用户名: 密码: 验证码:
水稻“9311”突变体的筛选和突变体库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是禾本科作物研究的模式植物。随着水稻全基因组序列的测定完成,对基因功能的研究已成为重点,研究基因功能最直接和有效的方法是构建水稻突变体库。理化诱变具有技术条件简单,突变频率高,能够在短时间内构建具有大量突变体的突变群体,是水稻突变体库构建的重要方法之一。本研究旨在选用已完成全基因组序列测定的籼稻品种“9311”为研究对象,利用物理诱变(γ射线)和化学诱变(EMS溶液)的方法处理籼稻品种“9311”种子,筛选植株形态性状(包括根系性状)突变体和稻米品质性状突变体,构建出变异类型丰富的水稻突变群体,为水稻功能基因组学研究和水稻遗传改良提供良好的基础材料。
     在植株性状上,通过物理诱变和化学诱变处理,获得了606份叶片、茎秆、穗部、生理等性状变异范围较大的突变体群体,其中γ射线诱变处理417份、EMS诱变处理189份,形态突变频率分别为5.94%和3.78%。与EMS诱变群体相比,γ射线诱变群体的变异范围更广、突变频率也更高,大部分在EMS诱变群体中得到的突变类型,在γ射线诱变群体中都能出现,但紫色叶鞘突变,叶片类病斑突变等极少数突变类型只出现在EMS诱变群体中。
     利用新建立的根系突变体的筛选方法,在两种诱变群体中共筛选到69份短根、无侧根、种子根变长、根向重力性异常等突变体,其中γ射线和EMS诱变处理中分别发现48份和21份突变体,突变频率分别为0.68%和0.42%,突变频率低于植株地上部的形态性状变异。短根的突变频率较其它根系突变性状要高,无侧根或短侧根突变株均表现为种子根与不定根较短,但短根突变体并不一定表现为无侧根或短侧根。
     在稻米品质突变体的筛选中,γ射线诱变群体中共获得稻米品质性状突变体60份,突变频率为0.85%。其中糙米颜色突变体1份、稻米垩白突变体14份、米粒形状突变体3份、稻米直链淀粉含量突变体14份、稻米碱消值突变体6份、稻米蛋白质含量突变体7份、稻米苏氨酸含量突变体1份,稻米赖氨酸含量突变体6份,稻米苯丙氨酸含量突变体8份。新构建的水稻“9311”植株形态性状突变体群体和稻米品质性状突变群体可以为今后深入研究水稻基因组功能、演化及基因组间的相互关系提供材料基础。
Rice (Oryza sativa L.) has become a model plant for the study of the cereal genomes in the last decade. Recent completion of the draft sequence for the rice genome has resulted in an explosion of information on rice genes. The challenge for the post-sequencing era is to identify the biological functions for these genes. Of all the approaches used for discovering the gene function, the more useful one is based on a saturated mutagenesis population, which is a straight and efficient way to understand the role of all the genes. In all the methods for constructing the mutant liberary, the physical and chemical mutangenesis might be the main methods, which were simple and effective. They can be used to produce a large number of mutants with high mutagenesis frequence in a short period and to establish a mutant population. The purpose of the present experiment is to screen different plant morphogenesis mutants and rice quality mutants by treating the seeds of the indica rice variety 9311 with y-rays or EMS (Ethyl Methan Sulfonate), of which has been completely sequenced in the whole genome. The mutant library created will be helpful for gene identity and gene functional analysis.For plant traits, some mutants with the variations of leaf, stalk, panicle or root traits were found in the progenies. The total mutants frequence were 5.94% and 3.78%for y-rays and EMS, respectively. Four hundred and seventeen out of the 606 mutants were found in y-rays mutagenesis population, and 189 ones in EMS mutagenesis population. Comparing with EMS mutagenesis, more mutants were screened in y-rays mutagenesis population. Most of the mutants by EMS could be found in y-rays mutangenesis population, but some mutants, such as the purple leaf sheath mutant and lesion resembling disease mutant, were only found in EMS mutagenesis population.The root trait mutants were screened in the two mutangenesis population and some mutants with the variations of short roots, no lateral root, long seminal root or gravity insensitive of root were found in progenies. The root traits mutants frequence were 0.68 % and 0.42% for y-rays and EMS, respectively, and it was lower than the mutagensis frequence for plant traits. Forty-eight out of the 69 mutants were induced by y-rays and 21 ones were induced by EMS. The frequence of short root mutants was higher than that for other root mutants. The mutants without lateral root mutants or short lateral roots mutants had the short seminal root and crown roots simultanously. There was no short lateral root or lateral root for some of the short roots mutants.For the rice quality mutants, 60 mutants were found in y-rays mutagenesis population and the mutant frequence was 0.85%. Among them, there were 1 brown rice color mutant, 14 rice chalkiness mutants, 3 rice shape mutants, 6 rice alkali spreading value mutants, 7 protein content mutants, 14 amylose content mutants, 1 threonine content mutants, 6 lysine content mutant and 8 phenylalanine mutant. The mutant library created for indica rice variety 9311, which include different plant morphogenesis mutants and rice quality mutants, will be helpful for the research in rice founctional genomics and the relationship among the cereal genome.
引文
[1]陈远玲、张群宇、简玉瑜、杨跃生和刘耀光,利用反义基因沉默策略构建水稻突变体库及突变体筛选。华南农业大学学报,2004,4:53~57。
    [2]陈兆贵、王江、张泽民、刘芳、朱海涛、宛新杉、张景六和张桂权,水稻Ds插入纯合体的筛选与鉴定。植物生理与分子生物学学报,2003,4:337~341。
    [3]巩鹏涛和李迪,植物分支发育的遗传控制,分子植物育种,2005,2:151~162。
    [4]高振宇、曾大力、崔霞、周亦华、颜美仙、黄大年、李家洋和钱前,水稻稻米糊化温度控制ALK的图位克隆及序列分析。中国科学C辑,2003,6:481~488。
    [5]顾佳清,张智奇,周音,奚银兴,张建军,胡筱荷,郑雷英,洪祥宾,杨军,罗达,朱旭东,EMS诱导水稻“中花11”突变体的筛选与鉴定。上海农业学报,2005,1:7~11。
    [6]郭龙彪、程式华和钱前,水稻基因组测序和分析的研究进展。中国水稻科学,2004,6:557~562。
    [7]郭龙彪、储成才和钱前,水稻突变体与功能基因组学,植物学通报,2006,1:1~13。
    [8]黄发松、孙宗修、胡培松,食用稻米品质形成研究的现状与展望。中国水稻科学,1999,3:172~176。
    [9]黄祖六和谭学林,稻米直链淀粉含量基因座位的分子标记定位。作物学报,2000,6:777~782。
    [10]江树业,水稻突变群体的构建及功能基因组学。分子植物育种,2003,2:137~150。
    [11]解涛、卫平和丁达夫,后基因组时代的基因组功能注释。生物化学与生物物理进展,2000,2:166~170。
    [12]李军会、赵龙莲、劳彩芳、王忠义、王韬、罗长兵、严红兵、伍翠芳、张录达和严衍禄,用近红外光谱构建现代农产品品质分析技术。现代科学仪器,2005,1:17~19。
    [13]李培金、曾大力、刘新仿、徐苒、谷岱、李家洋和钱前,水稻散生突变体的遗传和基因定位研究。科学通报,2003,21:2271~2273。
    [14]李伟和印丽萍,基因组学相关概念及其研究进展。生物学通报,2000,11:1~3。
    [15]李子银和陈受宜。植物的功能基因组学研究进展。遗传,2000,10:57~60。
    [16]刘柱、朱建清、赵建、陈东辉和杨志荣,植物反转录转座子的研究进展。生物物理与生物化学进展,2002,4:527~530。
    [17]明东风、马均、马文波、许凤英、孙晓辉和田彦华,稻米直链淀粉及其含量研究进展。中国农业科学,2003,1:68~72。
    [18]钱前、何平、滕胜、曾大力和朱力煌,水稻分蘖角度QTLs的遗传分析。遗传学报,2001,1:29~32。
    [19]邱思君、郑蕊和陈宁,植物功能基因组学研究进展。生物技术通讯,2005,2:217~220。
    [20]沈圣泉、包劲松、吴殿星、崔海瑞、夏英武和舒庆尧,γ射线诱发水稻长粒型突变体的 研究。核农学报,2004,5:340~343。
    [21]舒庆尧、池晓菲、陈善福、吴殿星和吴平,一个低糊化温度水稻突变体(Mgt-1)的培育与稻米品质特征研究。核农学报,2001,6:341~344。
    [22]孙成明和苏祖芳,水稻株型研究进展。上海农业学报,2004,1:41~44。
    [23]王多加、周向阳、金同铭、胡祥娜、钟娇娥和吴启堂,近红外光谱检测技术在农业和食品分析上的应用。光谱学与光谱分析,2004,4:447~450。
    [24]孙玲、陈俊秋、张名位、池建伟和魏振承,稻米种皮颜色与其生物抗氧化性的关系。中国粮油学报,4:25~27。
    [25]王景雪、孙毅、徐培林、仪治林、杜建中和孙丹琼,植物功能基因组学研究进展。生物技术通报,2004,1:18~22。
    [26]王中荣和刘雄,高直链淀粉性质及应用研究。粮食与油脂,2005,11:10~13。
    [27]吴殿星、赵洪、沈伟桥、韩娟英、夏英武,水稻低淀粉粘滞性突变体的获得与特性分析。中国水稻科学,2003,1:82~84
    [28]吴殿星和夏英武,食用稻米品质的研究进展及其改良策略。中国农学通报,1999,3:36~39。
    [29]吴建国,作物种子品质性状研究中近红外光谱分析模型的创建和应用。博士学位论文,浙江大学,杭州,2003,27~28。
    [30]吴建国、刘长东、杨国花、任玉玲和石春海,基于计算机视觉的稻米垩白指标快速测定方法研究。作物学报,2005,5:670~672。
    [31]吴建国和石春海,近红外反射光谱分析技术在植物育种与种质资源研究中的应用。植物遗传资源学报,2003,4:68~72。
    [32]徐辰武和莫惠栋,籼稻糊化温度的质量数量遗传分析。作物学报,1996,4:385~391。
    [33]许明子、金桂花、具红光、刘宪虎和李美善,水稻低直链淀粉突变体的遗传分析。延边大学农学学报,2003,1:6~8。
    [34]严长杰、徐辰武和裔传灯,利用SSR标记定位水稻糊化温度的QTLs。遗传学报,2001,11:1006~1011。
    [35]杨金水,基因组学。北京,高等教育出版社,2002,22~24。
    [36]张海英、许勇和王永建,基因组图谱综述,分子植物育种,2003,5:741~745。
    [37]张名位、彭伸明和徐运启,黑米稻种皮色素含量的遗传效应分析。中国水稻科学,3:149~155。
    [38]张正强,水稻T-DNA插入突变群体的构建与分析。博士学位论文,中国农业科学院,北京,2000,1~5。
    [39]张祖新、张方东和郑用链,功能基因组学及其研究方法。作物学报,2003,2:194~201。
    [40]赵剑华、王秀琴和刘芝华,功能基因组学的研究内容与方法。生物化学与生物物理进展,2000,1:6~8。
    [41] 赵庆臻、赵双宜和夏光敏,植物RNAi沉默机制的研究进展。遗传学报,2005,3:104~110。
    [42] 朱昌兰、沈文飚、翟虎渠和万建民,水稻低直链淀粉含量基因育种利用的研究进展。中国农业科学,2004,2:157~162。
    [43] 朱克明、曾大力和郭龙彪,水稻突变体的创制和遗传分析,中国稻米,2006,1:14~15。
    [44] 朱旭东、陈红旗、罗达、张建军、方红民和闵绍楷,水稻中花11辐射突变体的分离与鉴定。中国水稻科学,2003,3:205~210。
    [45] 朱正歌、肖晗、傅亚萍、胡国成、于永红、斯华敏、张景六、孙宗修,水稻转座子突变体库构建及突变类型的遗传分析。生物工程学报,2001,5:288~292。
    [46] Abenes M. L. P., R. E. Tabien and S. R. McCouch, Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice. Euphytica, 1994, 76:81~87.
    [47] Barton F. E., W. R. Windham and E. T.Chanpagne, Optimal genometrics for the development of rice quality spectroscopic chemometric models. Cereal Chemistry, 1998, 75:315~319.
    [48] Bass B. I., Double-stranded RNA as a template for gene silencing. Cell, 2000, 101: 235~238.
    [49] Causse M. A., T. M. Fulton and Y. G. Cho, Saturated molecular map of the rice genome based on an inter-specific backcross population. Genetics, 1994, 138:1251~1274.
    [50] Chen M. S., W. B. Barbaruk and P. Presting, An integrated physical and genetic map the rice genome. Plant Cell, 2002, 14: 537~545.
    [51] Chen M. Sh., W. B. Barbaruk and P. Presting, An integrated physical and genetic map the flee genome, Plant Cell, 2002, 14: 537~545.
    [52] Chen S. Y.,. W. Z. Jin, Y. M. Wang, F. Zhang, J. Zhou, Q. J. Jia, Y. R. Wu, F. Y. Liu and P. Wu, Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant Journal, 2003, 36: 105~113.
    [53] Colbert T., B. J. Till, R. Tompa, S. Reynolds, M. N. Steine, A. T. Yeung, C. M. McCallum, L. Comai and S. Henikoff, High-throughput screening for induced point mutations. Plant Physiology, 2001, 126: 480~484.
    [54] Delwiche S. R., M. M. Bean and R. E. Miller, Apparent amylose content of milled rice by near-infrared reflectance spectrophotometry. Cereal Chemistry, 1995, 72:182~187.
    [55] Enokil H Y, T. Izawa, M. Kawahara, M. Komatsu, S. Koh, J. Kyozuka and K.Shimamoto, Ac a tool for the functional genomics of rice. Plant Journal, 1999, 19:605~613.
    [56] Goff S. A., Rice as a model for cereal genomics. Current Opinion in Plant Biology, 1999, 2: 86~89.
    [57] Golf S. A., D. Ricke, T. H. Lan, G. Presting, R. L. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B. Markus, T. Moughamer, Y. Xia, P. Budworth, J. P. Zhong, T. Miguel, U. Paszkowski, S. P. Zhang, M. Colbert, W. L. Sun, L.L. Chen, B. Cooper, S. Park, T. C. Wood, L. Mao, P. Quail, R. Wing, R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings, A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R. M. Miller, S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma, A. Oliphant and S. Briggs, A draft sequence of the rice genome. Science, 2002, 296: 92-100.
    [58] Greco R., P. B. F. Ouwerkerk, R. J. Dekam, C. Sallaud, C. Favalli, L. Colombo, E. Guiderdoni, A. H. Meijer, J. H. C. Hoge and A. Pereira, Transpositional behaviour of an Ac/Ds system for reverse genetic in rice. Theoretical and Applied Genetics, 2003, 108: 10-24.
    [59] Harushima Y., M. Yano and A. Shmura, M. Sato, T. Shimano, Y. Kuboki, T. Yamamoto, S. Y. Lin, B. A. Antonio, A. Parco, H. Kajiya, N. Huang, K. Yamamoto, Y. Nagamura, N. Kurata, G S. Khush and T. Sasaki, A high-density rice genetics linkage map with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494.
    [60] He P., S. G. Li and Q. Qian, Genetics analysis of rice grain quality. Theoretical and Applied Genetics ,1999, 4: 385-391.
    [61] Hiei Y, S. Oh, T. Kommari and T. Kumashiro, Efficient transcription of rice(Oryza sativa. L.) mediated by Agrobacrerium and sequence ananalysis of the boundaries of the T-DNA. Plant Journal, 1994, 6:271-282.
    [62] Hirochika H., Contribution of the Tos 17retrotransposon to rice functional genomics, Current Opinion in Plant Biology, 2001, 4: 118-122.
    [63] Izawa T. and K. Shimamoto, Becoming a model plant: The importance of rice to plant science. Trends in Plant Science, 1996, 1: 95-99.
    [64] James A., Why repetitive DNA is essential to genome function. Biological Reviews, 2005, 1: 1-24.
    [65] Jenkings P. J., R. E:Cameroe and A. M. Donald, A universal feature in the structure of starch granules from different botanical sources. Starch, 1993, 45: 417-420
    [66] Jeon J. S., S. Lee, K. H. Jung, S. H. Jun, D. H. Jeong, J. Lee, C. Kim, S. Jang, S. Lee, K. Yang, J. Nam, K. An, M. J. Han, R. J. Sung, H. S. Choi, J. H. Yu, J. H. Choi, S. Y. Cho, S. S. Cha and G. An, T-DNA insertional mutagenesis for functional genomics in rice. Plant Journal, 2000,22:561-570.
    [67] Jeong D. H., S. An, H. G. Kang, S. Moon, J. J. Han, S. Park, H. S. Lee, K. An, G An. T-DNA insertional mutagenesis for activation tagging in rice, Plant Physiology, 2002, 130: 1636-1644.
    [68] Juliano B. O., C. M. Perez and B. Laignelet, International cooperative testing on the amylose content of milled rice. Starch, 1981, 33: 157-162.
    [69] Jung H. K., H. R. Jung and H. Y. Choong, Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiology, 2003, 5: 463-472.
    [70] Kawamura S., M. Natsuga and K.Itoh, Development of an automatic rice-quality inspection system. Computers and Electronics in Agriculture, 2003, 40: 115-126.
    [71] Kerim T., N. Imin and J. J. Weinman, Proteome analysis of male gametophyte development in rice anthers. Proteomics, 2003, 5: 738-751.
    [72] Komatsu S., H. Kajiwara and H. Hirano, A Rice Protein Library: a Data-file of Rice Proteins Separated by Two-dimensional Electrophoresis. Theoretical and Applied Genetics, 1993, 86: 935-942.
    [73] Komatsu S., K. Kojima and K. Suzuki, Rice proteome database based on two-dimensional polyacylamide gel electrophoresis: its Status in 2003. Nucleic Acids Research, 2004, 32: 388-392.
    [74] Komatsu S., M. A. Muhama and R. Rakwal, Separation and characterization of proteins from green and etiolated shoots of rice: towards a rice proteome. Electrophoresis, 1999, 20: 630-636.
    [75] Kurata N. Y., K. Nagamura and Y. Yamamoto, A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics , 1994, 8: 365-372.
    [76] Lee J H and Lee S Y. Selection of stable mutants from cultured rice another treated with ethylmethane sulfonic acid. Plant Cell, Tissue and Organ Culture, 2002, 71: 165-171.
    [77] Leehan R. A. and A. F. Kenneth, T-DNA insertion mutagenesis in Arabidopsis. Trends in Genetics, 1997, 113: 152-156.
    [78] Leung H., C. Wu and M.Baraoidan, Deletion mutants functional genomics:progress in phenotyping, sequence assignment and database development. 4th Internatinal Rice Genetics Symposium, IRRI Philippines, Abstract Book, 2000, 18-19.
    [79] Li X. Y, Q. Qian, Z. M Fu., Y. H. Wang, G. S. Xiong, D. L. Zeng, X. Q. Wang, X. F. Liu, S. Teng, F. Hiroshi, M. Yuan, D. Luo, B. Han and J. Y. Li, Control of tillering in rice. Nature, 2003,422:618-621.
    [80] Li X., M. Lassner and Y. Zhang, A fast neutron deletion mutagensis-based knocked out system for plants. Compare Function Genome, 2002, 3: 158-160.
    [81] Li X., Q. Lu and F. L. Wang, Separation of the two-locus inheritance of photoperiod sensitive genetic male sterility genetic male sterility in rice and precise mapping the pms3 locus. Euphytical, 2001a, 119: 343-348.
    [82] Li Z.K, S. K. M. Pinson and J. W. Stansel, Identification of quantitative trait Ioci(QTL) for heading date and plant height in cultivated rice(Oryza sativa L). Theoretical and Applied Genetics, 1995,91:1211-1217
    [83] Lorrain S., F. Vailleau and C. Balague, Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants. Trends in Plant Science, 2003, 8: 263-271.
    [84] McCallum C. M., L. Comai, E. A. Greene and S. Henikoff, Targeting screening for induced mutations. Nature Biotechnology, 2000a, 18: 455-457.
    [85] McCallum C. M., L. Comai, E. A. Greene and S. Henikoff, Targeting induced local lesions in genomes (TIILING) for plant functional genomics. Plant Physiology, 2000b, 123: 439-442.
    [86] McCouch S. R, L. Teytelman and Y. Xu, Development and mapping of 2240 new SSR makers for rice (Oryza sativa L.). DNA Researoh, 2002, 9: 199-207.
    [87] McCouch S. R., G. Kochert and Z. H. Yu, Molecular mapping on rice chromosomes. Theory and Apply Genetics, 1988, 80: 488-496.
    [88] Miyao A, K. Tanaka, K. Morata, H. Sawaki, S. Takeda, K. Abe, Y. Shinozuka, K. Onosato and H. Hirochika, Target site specificity of the Tosl7 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich region of the genome. Plant Cell, 2003, 15: 1771-1780.
    [89] Moons A., J. Gielen and J. Vandeker, An abscisic-acid and salt-stress responsive rice cDNA from a novel plant gene family. Planta, 1997, 202: 443-454.
    [90] Moore G., K. M. Devos, Z. Wang and M. D., Gale Cereal genome evolution Grasses line up and form a circle. Current Biology, 1995, 7: 737-739.
    [91] Okuno K., H. Fuwa and M. Yano, A new mutant gene lowering amylase content in endosperm starch of rice. Japanese Journal of Breeding, 1983, 33: 387-394.
    [92] Okuno K., T. Negamine and M. Oka, New lines harboring du genes for low amylase content in endosperm starch of rice. Japan Agriculture Research Quarterly, 1993, 27: 102-105.
    [93] Peter M.W. and A. H. Christopher, Exploring plant genome by RNA induced gene siliencing. Genetics, 2003, 4: 29-39.
    [94] Raju G N. and T. Srinivas, Effect of physical, physiological and chemical factors on the expression of chalkiness in rice. Cereal Chemistry, 1991, 68: 210-211.
    [95] Rakwal R. and S. Komatsu, Role of jas monate in the rice self-defense mechanism using proteome analysis. Electrophoresis, 2000, 21: 2492-2500.
    [96] Ratchliff R, A. Martin and D. C. Boulcombe, Tobacco rattle virus as a vector for analysis of gene function by silencing, Plant Journal, 2001, 25: 237-245.
    [97] Salekdeh G, J. Siopongco and L. Wade, Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145.
    [98] Satio A. M., N. Yano and M. Kishimoto, Linkage map of RFLP loci in rice. Journal of Japanese breeding, 1991,41: 665-670.
    [99] Satoh H. and T. Omura, New endosperm mutations induced by chemical mutagenesis in rice. Japanese Journal of Breeding, 1981,31: 316-326.
    [100] Shen S., Y. Jing and T. Kuang, Proteome approach to identify wound-respnse related proteins from rice leaf sheath. Proteomics, 2003, 4: 527-535.
    [101] Shimamoto.K. The.molecular biology of rice. Science, 1995, 270: 1772-1773.
    [102] Springer P. S., Gene traps: Tool for plant development and genomics. Plant Cell, 2000, 12: 1007-1020.
    [103] Stougaard J., Plant genetics and genomics. Current Opinion in Plant Biology, 2001, 4: 328-335.
    [104] Su Y. A., P. Sunhee and D. H. Jeong, Generation and analysis of end sequence detobax for
     T-DNA tagging lines in rice. Plant Physiology, 2003, 133: 2040-2047.
    [105] Sun T. P., H. M. Goodman and F. M. Ausubel, Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992,4: 119-128.
    [106] Tanksley S. D., N. Ahn and M. Causse, RFLP mapping of the rice genome. In: Rice Genetics II, Los Banos, Laguna: IRRI, 1991, 435-442.
    [107] Tsugita A., T. Kawakami and Y. Uchiyama, Separation and characterization of rice proteins. Electrophoresis, 1994, 15: 708-720.
    [108] Umemoto T., M. Yano and H. Satoh, Mapping of a gene responsible for the difference in amylepectin structure between japonical-type and indical-type rice varieties. Theoretical and Applied Genetics, 2002,1: 1-8.
    [109] Villareal C. P., N. M. Cruz and B. O. Hykuabi, Rice amylose analysis by near-infrared transmittance spectrose. Cereal Chemistry, 1994, 71: 292-296.
    [110] Weige I. D., J. H. Ahn and A. M. Blazquez, et al., Activation tagging in Arabidopsis, Plant Physiology, 2000, 122: 1003-1013.
    [111] Wu J. Z., T. Machara, T. Shimokawa, S. Yamamoto, C. Harada, Y. Takazaki, N. Ono, Y. Mukai, K. Koike, J. Yazaki, F. Fujii, A. Shomura, T. Ando, I. Kono, K. Waki, K. Yamamoto, M. Yano, T. Matsumoto and T. Sasaki A, comprehensive rice transcription map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535.
    [112] Wu J., T. Machara , T. Shimokawa, S. Yamamoto, C. Harada, Y. Takazaki, N. Ono, Y. Mukai, K. Koike, J. Yazaki, F. Fuji, A. Shomura, T. Ando, I. Kono, K. Waki, K. Yamamoto, M. Yano, T: Matsumoto and T. Sasaki, A comprehensive rice transcription map containing 6591 expressed sequence tag sites. Plant Cel 1, 2002, 14: 525-535.
    [113] Yamamoto T, Sasaki T and Yano M. Genetic analysis of spreading stub using indica/japonica backcrossed progenies in rice. Breeding Science, 1997, 47: 141-144.
    [114] Yeisoo Y, R. Teri, C. Jennifer, H. R. Kim, C. Saski, K. Collura, S. Thompson, J. Simmons, T. J.Yang, G. Nah, A. J. Patel, S. Thurmond, D. Henry, R. Oates, M. Palmer, G. Pries, J. Gibson, H. Anderson, M. Paradkar, L. Crane, J. Dale, M. B. Carver, T. Wood, D. Frisch, F. Engler, C. Soderlund, L. E. Palmer, L. Tetylman, L. Nascimento, M. Bastide, L. Spiegel, D. Ware, A. O. Shaugh, S. Dike, N. Dedhia, R. Preston, E. Huang, K. Ferraro, K. Kuit, B. Miller, T. Zutavern, F. Katzenberger, S. Muller, V. Balija, Martienssen R. A., L. Stein, P. Minx, D. Johnson, H. Cordum, E. Mardis, Z. K. Cheng, J. Jiang, R. Wilson, W. R. McCombie and R. A. Wing, In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 2003,300: 1566-1569. .
    [115] Yu J., J. Wang, L. Wei, G. Song , H. Li, J. Zhou, P. X. Ni, W. Dong, S. N. Hu, C. Q. Zeng, J. G Zhang, Y. Zhang, R. Q. Li, Z. Y. Xu., S. T. Li, X. R. Li, H. K. Zheng, L. Y. Cong, L. Lin, J. N. Yin, J. N. Geng, G. Y. Li, J. P. Shi, J. Liu, H. Lu, J. Li, J. Wang, Y. J. Deng, L. H. Ran, X. Y. Shi, X. Y. Wang, Q. F. Wu, C. F. Li, X. Y. Ren, J. Q. Wang, X .L. Wang, D. W. Li, D. Y. Liu, X. W. Zhang, Z. D. Ji, W. M. Zhao, Y. Q. Sun, Z. P. Zhang, J. Y. Bao, Y. J. Han, L. L. Dong, J. Ji, P. Chen, S. M. Wu, J. S. Liu, Y. Xiao, D. B. Bu, J. L. Tan, L. Yan, Y. Chen, J. F.
     Zhang, J. Y. Xu, Y. Zhou, Y. P. Yu, B. Zhang, S. L. Zhuang, H. B. Wei, B. Liu, M. Lei, H. Yu, Y. Z. Li, H. Xu, S. L. Wei, X. X. He, L. J. Fang, Z. J. Zhang, Y. Z. Zhang, X. G. Huang, Z. X. Su, W. Tong, J. H. Li, Z. Z. Tong, S. L. Li, J. Ye, L. H. Wang, L. Fang, T. Q. Lei, C. Chen, H. Chen, Z. Xu, H. H. Li, H. Y. Huang, F. Zhang, H. Y. Xu, N. Li, C. F. Zhao, S. T. Li, L. J. Dong, Y. Q. Huang, L. Li, Y. Xi, Q. H. Qi, W. J. Li, B. Zhang, W. Hu, Y. L. Zhang, X. Q. Tian, Y. Z. Jiao, X. H. Liang, J. Jin, L. Gao, W. M. Zheng, B. L. Hao, S. Q. Liu, W. Wang, L. P. Yuan, M. L. Cao, J. McDermott, S. Samudrala, J. Wang, G. K. Wong and H. M. Yang, The Genome of Oryza sativa: a history of duplications. Public Library of Science Biology, 2005,2:266-281.
    [116] Yu J., J. Wang, L. Wei, G. Song, H. Li, J. Zhou, P. X. Ni, W. Dong, S. N. Hu, C. Q. Zeng, J. G Zhang, Y. Zhang, R. Q. Li, Z. Y. Xu., S. T. Li, X. R. Li, H. K. Zheng, L. Y. Cong, L. Lin, J. N. Yin, J. N. Geng, G. Y. Li, J. P. Shi, J. Liu, H. Lu, J. Li, J. Wang, Y. J. Deng, L. H. Ran, X. Y. Shi, X. Y. Wang, Q. F. Wu, C. F. Li, X. Y. Ren, J. Q. Wang, X .L. Wang, D. W. Li, D. Y. Liu, X. W. Zhang, Z. D. Ji, W. M. Zhao, Y. Q. Sun, Z. P. Zhang, J. Y. Bao, Y. J. Han, L. L. Dong, J. Ji, P. Chen, S. M. Wu, J. S. Liu, Y. Xiao, D. B. Bu, J. L. Tan, L. Yan, Y. Chen, J. F. Zhang, J. Y. Xu, Y. Zhou, Y. P. Yu, B. Zhang, S. L. Zhuang, H. B. Wei, B. Liu, M. Lei, H. Yu, Y. Z. Li, H. Xu, S. L. Wei, X. X. He, L. J. Fang, Z. J. Zhang, Y. Z. Zhang, X. G. Huang, Z. X. Su, W. Tong, J. H. Li, Z. Z. Tong, S. L. Li, J. Ye, L. H. Wang, L. Fang, T. Q. Lei, C. Chen, H. Chen, Z. Xu, H. H. Li, H. Y. Huang, F. Zhang, H. Y. Xu, N. Li, C. F. Zhao, S. T. Li, L. J. Dong, Y. Q. Huang, L. Li, Y. Xi, Q. H. Qi, W. J. Li, B. Zhang, W. Hu, Y. L. Zhang, X. Q. Tian, Y. Z. Jiao, X. H. Liang, J. Jin, L. Gao, W. M. Zheng, B. L. Hao, S. Q. Liu, W. Wang, L. P. Yuan, M. L. Cao, J. McDermott, S. Samudrala, J. Wang, G. K. Wong and H. M. Yang, A draft sequence of rice genome. Science, 2002, 296: 79~92.
    [117] Zamore P. D., RNA interference: listening to the sound of silence, Nature Structural Biology, 2001, 8: 746-752.
    [118] Zeng L, Z. Yin and J. Chen, Fine genetic mapping and physical delimitation of the lesion mimic gene Spill to a 160-kb DNA segment of the rice genome. Molecular Genetic Genomics, 2002, 268: 253-261.
    [119] Zhang J. Y, Y. Y. Fan, Z. M. Rao, J. L. Wu, Y. W. Xia and K. L. Zheng, Analysis on additive effects and additive-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theoretical and Applied Genetics, 2002, 105: 1137-1145.
    [120] Zhong B., H. Karibe and S. Komatsu, Screening of rice genes from a cDNA based on the sequence data-file of Proteins separated by two-dimensional electrophoresis. Breeding Science, 1997, 47: 251-255.
    [121] Zhu L. H., Y. Chen and Y. B. Xu, Construction of a molecular map of rice and gene mapping using a doubled haploid population of a cross between indica and japonica varieties. Rice Genetics Newsletter, 1993, 10: 132-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700