用户名: 密码: 验证码:
基于超分子自组装的纳米空心球、胶束及树枝状大分子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以基于环糊精为主体分子的超分子自组装及天然聚多糖为研究对象,构筑了新颖的纳米空心微球、两亲性胶束及Dendrimer等高分子聚集体,并针对这些聚集体在酶固定化、微反应器和药物控释领域的应用进行了研究。主要内容如下:
     第一章:基于主客体识别的大分子自组装
     本章主要是对基于主客体识别的大分子自组装进行了综述,主-客体识别的作用力主要可以分为离子-偶极相互作用、氢键作用、范德华力和亲疏水相互作用、π-π堆叠作用等,本章主要从原理到应用对其进行了综述。此外本章根据不同作用机制还介绍了很多新颖的主体分子和与之匹配的客体分子以及它们在大分子自组装领域的应用潜力。
     第二章:基于天然聚多糖的自组装空心微球之包裹行为和膜选择透过性研究
     该章主要介绍了利用接枝到天然聚多糖海藻酸钠上的聚乙二醇(PEG)与α环糊精(α-CD)自组装形成的软-硬段(rod-coil)复合物在水中自组装得到的一类新颖纳米空心微球。针对此类纳米空心微球在酶包裹领域的应用研究表明:该体系具有良好的选择透过性能,Alg-g-mPEG/α-CD空心微球不但对模型酶L-天冬酰胺酶具有较高的包裹效率(80%左右)而且可以防止酶从空心微球内部泄漏出来;实验结果发现包裹的酶比自由酶具有更优良的稳定性,而且空心微球对酶的包裹会提高其与底物的亲和力;包裹后的酶与自由酶相比具有更宽的最适反应温度和pH区间,且在酸性条件下的稳定性也有了很大改进;通过包裹不同分子量和尺寸的探针分子我们得到空心微球膜的MMCO为20kDa-40kDa之间,此外,空心微球对酶的包裹容量研究表明在原料浓度恒定的情况下,空心微球对酶具有极限包裹容量且空心微球对酶的包裹行为具有对Alg-g-mPEG浓度和PEG接枝率的响应性。
     第三章:胆固醇接枝的羧甲基魔芋葡甘聚糖自聚集体的制备、表征及作为药物载体的研究
     我们成功利用胆固醇对羧甲基魔芋葡甘聚糖进行了疏水修饰,从而合成了一种新颖的基于天然聚多糖的两亲性聚合物(CHCKGMs)。CHCKGM的结构特征通过FTIR、1H NMR、TGA进行表征,并通过DLS、ZETA电位、TEM和荧光探针技术研究了CHCKGM在水中的自组装行为。CHCKGM两亲性聚合物与其它文献报道的两亲性聚合物相比其在水中的临界胶束浓度具有很大优势(2.59×10-3-5.89×10-3mg/ml),说明胆固醇片段对于形成聚集体非常有效。广谱抗癌药物依托泊苷通过超声方法被包裹到了CHCKGM纳米胶束中,体外释放结果显示包裹了依托泊苷的CHCKGM纳米胶束对药物有明显缓释作用。此外,CHCKGM纳米胶束在水中显示出对pH和离子强度的响应性,可以导致胶束粒径发生明显变化。
     第四章:基于壳聚糖的自组装空心微球制备及作为蛋白质载体的研究
     利用接枝到天然聚多糖壳聚糖上的PEG与α-CD形成软硬段(rod-coil)复合物在水中自组装得到了纳米空心微球。实验结果表明此类空心微球体系在蛋白质载药体系中具有很大优势;此类空心微球在水中显示出pH响应的性质,这种聚电解质胶囊的pH调控性能可以作为被包裹药物的控制释放开关。为了研究此类空心微球在分子马达蛋白方面的应用,我们从菠菜叶绿体中成功分离、纯化得到了有活性的CFoFl-ATP合酶。下一步的工作是拟将此蛋白构筑到脂质体中然后吸附到空心微球膜上,从而实现在空心微球内部人工合成ATP。
     第五章:基于主-客体化学代替共价键构筑Dendrimer的研究
     我们设计利用环糊精与客体分子之间的主客体识别作用代替传统共价键来构筑功能材料Dendrimer,此类Dendrimer功能材料的核、支化结构和表面基团全部用主客体作用来构筑,此类方法简单、高效,与传统的Dendrimer功能材料相比有很大优势。目前,各组装单元的合成工作已经基本完成,接下来的组装工作正在进行中。
Novel hollow nanospheres, amphipatic micelles and dendrimer were constructed and successfully applied in enzyme immobilization, microreactor and drug deleviery area. These systems all constructed via supramolecular self-assembly which based on the inclusion complexion between cycodextrins and various gurest molecules and some natural polysaccharides.
     Chapter 1:Macromolecular Self-assembly via Host-Guest Inclusion
     Rencent progress in macromolecular self-assembly based on host-guest inclusion have been reviewed according to various intereactions in host-guest inclusion process, which include metal-dipole intereactions, hydrogen bond, vander Waals interactions, hydrophilicity or hydrophobicity intereactions andπ-πintereactions. In addition, some novel host molecules and guest molecules were discussed according to various mechansim of action and their potential applications of the resultant assemblies.
     Chapter 2:Self-assembly Hollow Nanosphere for Enzyme Encapsulation and Selective Membrane Permeability Properties of Self-assembly Hollow Nanospheres
     This chapter describes a kind of hollow nanosphere prepared by self-assembly of rod-coil complexes, in which the rod-like segments were formed by inclusion a-cyclodextrins (a-CDs) and poly(ethylene glycol) (PEG) chains grafted on alginate-graft-PEG (Alg-g-PEG). The Alg-g-PEG/a-CD hollow spheres were extended to investigate the encapsulation behavior of enzyme. It was found that the hollow spheres not only enable a high loading of enzyme, but also show semi-permeability which could prevent the enzyme from leaving while allowing substrates and products to pass through. Although protected in hollow spheres, the encapsulated enzyme can still exert its activity and the affinity between the substrate and encapsulated enzyme was lightly increased. Furthermore, the encapsulation of L-asparaginase widened the optimum reactive temperature and pH range of the enzyme, and the encapsulated L-asparaginase showed significantly higher stability in an acidic environment as compared to the native enzyme. The permeability properties of Alg-g-PEG/a-CD hollow nanospheres were investigated by encapsulating different probes. Results showed that the molar mass cutoff (MMCO) of these hollow nanospheres was between 20 and 40 kDa. The encapsulation capability of Alg-g-PEG/a-CD hollow nanospheres was also investigated, the results indicated a maximal values for L-asparaginase encapsulation is 4 mg per 4 mL Alg-g-PEG/a-CD (0.25%/6%) solution. Furthermore, the encapsulation behavior for L-asparaginase showed PEG graft density (GD) dependence.
     Chapter 3:Self-aggregates of Cholesterol-modified Carboxymethyl Konjac Glucomannan Conjugate:Preparation, Characterization, and Preliminary Assessment as a Carrier of Etoposide
     In this chapter, various cholesterol (CH) bearing carboxymethyl konjac glucomannan (CKGM) amphiphilic conjugates (denoted CHCKGM) were synthesized using CKGM and CH as hydrophilic and hydrophobic segments. Structural characteristics of these CHCKGM conjugates were investigated using FTIR,1H NMR and thermogravimetric analysis (TGA). The properties of these self-aggregates were analysed by dynamic laser light-scattering (DLS), zeta potential, transmission electron microscopy (TEM) and the fluorescence probe technologies. The critical aggregation concentration (cac) of CHCKGM conjugates (2.59×0-3-5.89×10-3 mg/ml) was comparatively low, suggesting that the cholesterol fragment was very effective for forming aggregates. Etoposide was physically entrapped into the CHCKGM nanoparticles by sonication method. The in vitro release behavior of etoposide from CHCKGM nanoparticles revealed a sustained release property. Furthermore, these self-aggregated nanoparticles showed pH-and ionic strength-dependent properties which caused a considerable change in their radius.
     Chapter 4:Self-assembled Hollow Spheres Based on Chitosan and the Preliminary Application as a Protein Carrier
     In this chapter we present a convenient approach to construct hollow spheres with chiostan as the backbone. The strategy for fabrication based on the self-assembly of rod-coil complexes, in which the rod-like segments were formed by inclusion a-cyclodextrins (a-CDs) and poly(ethylene glycol) (PEG) chains grafted on chiostan-graft-PEG(CS-g-PEG). The hollow sphere indicates great promise in the area of protein delivery systems. Those self-aggregated hollow spheres showed pH-dependent properties. This pH-switchable control of the polyelectrolyte envelopes can be used to trigger the release of encapsulated drugs. To further investigate the potential of CS-g-PEG/a-CD hollow spheres in bionic area, the CFoFl-ATPase was isolated, purified successfully from spinach leaves. The reconstitution of CFoFl-ATPase onto membrane of the hollow spheres to functionalize the enzyme is in progress.
     Chapter 5:Dendrimers Based on Host-Guest Chemistry
     The inclusion between cyclodextrins and different guest molecules are designed to construct dendrimers in place of traditional covalent bond. The surface functional groups, tailored sanctuary and dendrimer core are all constructed by host-guest inclusion in this dendrimer. Obviously, this method is simple, straightforward and have great advantages compared to traditional dendrimer. Now, the work of self-assembly between each unit was in progress.
引文
[1]Lehn J.M., Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed.,1988,27:89-112.
    [2]Steed J.W., Atwood J.L. Supramolecular Chemistry.赵耀鹏,孙震(译),超分子化学.北京:化学工业出版社,2006.
    [3]Balzani V., De Cola, L. Supramolecular Chemistry [M], Kluwer Academic Publishers, The Netherlands,1992, pp 137.
    [4]Vogtle F., Lohr H.G, Franke J., et al., Host/Guest chemistry of organic onium compounds-clathrates, crystalline complexes, and molecular inclusion compounds in aqueous solution. Angew. Chem. Int. Ed. Engl,,1985,24:727-742.
    [5]Brunsveld L., Folmer B.J.B., Meijer E.W., et al., Supramolecular polymers. Chem. Rev.,2001, 101:4071-4097.
    [6]Lehn J.M., Supramolecular polymer chemistry-scope and perspectives. Polym. Int.,2002,51: 825-839.
    [7]Ciferri A., Supramolecular polymers (2nd ed.). Boca Raton/London/NY/Singapore:CRC, 2005.
    [8]Folmer B.J.B., Sijbesma R.P., Versteegen R.M., et al., Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater,2000,12:874-878.
    [9]Lohmeijer B.GG, Schubert U.S., Supramolecular engineering with macromolecules:an alternative concept for block copolymers. Angew. Chem. Int. Ed.,2002,41:382-3829.
    [10]Schoot P.V., Michels M.A.J., Brunsveld L., et al., Helical transition and growth of supramolecular assemblies of chiral discotic molecules. Langmuir,2000,16:10076-10083.
    [11]Gale P.A., Navakhun K., Camiolo S., et al., Anion-anion assembly:a new class of anionic supramolecular polymer containing 3,4-dichloro-2,5-diamido-substituted pyrrole anion dimers. J.Am. Chem. Soc,2002,124:11228-11229.
    [12]Brunsveld L., Folmer B.J.B., Meijer E.W., et al., Supramolecular polymers. Chem. Rev.,2001, 101:4071-4097.
    [13]Gokel GW., Crown Ethers. Cambridge:Royal Society of Chemistry,1998.
    [14]Hambley T.W., Lindoy L.F., Rermers J.R., et al., Macrocyclic ligand design. X-Ray, DFT and solution studies of the effect of N-methylation and N-benzylation of 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane on its affinity for selected transition and post-transition metal ions.J. Chem. Soc, Dalton Trans.2001:614-620.
    [15]陈朝晖,金林培,郭建权,高等学校化学学报,1998,19:502-506.
    [16]王利亚,金林培.无机化学学报1998,14:247-252.
    [17]王瑞瑶,李振祥,金钟声.无机化学学报,1994,10:172-177.
    [18]毛江高,金钟声,倪嘉缵.无机化学学报,1994,10:339-345.
    [19]Norbert Low R.W., Hamel F., et al., The first metallacrown ether sandwich complex. Angew. Chem. Int. Ed. Engl.,1996,35:2209-2210.
    [20]Lah M. S., Gibney B.R., Tierney D.L., et al., The fused metallacrown anion Na2{[Na0.5[Ga(salicylhydroximate)]4]2(.mu.2-OH)4}-is an inorganic analog of a cryptate. J. Am. Chem. Soc,1993,115:5857-5858.
    [21]Colacio E., Lopez-Magana C, Mckee V., et al., Novel square-planar cyclic tetranuclear copper(Ⅱ) complex containing oximate bridges. Synthesis, crystal structure and magnetic properties of tetrakis[diaqua (μ-1,3-dimethylviolurato) copper(II)] tetraperchlorate dihydrate. J. Chem. Soc, Dalton Trans,1999:2923-2926.
    [22]Stemmler A.J., Kampf J.W., Pecoraro V.L., A planar [15]metallacrown-5 that selectively binds the uranyl cation. Angew. Chem. Int. Ed,1996,35:2841-2843.
    [23]Stemmler A.J., Barwinski A., Michael J.B., et al., Facile preparation of face differentiated, chiral 15-metallacrown-5 complexes.J. Am. Chem. Soc,1996,118:11962-11963.
    [24]Stemmler A.J., Kampf J.W., Kirk M.L., et al., The preparation, characterization, and magnetism of copper 15-Metallacrown-5 lanthanide complexes. Inorg. Chem.,1999,38: 2807-2817.
    [25]高明章,杨奕群,许遵乐,手性冠醚的研究进展.有机化学,2001,21:447-484.
    [26]Fitzmaurice D., Rao S.N., Preece J.A., et al., Heterosupramolekulare" chemie:programmierte pseudorotaxan-selbstorganisation an einer nanokristalloberflache. Angew. Chem.,1999,111: 1220-1224.
    [27]Fitzmaurice D., Rao S.N., Preece J.A., et al., Heterosupramolecular chemistry:programmed pseudorotaxane assembly at the surface of a nanocrystal. Angew. Chem. Int. Ed.,1999,38: 1147-1150.
    [28]Ryan D., Rao S.N., Rensmo H., et al., Heterosupramolecular chemistry:Recognition initiated and inhibited silver nanocrystal aggregation by pseudorotaxane assembly. J. Am. Chem. Soc, 2000,122:6252-6257.
    [29]Mendes P.M., Chen Y, Palmer R.E., et al., Nanostructures for nanoparticles.J. Phys. Condens. Matter.,2003,5:S3047-S3063.
    [30]Ryan D., Nagle L, Rensmo H., et al., Programmed assembly of binary nanostructures in solution. J. Phys. Chem. B,2002,106:5371-5377.
    [31]Ryan D., Nagle L, Fitzmaurice D., Light-Patterned and recognition-directed adsorption of nanoparticles at a silicon wafer substrate. Nano Lett,2004,4:573-575.
    [32]Drechsler U., Erdogan B., Rotello V.M., Nanoparticles:Scaffolds for molecular recognition. Chem. Eur. J.,2004,10:5570-5579.
    [33]Lin S.Y., Liu S.W., Lin C.M., et al., Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal. Chem.,2002,74:330-335.
    [34]Luo Y.H., Liu H.W., Xi F., et al., Supramolecular assembly of poly (phenylene vinylene) with crown ether substituents to form nanoribbons.J. Am. Chem. Soc,2003,125:6447-6451.
    [35]Arias F., Godinez L.A., Wilson S.R., et al., Interfacial hydrogen bonding, self-assembly of a monolayer of a fullerene-crown ether derivative on gold surfaces derivatized with an ammonium-terminated alkanethiolate. J. Am. Chem. Soc,1996,118:6086-6087.
    [36]Huang F.H., Nagvekar D.S., Zhou X.C., et al., Formation of a linear supramolecular polymer by self-assembly of two homoditopic monomers based on the bis(m-phenylene)-32-crown-10/paraquat recognition motif Macromolecules,2007,40: 3561-3567.
    [37]Huang F.H., Gibson H.W., Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. J. Am. Chem. Soc,2004,126:14738-14739.
    [38]Jones J.W., Zakharov L.N., Rheingold A.L., et al., Cooperative host/guest interactions via counterion assisted chelation:Pseudorotaxanesfrom supramolecular cryptands. J. Am. Chem. Soc,2002,124:13378-13379.
    [39]Ashton P.R., Reder A.S., Spencer N., et al., Self-assembly of a chiral bis [2] catenane. J. Am. Chem. Soc,1993,115:5286-5287.
    [40]Huang F.H., Fronczek F.R., Gibson H.W., A cryptand/bisparaquat [3] pseudorotaxane by cooperative complexation. J. Am. Chem. Soc,2003,125:9272-9273.
    [41]Huang F.H., Gibson H.W., Bryant W.S., et al., First pseudorotaxane-like [3] complexes based on cryptands and paraquat:self-assembly and crystal structures J. Am. Chem. Soc,2003,125: 9367-9371.
    [42]Amabilino D.B., Stoddart J.F., From solid-state structures and superstructures to self-assembly processes. Chem. Mater.,1994,6:1159-1167.
    [43]Ashton P.R., Glink P.T., Stoddart J.F., et al., Self-assembling [2]-and [3] rotaxanes from secondary dialkylammonium salts and crown ethers. Chem. Eur. J.,1996,2:729-736.
    [44]Kool E.T., Preorganization of DNA:Design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem. Rev.,1997,97:1473-1487.
    [45]Etter M.C., Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem.,1991, 95:4601-4610.
    [46]Ranganathan D., Haridas V., Sundari C.S., et al., Design, synthesis, crystal structure, and host-guest properties of polymethylene-bridged cystine-based cyclobisamides:A facile entry into hydrogen-bonded peptide nanotubes. J. Org. Chem.,1999,64:9230-9240.
    [47]Ilhan F., Galow T.H., Gray M., et al., Giant vesicle formation through self-assembly of complementary random copolymers. J. Am. Chem. Soc,2000,122:5895-5896.
    [48]Duan H.W., Chen D.Y., Jiang M, et al., Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc,2001,123:12097-12098.
    [49]Kuang M., Duan H.W., Wang J., et al., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem. Commun.,2003,496-497.
    [50]Duan H.W., Kuang M., Wang J., et al., Self-assembly of rigid and coil polymers into hollow spheres in their common solvent.J. Phys. Chem. B,2004,108:550-555.
    [51]Kuang M., Duan H.W., Wang J., et al., Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent.J. Phys. Chem. B,2004,108: 16023-16029.
    [52]Chen D.Y., Jiang M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res.,2005,38:494-502.
    [53]Das K., Nakade H., Penelle J., et al., Synthesis and recognition properties of polymers containing embedded binding sites. Macromolecules,2004,37:310-314.
    [54]Duffy D.J., Das K., Hsu S.L., et al., Binding efficiency and transport properties of molecularly imprinted polymer thin films. J. Am. Chem. Soc,2002,124:8290-8296.
    [55]Koevoets R. A., Versteegen R.V., Kooijman H., et al., Molecular recognition in a thermoplastic elastomer. J. Am. Chem. Soc,2005,127:2999-3003.
    [56]Ilhan F., Galow T.H., Gray M., Reversible side chain modification through noncovalent interactions. "Plug and play" polymers. Macromolecules,2001,34:2597-2601.
    [57]Kato T., Hirota N., Fujishima A., et al., Supramolecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. ScL, Part A:Polym. Chem.,1996,34:57-62.
    [58]Kato T., Mizoshita N., Kanie K., Hydrogen-bonded liquid crystalline materials: Supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun.,2001,22:797-814.
    [59]Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev.,1998,98: 1743-1754.
    [60]童林荟.环糊精化学—基础与应用.北京:科学出版社,2001.
    [61]Harada A., Cyclodextrin-based molecular machines. Acc. Chem. Res.,2001,34:456-464.
    [62]刘育,尤长城,张衡益.超分子化学:合成受体的分子识别与组装.天津:南开大学出版社,2001.
    [63]Connors K.A., The stability of cyclodextrin complexes in solution. Chem. Rev.,1997,97: 1325-1358.
    [64]Engeldinger E., Armspach D., Matt D., Capped cyclodextrins. Chem. Rev.,2003,103: 4147-4174.
    [65]Hapiot F., Tilloy S., Monflier E., Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev,2006,106:767-781.
    [66]Wenz G, Han B.H., Muller A., Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev.,2006, 106:782-817.
    [67]黄进,任丽霞,范红蕾,陈永明,中国科学B辑:化学,2009,39:301-314.
    [68]郭明雨,江明,化学进展,2007,19:557-566.
    [69]杨郁,郭良宏,科学通报,2009,54:12-137.
    [70]王南平,余晓冬,陈洪渊,化学研究与应用,2001,13:27-32.
    [71]Miyauchi M., Harada A., A [2] rotaxane capped by a cyclodextrin and a guest:Formation of supramolecular [2] rotaxane polymer. J. Am. Chem. Soc,2004,126:11418-11419.
    [72]Harada A., Kamachi M., Complex formation between poly (ethylene glycol) and a-cyclodextrin. Macromolecules,1990,23:2823-2824.
    [73]Harada A., Li J., Kamachi M., The molecular necklace:A rotaxane containing many threaded a-cyclodextrins. Nature,1992,356:325-327.
    [74]Harada A., Li J., Kamachi M., Synthesis of a tubular polymer from threaded cyclodextrins. Nature,1993,364:516-518.
    [75]Harada A, Li J., Kamachi M., Double-stranded inclusion complexes of cyclodextrin threaded on poly (ethylene glycol). Nature,1994,370:126-128.
    [76]Harada A., Li J., Suzuki S., et al., Complex formation between polyisobutylene and cyclodextrins:inversion of chain-length selectivity between beta-cyclodextrin and gamma-cyclodextrin. Macromolecules,1993,26:5267-5268.
    [77]Harada A., Design and construction of supramolecular architectures consisting of cyclodextrins and polymer. Adv. Polym. Sci.,1997,133:141-191.
    [78]Harada A., Preparation and structures of supramolecules between cyclodextrins and polymers. Coordin. Chem. Rev.,1996,148:115-133.
    [79]Okada M., Harada A., Preparation of β-cyclodextrin polyrotaxane:photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of polypropylene glycol). Org. Lett,2004,6:361-364.
    [80]Okada M., Harada A., Poly (polyrotaxane):photoreactions of 9-anthracene-capped polyrotaxane. Macromolecules,2003,36:9701-9703.
    [81]Okada M., Takashima Y., Harada A., One-pot synthesis of y-cyclodextrin polyrotaxane:trap of γ-cyclodextrin by photodimerization of anthracene-capped pseudo-polyrotaxane. Macromolecules,2004,37:7075-7077.
    [82]Miyauchi M., Hoshino T., Harada A., et al., A [2] rotaxane capped by a cyclodextrin and a guest:Formation of supramolecular [2] rotaxane polymer. J. Am. Chem. Soc,2005,127: 2034-2035.
    [83]Tellini V.H.S., Jover A., Tato J.V., et al., Thermodynamics of formation of host-guest supramolecular polymers. J. Am. Chem. Soc,2006,128:5728-5734.
    [84]Liu Y, You C.C., Zhang H.Y., et al., Bis (molecular tube) s:Supramolecular assembly of complexes of organoselenium-bridged P-cyclodextrins with platinum (Ⅳ). Nano Lett.,2001, 1:613-616.
    [85]Ohira A., Sakata M, Kunitake M., et al., Comparison of nanotube structures constructed from α-,β-, and γ-cyclodextrins by potential-controlled adsorption. J. Am. Chem. Soc,2003,125: 5057-5065.
    [86]Fathalla M., Neuberger A., Li S.C., et al., Straightforward self-assembly of porphyrin nanowires in water:harnessing adamantane/β-cyclodextrin interactions.J. Am. Chem. Soc, 2010,132:9966-9967.
    [87]Munteanu M., Kolb U., Ritter H., Supramolecular nanocycles comprising β-cyclodextrin-click-ferrocene units:rings of rings of rings. Macromol. Rapid Commun., 2010,31:616-618.
    [88]Wang J., Jiang M., Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc,2006,128:3703-3708.
    [89]Jenekhe S.A., Chen X.L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science,1999,283:372-375.
    [90]Jenekhe S.A., Chen X.L., Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science,1998,279:1903-1907.
    [91]Meng X.W., Qin J., Liu Y, et al., Degradable hollow spheres based on self-assembly inclusion. Chem. Commun.,2010,46:643-645.
    [92]Qin J., Meng X.W., Li B.J., et al., Self-assembly of (3-cyclodextrin and pluronic into hollow nanospheres in aqueous solution. J. Colloid Interface Sci.,2010,50:447-452.
    [93]Zhang J.X., Ellsworth K., Ma P.X., Hydrophobic pharmaceuticals mediated self-assembly of (3-cyclodextrin containing hydrophilic copolymers:Novel chemical responsive nano-vehicles for drug delivery. J. Control. Release,2010,145:116-123.
    [94]Yallapu M.M., Jaggi M., Chauhan S.C., Poly(P-cyclodextrin)/curcumin self-assembly:A novel approach to improve curcumin delivery and its therapeutic efficacy in prostatecancer cells. Macromol. Biosci.,2010,10:1141-1151.
    [95]Radi A.E., Eissa S., Electrochemistry of cyclodextrin inclusion complexes of pharmaceutical compounds. The Open Chemical and Biomedical Methods Journal,2010,3:74-85.
    [96]Chen X., Parker S.G, Zou G, et al., Nanosieving of anions and cavity-size-dependent association of cyclodextrins on a 1-adamantanethiol self-assembled mono layer. ACSNANO, 2010,4:6387-6394.
    [97]Grefa R., Amielb C., Molinard K., et al., New self-assembled nanogels based on host-guest interactions:Characterization and drug loading. J. Controlled Release,2006,111:316-324.
    [98]Li Y.Y., Liu J., Du GY., et al., Reversible heat-set organogel based on supramolecular interactions of β-Cyclodextrin in N,N-Dimethylformamide. J. Phys. Chem. B,2010,114: 10321-10326.
    [99]Nomura Y., Sasaki Y., Takagi M., et al., Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin:heat shock protein-like activity of artificial molecular chaperone. Biomacromolecules,2005,6:447-452.
    [100]Mahalingam V., Onclin S., Peter M., et al., Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir 2004,20:11756-11762.
    [101]Ikeda A., Shinkai S., Novel cavity design using calix [n] arene skeletons:toward molecular recognition and metal binding. Chem. Rev.,1997,97:1713-1734.
    [102]王键吉,刘文斌,卓克垒等,化学通报,1996,2:11-16.
    [103]Izatt R.M., Hawkins R.T., et al., Method of insulting the exterior of a water heate tank[P], US 4 447 377,1984.
    [104]Danil de Namor A.F., Cleverley R.M., Zapata-Ormachea M.L., Thermodynamics of calixarene chemistry. Chem. Rev.,1998,98:2495-2525.
    [105]Shivanyuk A., Saadioui M., Broda F., et al., Sterically and guest-controlled self-assembly of calix [4] arene derivatives. Chem. Eur. J.,2004,10:2138-2148.
    [106]Tancini F., Yebeutchou R.M., Pirondini L., et al., Host-guest-driven copolymerization of tetraphosphonate cavitands. Chem. Eur. J.,2010,16:14313-14321.
    [107]Rebek, Jr., J., Host-guest chemistry of calixarene capsules. Chem. Commun.,2000,637-643.
    [108]Behrend R., Meyer E., Liebigs F.R., Mittheilungen aus dem organischchemischen Laboratorium der Technischen Hochschule Zu Hannover. Ann. Chem.,1905,339:1-37.
    [109]Freeman W.A., Mock W.L., Shih N-Y., Cucurbituril. J. Am. Chem. Soc.,1981,103: 7367-7368.
    [110]Gerasko O.A., Samsonenko D.G., Fedin V.P., Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev.,2002,71:741-760.
    [111]Lee J.W., Samal S., Selvapalam N., et al., Cucurbituril homologues and derivatives:new opportunities in supramolecular chemistry. Acc. Chem. Res.,2003,36:621-630.
    [112]Kim K., Selvapalam N., Oh D.H., Cucurbiturils-a new family of host molecules. J. Incl. Phenom. Macrocycl. Chem.,2004,50:31-36.
    [113]Pinjari R.V., Khedkar J.K., Gejji S.P., Cavity diameter and height of cyclodextrins and cucurbit [n] urils from the molecular electrostatic potential topography. J. Incl. Phenom. Macrocycl. Chem.,2010,66:371-380.
    [114]Cintas P., Cucurbituril:Supramolecular perspectives for an old ligand. J. Inclusion Phenom. Mol. Recognit. Chem.,1994,17:205-220.
    [115]Lee J. W., Samal S., Selvapalam N., et al., Cucurbituril homologues and derivatives:new opportunities in supramolecular chemistry. Acc. Chem. Res.,2003,36:621-630.
    [116]Oh K.S., Yoon J., Kim K.S., Structural stabilities and self-Assembly of cucurbit [n] uril (n= 4-7) and decamethylcucurbit [n] uril (n= 4-6):A theoretical study.J. Phys. Chem. B,2001, 105:9726-9731.
    [117]李刚,冯亚青,化学通报,2005,68:1-8.
    [118]Jun S. I., Lee J. W., Kim K., Rotaxane-based molecular switch with fluorescence signaling. Tetrahed. Lett.,2000,41:471-475.
    [119]Kim S. Y., Jung I. S., Lee E., et al., Macrocycles within macrocycles:cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit [8] uril. Angew. Chem. Int. Ed. Engl,2001,113:2177-2179.
    [120]Lim Y.B., Kim T., Lee J.W., et al., Self-assembled ternary complex of cationic dendrimer, cucurbituril, and DNA:Noncovalent strategy in developing a gene delivery carrier. Bioconjugate Chem.,2002,13:1181-1185.
    [121]Lee H.K., Park K.M., Jeon Y.J., Vesicle formed by amphiphilc cucurbit [6] uril:Versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin.J. Am. Chem. Soc,2005,127:5006-5007.
    [122]Jon S.Y., Selvapalam N., Oh D.H., et al., Facile synthesis of cucurbit [n] uril derivatives via direct functionalization:Expanding utilization of cucurbit [n] uril. J. Am. Chem. Soc,2003, 125:10186-10187.
    [123]Mock W.L., Irra T.A., Wepsiec, J.P., et al., Host-guest binding capacity of cucurbituril. J. Org. Chem.1983,48:3619-3620.
    [124]Chen C.-W., Whitlock H.W., Molecular tweezers:a simple model of bifunctional intercalation. J. Am. Chem. Soc,1978,100:4921-4922.
    [125]Harmata M., Chiral molecular tweezers. Acc. Chem. Res.,2004,37:862-873.
    [126]Legouin B., Gayral M., Uriac P., Molecular tweezers:synthesis and formation of Host-Guest complexes. Eur. J. Org. Chem.,2010,5503-5508.
    [127]Kl□rner F.-G., Kahlert B., Molecular tweezers and clips as synthetic receptors, molecular recognition and dynamics in receptor-substrate complexes. Acc. Chem. Res.,2003,36:919-932.
    [128]赵志刚,刘兴利,李清寒等,有机化学,2009,29:1336-1353.
    [1]Muthukumar M., Ober C.K., Thomas E.L., Competing interactions and levels of ordering in self-organizing polymeric materials. Science,1997,277:1225-1232.
    [2]Ikkala O., ten Brinke G, Functional materials based on self-assembly of polymeric supramolecules. Science,2002,295:2407-2409.
    [3]Stupp S.I., LeBonheur V., Walker K., Li L.S., et al., Supramolecular materials:self-organized nanostractures. Science,1997,276:384-389.
    [4]Klok H.-A., Lecommandoux S., Supramolecular materials via block copolymer self-assembly. Adv. Mater.,2001,13:1217-1229.
    [5]Bergbreiter D.E., Self-assembled, sub-micrometer diameter semipermeable capsules. Angew. Chem. Int. Ed,1999,38:2870-2872.
    [6]Meier W., Polymer nanocapsules. Chem. Soc. Rev.,2000,29:295-303.
    [7]Chen D. Y., Jiang M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res.2005,38:494-502.
    [8]Fu G.D., Li G.L., Neoh K.G, et al., Hollow polymeric nanostructures-Synthesis, morphology and function. Prog. Polym. Sci.,2011,36:127-167.
    [9]Jenekhe S.A., Chen X.L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science,1999,283:372-375.
    [10]Jenekhe S.A., Chen X.L., Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science,1998,279:1903-1907.
    [11]Duan H.W., Chen D.Y., Jiang M., et al., Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc,2001,123:12097-12098.
    [12]Kuang M., Duan H.W., Wang J., et al., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem. Commun.,2003,496-497.
    [13]Duan H.W., Kuang M., Wang J., et al., Self-assembly of rigid and coil polymers into hollow spheres in their common solvent.J. Phys. Chem. B,2004,108:550-555.
    [14]Kuang M., Duan H.W., Wang J., et al., Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent.J. Phys. Chem. B,2004,108: 16023-16029.
    [15]Tung Y.C., Wu W.C., Chen W.C., Morphological transformation and photophysical properties of rod-coil poly[2,7-(9,9-dihexylfluorene)]-block-poly(acrylic acid) in solution. Macromol. Rapid Commun.2006,27:1838-1844.
    [16]Zhang Z.J., Qiang L.L., Liu B., et al., Synthesis and characterization of a novel water-soluble block copolymer with a rod-coil structure. Mater. Lett,2006,60:679-684.
    [17]Mori T., Watanabe T., Minagawa K., et al., Self-assembly of oligo(p-phenylenevinylene)-block-poly(ethylene oxide) in polar media and solubilization of an oligo(p-phenylenevinylene) homooligomer inside the assembly. J. Polym. Sci. A:Polym. Chem.,2005,43:1569-78.
    [18]Schlaad H., Solution properties of polypeptide-based copolymers. Adv. Polym. Sci.,2006, 202:53-73.
    [19]Lim Y.B., Moon K.S., Lee M., Rod-coil block molecules:their aqueous self-assembly and biomaterials applications. J. Mater. Chem.,2008,18:2909-2918.
    [20]Kukula H., Schlaad H., Antonietti M., et al., The Formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution J. Am. Chem. Soc,2002,124:1658-1663.
    [21]Checot F., Brulet A., Oberdisse J., Structure of polypeptide-based diblock copolymers in solution:stimuli-responsive vesicles and micelles. Langmuir,2005,21:4308-4315.
    [22]Harada A., Kamachi M., Complex formation between poly(ethylene glycol) and a-cyclodextrin. Macromolecules,1990,23:2821-2823.
    [23]Harada A., Li J., Kamachi M., The molecular necklace:a rotaxane containing many threaded a-cyclodextrins. Nature,1992,356:325-327.
    [24]Ceccato M., Nostro P.L., Baglioni P., a-Cyclodextrin/polyethylene glycol polyrotaxane:a study of the threading process. Langmuir 1997,13:2436-2439.
    [25]Meng X.W., Qin J., Liu Y., et al., Degradable hollow spheres based on self-assembly inclusion. Chem. Commun.,2010,46:643-645.
    [26]Campbell H.A., Mashburn L.T., Boyse E.A., et al., Two L-asparaginases from Escherichia coli B. their separation, purification, and antitumor activity. Biochemistry,1967,6:721-730.
    [27]Zhang Y.Q., Tao M.L., Shen W.D., et al., Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials,2004,25: 3751-3759.
    [28]Barbara M., Martins A.F., Paula A., et al., Biochemical characterization of an L-Asparaginase bioconjugate. Bioconjugate Chem.,1996,7:430-435.
    [29]Gaspar M.M., Blanco D., Cruzand M.E.M., Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles:influence of polymer properties on enzyme loading, activity and in vitro release. J. Controlled Release,1998,52:53-62.
    [30]Wang T.G, New technologies for bioartificial organs. Artif. Organs,1998,22:68-74.
    [31]Choi E.J., Foster M.D., The role of specific binding in human serum albumin adsorption to self-assembled monolayers. Langmuir,2002,18:557-561.
    [32]Stamou D., Duschl C., Delamarche E., et al., Self-assembled microarrays of attoliter molecular vessels. Angew. Chem. Int. Ed.,2003,42:5580-5583.
    [33]Falconnet D., Koenig A., Assi F., et al., A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv. Funct. Mater.,2004,14:749-756.
    [34]Lu G, Chen H., Li J.B., Forming process of folded drop surface covered by human serum albumin, β-lactoglobulin and β-casein, respectively, at the chloroform/water interface. Colloids Surf., A.,2003,215:25-32.
    [35]Shifrin S., Parrott C.L., Luborsky S.W., Substrate binding and intersubunit interactions in L-Asparaginase. J. Biol. Chem.,1974,249:1335-1340.
    [36]Eiselt P., Lee K.Y., Mooney D.J., Rigidity of two-component hydrogels prepared from alginate and polyethylene glycol diamines. Macromolecules,1999,32:5561-5566.
    [37]Wang R., Li B.J., Peng S.L., et al., Semi-permeable nanocapsules of konjac glucomannan-chitosan for enzyme immobilization. Int. J. Pharm.,2008,364:102-107.
    [38]John M.W., The Protein Protocols Handbook, HumanaPress, Totowa, NJ,2nd edn,2002, p. 15.
    [39]Xu X.L., Asher S.A., Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J. Am. Chem. Soc,2004,126:7940-7945.
    [40]Huang H.Y., Remsen E.E., Kowalewski T., et al., Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc,1999,121:3805-3806.
    [41]Harada A., Li J., Kamachi M., Preparation and properties of inclusion complexes of poly(ethylene glycol) with a-cyclodextrin. Macromolecules,1993,26:5698-5703.
    [42]Huang L., Allen E., Tonelli A.E., Study of the inclusion compounds formed between a-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(s-caprolactone). Polymer,1998,39:4857-4865.
    [43]Taqieddin E., Amiji M., Enzyme immobilization in novel alginate-chitosan core-shell microcapsule. Biomaterials,2004,25:1937-1945.
    [44]Anderson D., Nguyen T., Laiand P.K., et al., Evaluation of the permeability and blood-compatibility properties of membranes formed by physical interpenetration of chitosan with PEO/PPO/PEO triblock copolymers. J. Appl. Polym. Sci.,2001,80:1274-1284.
    [45]Brissova M., Petro M., Lacik I., et al., Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal. Biochem.,1996,242:104-111.
    [46]Stewart W.W., Swaisgood H.E., Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards. Enzyme Microb. Technol.,1993,15: 922-927.
    [1]Gaucher G, Dufresne, M.-H., Sant V.P., et al., Block copolymer micelles:preparation, characterization and application in drug delivery. J. Controlled Release,2005,109:169-188.
    [2]Kataoka K., Harada A., Nagasaki Y., Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv. Drug Deliver. Rev.,2001,47:113-131.
    [3]Nishikawa T., Akiyoshi K., Sunamoto J., Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides.J. Am. Chem. Soc.,1996,118:6110-6115.
    [4]Akiyoshi K., Superamolecular design for biological applications. CRC Press:Boca Raton, 2002; p.13-24.
    [5]Mortensen K., Structural properties of self-assembled polymeric aggregates in aqueous solutions. Polym. Adv. Technol.,2001,12:2-22.
    [6]Dalhaimer, P., Bermudez H., Discher D.E., Biopolymer mimicry with polymeric wormlike micelles:molecular weight scaled flexibility, locked-in curvature, and coexisting microphases. J. Polym. Scl., Part B:Polym. Phys.,2004,42:168-176.
    [7]Rotureau E., Chassenieux C., Dellacherie E., et al., Neutral polymeric surfactants derived from dextran:a study of their aqueous solution behavior. Macromol. Chem. Phys.,2005,206: 2038-2046.
    [8]Akiyoshi K., Deguchi S., Moriguchi N., et al., Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules, 1993,26:3062-3068.
    [9]Kakizawa Y, Harada A., Kataoka K., Glutathione-sensitive stabilization of block copolymer micelles composed of antisense DNA and thiolated poly(ethylene glycol)-block-poly(L-lysine):a potential carrier for systemic delivery of antisense DNA. Biomacromolecules,2001,2:491-497.
    [10]Benita S., Levy M.Y., Submicron emulsions as colloidal drug carriers for intravenous administration:cmprehensive physicochemical characterization. J. Pharm. Sci.,1993,82: 1069-1079.
    [11]Jones M.C., Leroux J.C., Polymeric micelles-a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm.,1999,48:101-111.
    [12]Kang N., Leroux J.C., Triblock and star-block copolymers of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and D,L-lactide:synthesis and self-assembling properties in water. Polymer.2004,45:8967-8980.
    [13]Qiu L.Y., Bae Y.H., Self-assembled polyethylenimine-graft-poly(e-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials,2007,28:4132-4142.
    [14]Shimahara H., Suzuki H., Sugiyama N., et al., Isolation and characterization of oligosaccharides from an enzymic hydrolysateof konjac glucomannan. Agric. Biol. Chem., 1975,39:293-299.
    [15]贾成禹,陈素文,莫卫平等,白魔芋和花魔芋葡甘聚糖研究.生物化学杂志,1998,4:407.
    [16]Ridout M.J., Brownsey G.J., Synergistic interactions of acetan with carob or konjac mannan. Macromolecules,1998,31:2539-2544.
    [17]Brownsey G.J., Caims P, Miles M.J., et al., Evidence for intermolecular binding between xanthan and the glucomannankonjac mannan. Carbohydr. Res.,1988,176:329-334.
    [18]Chen H.L., Cheng, H.C., Liu, Y.J., et al., Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition,2006,22:1112-1119.
    [19]Li B., Xia J., Wang, Y., et al., Grain-size effect on the structure and antiobesity activity of konjac flour. J. Agric. Food. Chem.,2005,53:7404-7407.
    [20]Mizutani T., Effect of Konjac mannan on spontaneous liver tumorigenesis and fecal flora in male mice. Cancer Lett.,1982,17:27-32.
    [21]张俐娜,天然高分子科学与材料.科学出版社:北京,2007,p.4-16.
    [22]Du J., Sun R., Zhang, S., et al., Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. Macromol. Rapid. Commun.,2004,25: 954-958.
    [23]Xia B., Ha W., Meng X.W., et al., Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydr. Polym.,2010,79: 648-654.
    [24]Du J., Sun R., Zhang S., et al., Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. Ⅰ. physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles. Biopolymers,2005,78: 1-8.
    [25]Du J., Zhang S., Sun R., et al., Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. Ⅱ. release of albumin in vitro. Biomed.Mater. Res. Part B-Applied Biomaterials.,2005,72B:299-304.
    [26]Wang R., Xia B., Li B.J., et al., Semi-permeable nanocapsules of konjac glucomannan-chitosan for enzyme immobilization. Int. J. Pharm.,2008,364:102-107.
    [27]Akiyoshi K., Yamaguchi S., Sunamoto J. Self-aggregates of hydrophobic polysaccharide derivatives. Chem. Lett,1991,20:1263-1266.
    [28]Furgeson D.Y., Chan W.S., Yockman J.W., et al., Modified linear polyethylenimine-cholesterol conjugates for DNA complexation. Bioconjugate Chem.,2003, 14:840-847.
    [29]Wang Y.S., Jiang Q., Li R.S., et al., Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology,2008,19: 145101.
    [30]Wang Y.S., Liu L.R., Jiang Q., et al., Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur. Polym. J.,2007,43:43-51.
    [31]Wang Y.S., Liu L.R., Jiang Q., et al., Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr. Polym.,2007,69:597-606.
    [32]Yu J.M., Li Y.J., Qiu L.Y., et al., Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate:preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur. Polym. J.,2008,44:555-565.
    [33]Yuan X.B., Li H., Yuan Y.B., Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr. Polym.,2006,65:337-345.
    [34]Stoll, A., Renz, J., Wartburg, A. V., The isolation of podophyllotoxin gluooside. J. Am. Chem. Soc,1954,76:3103-3104.
    [35]Issell B.F., Rudolph A.R., Louie A.C., Etoposide (VP-16), Current Status and New Developments. New York:Academic Press,1984, (pp.6-8).
    [36]Ross W., Rowe T., Glisson B., et al., Role of topoisomerase Ⅱ in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res.,1984,44:5857-5860.
    [37]Long B.H., Minocha A., Inhibition of topoisomerase Ⅱ by VP-16 (etoposide), VM-26 (teniposide) and structure congeners as explanation for in vivo DNA breakage and cytotoxicitry. Proc. Am. Ass. Cancer Res.,1983,24:1271.
    [38]Long B.H., Musial S.T., Brattain M.G., Comparison of cytotoxicity and DNA breakage activity of congeners of podophyllotoxin including VP16-213 and VM26:a quantitative structure-activity relationship. Biochemistry,1984,23:1183-1188.
    [39]Long B.H., Brattain M.G., The Activity of Etoposide andTeniposide against Human Lung Tumor in vitro:cytotoxicity and DNA breakage. In:Etoposide:Current Status and New Developments. Issell BF. Muggia FM.Carter SA, eds. Academic Press, New York,1984, pp 223.
    [40]Falkson G., Van Dyk J.J., Van Eden E.B., et al., A clinical trial of the oral form of 4'-demethyl-epipodophyllotoxin-P-D ethylidene glucoside (NSC 141540) VP 16-213. Cancer, 1975,35:1141-1144.
    [41]Shimahara H., Suzuki H., Sugiyama N., et al., Isolation and characterization of oligosaccharides from an enzymic hydrolysateof konjac glucomannan. Agric. Biol. Chem., 1975,39:293-299.
    [42]Smith R.J., Starch:Chemistry and technology. New York:Academic Press.1967, pp. 621-625
    [43]Wilhelm M., Zhao C.L., Wang Y.C., et al., Poly(styrene-ethylene oxide) block copolymer micelle formation in water:a fluorescence probe study. Macromolecules,1991,24: 1033-1040.
    [44]Nagasaki Y., Okada T., Scholz C, et al., The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules,1998, 31:1473-1479.
    [45]Kim C, Lee S.C., Kang S.W., et al., Synthesis and the micellar characteristics of poly(ethylene oxide)-deoxycholic acid conjugates. Langmuir,2000,16:4792-4797.
    [46]Kim C, Lee S.C., Kwon I.C., et al., Complexation of poly(2-ethyl-2-oxazoline)-block-poly(e-caprolactone) micelles with multifunctional carboxylic acids. Macromolecules, 2002,35:193-200.
    [47]Hande K.R., Etoposide:four decades of development of a topoisomerase Ⅱ inhibitor, European Journal of Cancer,1998,34:1514-1521.
    [48]Liu S.Y., Armes S.P., Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer, Langmuir,2003,19:4432-4438.
    [1]Meng X.W., Qin J., Liu Y., et al., Degradable hollow spheres based on self-assembly inclusion. Chem. Commun.,2010,46:643-645.
    [2]Ha W., Meng X.W., Li Q., et al., Self-assembly hollow nanosphere for enzyme encapsulation. Soft Matter,2010,6:1405-1408.
    [3]Ha W., Meng X.W., Li Q., et al., Encapsulation studies and selective membrane permeability properties of self-assembly hollow nanospheres. Soft Matter,2011,7:1018-1024.
    [4]Qin J., Meng X.W., Li B.J., et al., Self-assembly of P-cyclodextrin and pluronic into hollow nanospheres in aqueous solution. J. Colloid Interface Sci.,2010,50:447-452.
    [5]Borchard G, Chitosans for gene delivery. Adv. Drug Deliver. Rev.,2001,52:145-150.
    [6]Thanou M., Florea B.I., Geldof M.,et al., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials,2002,23:153-159.
    [7]Kean T., Roth S., Thanou M., Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J. Controled Release,2005,103:643-653.
    [8]Zheng F., Shi X.W., Yang G.F., et al., Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration:results of an in vitro and in vivo study. Life Sci.,2007, 80:388-396.
    [9]Yoahida M., Muneyuki E., Hisabori T., ATP synthase—a marvelous rotary engine of the cell. Nat. rev. mol. cell boil.2001,2:669-677.
    [10]Arechaga J., Jones P.C., The rotor in the membrane of the ATP synthase and relatives. FEBS Lett.2001,494:1-5.
    [11]Mitchell P.A., Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Rev. Cambridge. Phil. Soc.1996,41:445-502.
    [12]Fillingame R.H., Jiang W., Dmitriev O.Y., et al., Structural interpretations of Fo rotary function in the Echerichia coli FlFo-ATPsynthase. Biochim. Biophys. Acta.2000,1458: 387-403.
    [13]Bottcher B., Gr□ber P., Boekema E.J., Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts. FEBS Lett.1995,373:262-264
    [14]Ma J.P., Flynn T.C., Cui Q., A dynamic analysisof the rotation mechanism for conformational change in Fl-ATPase. Structure,2002,10:921-931.
    [15]Capaldi R.A., Aggeler R., Mechanism of the FlFo-type ATP synthase, a biological rotary motor. Trends Biochem. Sci.,2002,27:154-160.
    [16]Walker J.E., Falk G., Gay N.J., et al., Genes for bacterial and mitochondrial ATP synthase. Biochem. Soc. Trans.,1984,12:234-235.
    [17]Mclachlin D.T., Coveny A.M., Clark S.M., et al., Site-directed cross-linking of b to the a, P, and a subunits of Escherichia coli ATP synthase.J. Biol. Chem.,2000,275:17571-17577.
    [18]Dunn S.D., Heppel L.A., Properties and functions of the subunits of the Escherichia coli coupling factor ATPase. Arch Biochem Biophys.1981,210:421-436.
    [19]Schneider E., Altendorf K., Bacterial adenosine 5'-triphosphate synthase(FlFo):purification and reconstitution of Fo complexes and biochemical and functional characterization of their subunits. Microbiol. Rev.1987,51:477-497.
    [20]Abrahams J.P., Leslie A.G.W., Lutter R., et al., Structure at 2.8A of F1-ATPase from bovine heart mitochondria. Nature,1994,370:621-628.
    [21]Fillingame R.H., Girvin M.E., Jiang W., et al., Subunit interactions coupling H+transport and ATPsynthesis in FlFo-ATP synthase. Acta Physiol. Scand. Suppl.,1998,643:163-168.
    [22]Gogol E.P., Luchen U., Capaldi R.A., The stalk connecting the Fl and Fo domains of ATP synthase cisualized by electron microscopy of unstained specimens. FEBS Lett.,1987,219: 274-278.
    [23]Lucken U., Gogol E.P., Capaldi R.A., Structure of the ATP synthase compled (ECFlFo) of Escherichia coli from cryoelectron microscopy. Biochemistry,1990,29:5339-5343.
    [24]Boyer P.D., Cross R.L., Momsen W., A new concept for energy coupling in oxidative phosphorylation based on a molecular explaination of the oxygen exchange reactions. Proc. Natl. Ascd. Sci. USA.1973,70:2873-2879.
    [25]Boyer P.D., In:membrane bioenergetics. Lee C.P., Schatz G, Emster L(eds).1979,461-475, MA:Addison Wesley, Reading.
    [26]Boyer P.D., Binding change mechanism for ATP synthase some probabilities and possibilities. Biochem. Biophys. Acta.1993,140:215-250.
    [27]倪张林,魏家绵,ATP合酶的结构和催化机理.植物生理与分子生物学学报,2003,29:367-374.
    [28]Weber J., Senior A.E., Bi-site catalysis in Fl-ATPase:does it exist? J. Biol. Chem.,2001,276: 35422-35428.
    [29]Senior A.E., Nadanaciva S., Weber J., The molecular mechanism of ATP synthesis by FlFo-ATP synthase. Biochim. Biophys. Acta.,2002,1553:188-211.
    [30]Weber J., Senior A.E., ATP synthesis driven by proton transport in FlFo-ATP synthase. FEBS Lett,2003,545:61-70.
    [31]Noji H., Yasuda R., Yoshida M., et al., Direct observation of the rotation of FlFo-ATPase. Nature,1997,386:299-302.
    [32]Soong R.K., Bachand G.D., Neves H.P., et al., Powering an inorganic nanodevice with a biomolecular motor. Science,2000,290:1555-'558.
    [33]Richard P., Rigaud J.L., Gr□ber P., Reconstitution of FlFo into liposomes using a new reconstitution procedure. Eur. J. Biochem.,1990,193:921-925.
    [34]Steinberg-Yfrach G, Durantini E.N., Moore A.L., et al., Light-driven production of ATP catalyzed by the FlFo-ATP synthase in an artificial photosynthetic membrane. Nature,1998, 392:479-482.
    [35]Turina P., Smaoray D., Gr□ber P., H+/ATPratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by C FoFl-liposomes. EMBO J.,2003,22:418-426.
    [36]Diez M., Zimmermann B., Borsch M., et al., Proton-powered subunit rotation in single membrane-bound FoFl-ATP synthase. Nat. Struct. Mol. Biol.,2004,11:135-141.
    [37]Luo T.J.M., Soong R., Lan E., et al., Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat. Mater.,2005,4:220-224.
    [38]Duan L., He Q., Wang K.W., et al., Adenosine triphosphate biosynthesis catalyzed by FoFl ATP synthase assembled in polymer microcapsules. Angew. Chem. Int. Ed.2007,46: 6996-7000.
    [39]Qi W., Duan L., Wang K.W., et al., Motor protein CFoFl reconstituted in lipid-coated hemoglobin microcapsules for ATP synthesis. Adv. Mater.2008,20:601-605.
    [40]He Q., Duan Li., Qi W., et al., Microcapsules containing a biomolecular motor for ATP biosynthesis. Adv. Mater.,2008,20:2933-2937.
    [41]Duan L., Yan X.H., He Q., et al., Proton gradients produced by glucose oxidase microcapsules containing motor FF-ATPase for continuous ATP biosynthesis. J. Phys. Chem. B.,2009,113:395-399.
    [42]Duan H.W., Kuang M., Wang J., et al., Self-assembly of rigid and coil polymers into hollow spheres in their common solvent. J. Phys. Chem. B,2003,108:550-555.
    [43]Kuang M., Duan H., Wang J., et al., Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent.J. Phys. Chem. B.,2004,108:16023-16029.
    [44]Chen D., Jiang M., Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res.,2005,38:494-502.
    [45]Harada A., Kamachi M., Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules,1990,23:2821-2823.
    [46]Harada A., Li J., Kamachi M., Preparation and properties of inclusion complexes of polyethylene glycol with.alpha.-cyclodextrin, Macromolecules,1993,26:5698-5703.
    [47]Huang L., Allen E., Tonelli A.E., Study of the inclusion compounds formed between α-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer,1998,39:4857-4865.
    [48]Jenekhe S.A., Chen X.L., Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science,1998,279:1903-1907.
    [49]Jenekhe S.A., Chen X.L., Self-assembly of ordered microporous materials from rod-coil block copolymers. Science,1999,283:372-375.
    [50]Duan H.W., Chen D.Y., Jiang M., et al., Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent.J. Am. Chem. Soc.,2001,123:12097-12098.
    [51]Kuang M., Duan H.W., Wang J., et al., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem. Commun.,2003,496497.
    [52]Nelson D.L., Cox M.M., Lehninger Principles of Biochemistry (3rd ed.). New York:Worth Publishers.2000, pp.206.
    [53]Stewart W.W., Swaisgood H.E., Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards. Enzyme. Microbio.l Technol.,1993, 15:922-927.
    [54]黄卓辉,魏家锦,植物生理学实验手册(薛应龙主编).上海:上海科学技术出版社,1985,111-115.
    [55]范淑琴,梁淑文著.现代植物生理学实验指南.北京:科学出版社,2005,392-396.
    [1]Buhleier E., Wehner W., Vogtle F.,'Cascade'-and'Nonskid-Chain-like'syntheses of molecular cacity topologies. Synthesis,1978,2:155-158.
    [2]Tomalia D.A., Naylor A.M., Goddard W.A., Starburst dendrimers-molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl.,1990,29:138-175.
    [3]Tomalia D.A., Baker H., Dewald J., et al., A new class of polymers:starburst dendritic macromolecules. Polym. J.,1985,17:117-132.
    [4]Newkome G.R.,Yao Z., Baker G.R., et al., Micelles. Part 1. Cascade molecules:a new approach to micelles. A [27]-arborol. J. Org. Chem.,1985,50:2003-2004.
    [5]Newkome G.R., Moorefield C.N., Vogtle F., Dendritic molecules:concepts, syntheses, perspectives.1986, (VCH, Weinheim, Germany).
    [6]Hawker C.J., Frechet J.M.J., Preparation of polymers with controlled molecular architecture-a new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990,112:7638-7647.
    [7]Dykes G.M., Dendrimers:a review of their appeal and applications, J. Chem. Technol. Biotechnol.,2001,76:903-918.
    [8]Balzani V., Ceroni P., Gestermann S., et al., Dendrimers as fluorescent sensors with signal amplification. Chem. Commun.,2000,853-854.
    [9]Valerio C, Fillaut J.L., Ruiz J., et al., The dendritic effect in molecular recognition:ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions.J. Am. Chem. Soc,1997,119:2588-2589.
    [10]Naka K., Tanaka Y., Chujo Y., et al., The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution. Chem. Commun.1999,1931-1932.
    [11]Garber S.B., Kingsbury J.S., Gray B.L., et al., Efficient and recycalable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc,2000,122:8168-8179.
    [12]Jansen J., de Brabander van den Berg E.M.M., Meijer E.W., Encapsulation of guest molecules into a dendritic box. Science,1994,266:1226-1229.
    [13]Decadoss C., Bharathi P., Moore J.S., Energy transfer in dendritic macromolecules: molecular size effects and the role of an energy gradient.J. Am. Chem. Soc,1996,118: 9635-9644.
    [14]Collman J.P., Fu L., Zingg A., et al., Dioxygen and carbon monoxide binding in dendritic iron(Ⅱ)porphyrins. Chem. Commun.,1997,193-194.
    [15]Frechet J.M.J., Dendrimers and supramolecular chemistry. PNAS,2002,99:4782-4787.
    [16]Denti G., Campagna S., Serroni S., et al., Decanuclear homo-and heterometallic polypyridine complexes:syntheses, absorption spectra, luminescence, electrochemical oxidation, and intercomponent energy transfer.J. Am. Chem. Soc,,1992,114:2944-2950.
    [17]Zeng F., Zimmerman S.C., Dendrimers in supramolecular chemistry:from molecular recognition to self-assembly. Chem. Rev.,1997,97:1681-1712.
    [18]Kawa M., Frechet J.M.J., Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem., Mater.,1998,10:286-296.
    [19]Fernandez G., Perez E.M., Sanchez L., et al., An electroactive dynamically polydisperse supramolecular dendrimer.J. Am. Chem. Soc.,2008,130:2410-2411.
    [20]Castro R., Cuadrado I., Alonso B., et al., Multisite inclusion complexation of redox active dendrimer guests. J. Am. Chem. Soc.,1997,119:5760-5761.
    [21]Quan C.Y., Chen J.X., Wang H.Y., et al., Core-shell nanosized assemblies mediated by α-β cyclodextrin dimer with a tumor-triggered targeting property. ACSNANO,2010,4: 421-4219.
    [22]Miyauchi M., Kawanguchi Y., Harada A., Formation of supramolecular polymers constructed by cyclodextrins with cinnamamide. J. Inclusion Phenom. Mol. Recognit. Chem. 2004,50:57-62.
    [23]Hu J., Ye C.F., Zhao Y.D., et al., A facile synthesis of P-cyclodextrin monoaldehyde. Chin. Chem. Lett.,1999,10:273-274.
    [24]Bhattarai N., Ramay H.R., Gunn J., et al., PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Controlled Release,2005,103: 609-624.
    [25]Harris J.M., Struck E.C., Case M.G., et al., Synthesis and characterization of poly (ethylene glycol) derivatives. J. Polymer Sci:Polymer Chem. Ed.,1984,32:341-352.
    [26]Tomatsu I., Hashidzume A., Harada A., Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based a-cyclodextrin and azobenzene polymers. J. Am. Chem. Soc,2006,128:2226-2227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700