P A, Merckx R, Declerck S. Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiology Ecology.2008,65:350-360
    Volpert R, Osswald W, Elsmer E F. Effects of cinnamic acid derivatives on indole acetic acid oxidation by peroxidase. Phytochemistry.1995,38:19-22
    Wang Y, Liu J H. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology.2012,169:1143-9
    Workneh F, van Bruggen A H C. Microbial density, composition, and diversity in organically and conventionally managed rhizosphere soil in relation to suppression of corky root of tomatoes. Applied Soil Ecology.1994,1:219-230
    Wu H S, Raza W, Liu D Y, Wu C L, Mao Z S, Xu Y C, Shen Q R. All elopathic impact of artificially applied coumarin on Fusarium oxysporum f.sp. niveum. World Journal of Microbiology and Biotechnology.2008,24:1297-1304
    Xu M, Galhano R, Wiemann P, Bueno E. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytologist.2012,193(3):570-5
    Yao Q, Li X L, Ai W D. Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. European Journal of Soil Biology.2003,39:47-54
    Yoshitomi K J, Shann J R. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biology and Biochemistry.2001,33:1769-1776
    Yu J Q. Allelopahtic suppression of Pseudomonas solancearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tubersum) intercropping system. Journal of Chemical Ecology.1995,25 (11):2409-2417
    Zhang Z Y, Pan L P, Li H H. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. Journal of Applied Microbiology.2010,108:1839-1849
    Zhou X G, Everts K L. Suppression of Fusarium wilt of watermelon by soil amendment with hair vetch. Plant Disease.2004,88:1357-1365
    Zhu Y, Chen, H, Fan J, Wang Y. Genetic diversity and disease control in rice. Nature.2000,406:718-722
    艾为党,李晓林,左元梅,李隆.玉米/花生根间菌丝桥对氮传递的研究.作物学报.2000,26:473-481
    蔡燕飞,廖宗文,章家恩,孔维栋,何成新.生态有机肥对番茄青枯病及土壤微生物多样性的影响.应用生态学报.2003,14(3):349-353
    蔡燕飞,廖宗文.FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果.中国农业科学.2003,36:922-927
    柴强,黄鹏,黄高宝.间作对根际土壤微生物和酶活性的影响研究.草业学报.2005,14:105-110
    段爱民,刘国胜,焦定量,张艳宁.西瓜抗病品种选育.天津农业科学.2002,8:21-23
    高翔.玉米间作、共生微生物和磷对大豆红冠根腐病发生的影响.华南农业大学博士学位论文.2011
    葛慈斌,刘波,朱育菁.生防菌NH-BS2000对西瓜枯萎病病原菌一直作用的研究.厦门大学学报.2004,43:86-90
    郭朝阳.作物巧间作可驱虫防病.农村新技术.2004,12:14
    和红云,薛琳,田丽萍,陈远良.低温胁迫对甜瓜幼苗根系活力及渗透调节物质的影响.石河子大学学报(自然科学版).2008,26:583-586
    华中农学院黄冈分院植病组.湖北农业科学.水旱轮作防治棉花枯黄萎病研究简报.1980,3:24-25
    李晓林,冯固.丛植菌根生态生理.北京:华文出版社,2001,139
    刘博,吴凤芝,包静.西瓜根系分泌物对西瓜种子萌发及幼苗根系活力的影响.北方园艺.2008,11:39-42
    刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响.中国农业生态学报.2001,9:86-88
    卢燕回,黎起秦,林纬,冯家勋,段承杰,何洪鸿,彭好文.西瓜枯萎病生防菌枯草芽孢杆菌B11菌株高产拮抗物质的诱变选育.广西农业生物科学.2006,25:300-304
    马辉刚,黄瑞荣,孙雁.水稻品种抗瘟遗传多样性分析及其应用.植物保护学报.2006,33:113-116
    沈君辉,聂勤,黄得润,刘光杰,陶龙兴.作物混植和间作控制病虫害研究的新进展.植物保护学报.2007,34:209-216
    宋亚娜,Marschnar P,张福锁,包兴国,李隆.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响.生态学报.2006,26:2268-2273
    苏世鸣,任丽轩,霍振华,沈其荣.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学.2008,41(3):704-712
    孙雁,周天富,王云月,陈建斌,何霞红,李成云,朱有勇.辣椒玉米间作对病害的控制作用及其增产效应.园艺学报.2006,33:995-1000
    王明道,吴宗伟,原增艳,陈红歌,吴坤,贾新成.外源阿魏酸对水培地黄生长的影响.河南农业大学学报.2009,43:25-29.
    王玉堂.蔬菜巧间作胜过施农药.蔬菜.2004,12:37
    温玲.根病除等药剂对西瓜枯萎病防治效果研究.黑龙江农业科学.2006,4:55-56
    吴洪生.西瓜连作土传枯萎病微生物生态学机理及其生物防治.南京农业大学博士学位论文.2008
    肖靖秀,郑毅,汤利,李隆,朱有勇,杨进成.小麦蚕豆间作系统中的氮钾营养对小麦锈病发生的影响.云南农业大学学报.2005,20:640-645
    徐冰,冯固.外生菌根菌丝桥在板栗幼苗间传递磷的效应.生态学报.2003,23:765-770
    徐强,间作对植株生长及养分吸收和根际环境的影响.西北植物学报.2010,30(2):0350-0356
    张润志,粱宏斌,田长彦.利用棉田边缘苜蓿带控制棉蚜的生物学机理.科学通报.1999,44:2175-2178
    张思远,王福建.我国西瓜育种发展历程与展望.北京农业.2007,5:6-7
    张志忠,吕柳新,黄碧琦,林义章.西瓜枯萎病防治技术研究进展.中国蔬菜.2005,7:38-40
    赵敏,米青荣.棉田间作绿肥对棉花苗期主要害虫和天敌消长的影响.中国棉花.2002,29:10-11
    郑良永,胡剑非,林昌华,林昌华,唐群锋,郭巧云.作物连作障碍的产生及防治.热带农业科学.2005,25(2):58-62
    周增强,侯珲,冯桂馨,赵飞鹏,郑小卫.6种药剂对西瓜枯萎病病原菌的抑制作用.中国西甜瓜.2004,5:13-14
    朱有勇,陈海如.利用水稻品种多样性控制稻瘟病研究.中国农业科学.2003,36:521-527
    邹莉,袁晓颖,李玲,王欣宇.连作对大豆根部土壤微生物的影响研究.微生物学杂志.2005,25(2):27-30
    左元梅,陈清,张福锁.利用14C示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制.核农学报.2004,18:45-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700