用户名: 密码: 验证码:
基于Geo-CA乌梁素海挺水植物时空扩散模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地水生植物群落动态变化过程可以反映湿地生态系统健康程度及其生态服务功能。建立挺水植物群落时空扩散模型,定量分析挺水植物群落扩散与湿地环境变化之间的响应关系,探索湿地复杂非线性演化规律、剖析演化机制,可以为湿地可持续发展提供科学依据与决策支持。
     本文以乌梁素海湿地为研究区,在遥感、地理信息系统的支持下,通过景观指数定量研究了1986~2008年湿地景观类型格局及动态变化特征,测算了挺水植物群落重心位置及其移动轨迹,分析了挺水植物扩散的影响因子。以地理元胞自动机(Geo-CA)为模型框架,分别基于空间统计学和人工智能方法构建了乌梁素海湿地挺水植物扩散时空动态模型,模拟了湿地挺水植物群落扩散过程。主要研究结论如下:
     (1)基于多源遥感数据提取乌梁素海湿地类型信息,定量分析了湿地类型区景观指数变化,结果表明:1986~2008年间,乌梁素海湿地挺水植物面积由120.89km2上升至167.43 km2,斑块个数由1138个降至690个,斑块密度由1.2335个/km2降至0.7479个/km2,最大斑块面积比例由6.7002%升高至17.3879%,形状指数由36.2997下降至33.8494。挺水植物侵吞明水区和浅水沼泽区,成为湿地优势景观类型,斑块破碎度降低,边缘结构趋于简单。湿地挺水植物群落发展具有不平衡性,22年间挺水植物群落的重心偏移基本可分三个阶段:1986~1997年重心位置由(E 108°50′55.35″,N 40°58′53.78″)移动至(E 108°50′25.26″,N 40°58′37.57″),向西南偏移了863.03m;1997~2000年重心由(E 108°50′25.26″,N 40°58′37.57″)移至(E 108°50′35.33″,N 40°58′28.32″),向东南偏移了369.76m;2000~2008年重心位置由(E 108°50′50.12″,N 40°58′39.11″)移动至(E 108°50′35.33″,N 40°58′28.32″),向东北偏移487.73m。
     (2)在实测数据的基础上进行挺水植物群落扩散影响因子相关分析,通过逐步回归分析进一步确定了水深、TN是乌梁素海挺水植物扩散的主要影响因子,回归系数分别为-0.46和0.17。其中,水深超过1.5m挺水植物扩散停止,检测挺水植物体内N / P≤14,TN仍对乌梁素海挺水植物扩散起促进作用。通过地统计学插值方法模拟了乌梁素海不同时期水深、TN的时空分布。
     (3)基于空间统计学原理,计算不同时期乌梁素海挺水植物扩散动态度(LC)变化,获取挺水植物扩散速度拐点,进而将乌梁素海挺水植物群落扩散分为:快速扩散期(1986~2002年)和滞缓期(2002~2008年),挺水植物扩散动态度分别为2.1%和0.61%。建立动态度最优分段的Logistic-CA模型模拟湿地挺水植物时空扩散过程,结果表明:1997、2002和2008年模拟总体精度分别为74.01%、72. 29%和74.36%,Kappa系数分别为0.6222、0.6103和0.6370,实际Moran I系数分别为0.628、0.686和0.709,模拟结果的Moran I系数分别为0.641、0.712和0.720。动态度校正后的逻辑回归CA模型在精度、空间形态一致性定量检验及控制模拟精度下降方面均优于常规Logistic-CA模型。
     (4)将案例推理(CBR)引入湿地挺水植物扩散Geo-CA模型,解决湿地挺水植物扩散模拟面积大、时间长、影响因素复杂、非线性转化规则难以获取等问题。构建基于案例推理的乌梁素海挺水植物扩散元胞自动机模型(CBR-CA),依据地理特征和空间特征的相似度,搜索动态历史案例库中k个最近邻,隐含获取Geo-CA转化规则,模拟挺水植物群落扩散过程,结果表明:1997、2002和2008年模拟总体精度分别为76.41%、73.05%和75.91%,Kappa系数分别为0.6402、0.6382和0.6393,实际Moran I系数分别为0.628、0.686和0.709,模拟结果的Moran I系数分别为0.640、0.710和0.718。CBR-CA模型能适应湿地环境快速变化,并体现出复杂系统自适应特点。
     (5)分别基于LC-Logistic-CA模型和CBR-CA模型预测了2015年乌梁素海湿地挺水植物扩散状况,预测结果显示:挺水植物面积分别为174.34km2和172.92 km2,斑块个数分别为634个和646个,斑块密度分别为0.7287个/km2和0.7311个/km2,最大斑块所占景观面积的比例分别为18.0019%和17.9558%,形状指数分别为32.8392和33.1556,斑块破碎度降低,边缘结构趋于简单。
The dynamic variation of aquatic plant communities in wetlands may reflect the health degree of wetland ecosystems and ecological services. The establishment of Spatio-TemPora distribution model of emergent plants communities, the quantitative analysis of response relationship between wetland environmental change and the distribution of emergent plant communities,the exploration of complex non-linear law of wetlands evolution and the analysis of evolutionary mechanism may provide the sustainable development of wetlands with a scientific basis and decision support.
     With the support of remote sensing and geographic information system, the pattern and the dynamic variation characteristics of all kinds of wetland landscape in Wuliangsuhai wetland from 1986 to 2008 were studied quantitatively by landscape index. Furthermore, the location of center of gravity of the emergent plant communities and their moving tracks were calculated, and impact factors of the spread of emergent plants were analyzed. Taking cellular automata as a model framework, the Spatio-TemPora distribution dynamic model of emergent plants was established and the diffusion process of wetland emergent plant communities was simulated in Wuliangsuhai wetland on the basis of spatial statistics and the method of artificial intelligence respectively. The main research results are as follows:
     (1)Based on multi-source remote sensing data, the information of the type of Wuliangsuhai wetlands was extracted, and the index variation of wetlands landscape was analyzed quantitatively. The results showed that from the year 1986 to 2008, the area of emergent plants in the wetland grew from 120.89km2 to 167.43 km2; the number of patches declined from 1138 to 690; patches density decreased from 1.2335/km2 down to 0.7479个/km2; the ratio of the gest patches area increased from 6.7002% to 17.3879% ; the shape index fell from 36.2997 to 33.8494. Emergent plants swallowed clear water areas and shallow marshes areas, which became a dominant type of wetland landscape. The degree of fragmentation of patches was decreased and the edge structure became simple. Wetland emergent plant communities developed with imbalance, in 22 years, the barycenter of emergent plant communities has shifted through three basic stages. From 1986 to1997, the location of barycenter moved from the (E108°50'55 .35 ", N40°58'53 .78") to (E 108°50'25 .26 ", N 40°58'37 .57"), shifting 863.03m toward southwest; From 1997 to 2000, the location of barycenter moved from the (E 108°50′25.26″,N 40°58′37.57″) to (E 108°50′35.33″,N 40°58′28.32″), shifting 369.76m toward southeast; From2000 to 2008, the location of barycenter moved from the (E 108°50′50.12″,N 40°58′39.11″)to (E 108°50′35.33″,N 40°58′28.32″), shifting 487.73m toward northeast.
     (2)Correlation analysis of impact factors of emergent plant communities diffusion were carried out on the basis of the measured data. By stepwise regression analysis, the water depth and TN were further identified to be the main impact factors of diffusion of emergent plants in Wuliangsuhai, and their regression coefficients were -0.46 and 0.17 respectively. Where the water depth was more than 1.5m, diffusion of emergent plants stopped and N/P was not more than 14 in emergent plants. TN still promoted the diffusion of emergent plants in Wuliangsuhai. Temporal and spatial distribution of the water depth and TN at different stages were simulated with the method of geostatistical interpolation .
     (3)Spatial Statistics theory was used to calculate the dynamic degree of emergent plants diffusion(LC)in Wuliangsuhai at different times, so that the turning point of diffusion speed of emergent plants can be obtained . And then the diffusion process of emergent plants communities in Wuliangsuhai was divided into the diffusion period (1986-2002) and the stagnant period (2002-2008), in which the dynamic degrees of emergent plants diffusion were 2.1% and 0.61% respectively. Logistic-CA model of sub-optimal dynamic degree was established to simulate the process of spatio-tempora distribution of emergent plants. The results showed that the overall accuracies of simulation were 74.01%, 72.29% and 74.36%, Kappa coefficients were 0.6222, 0.6103 and 0.6370, and actual Moran I coefficient were 0.641, 0.712 and 0.720 in 1997,2002 and 2008 respectively. Accuracy and quantitative test on consistency of spatial form and control of the decline of the simulation accuracy of Logistic regression CA model whose dynamic degree was proofread were all better than those of conventional one.
     (4)That case-based reasoning (CBR) was led in Geo-CA model of wetland emergent plants diffusion solved many problems, including that simulation area of wetland emergent plants diffusion is large, simulation time is long, impact factors are complex, non-linear transformation rules are difficult to obtain and so on. Cellular automaton model (CBR-CA) of large emergent plants diffusion in Wuliangsuhai was constructed on the basis of case-based reasoning. According to the similarity of geographical features and spatial features, k nearest neighbors were searched in dynamic historical case library, conversion rules of Geo-CA were obtained implicitly, and the diffusion process of emergent plants communities was simulated. The results suggested that the overall accuracies of simulation were 76.41%, 73.05% and 75.91%, Kappa coefficients were 0.6402, 0.6382 and 0.6393, actual Moran I coefficients were 0.628, 0.686 and 0.709, and Moran I coefficients that simulated the results were 0.640, 0.710and 0.718 in 1997,2002 and 2008 respectively. CBR-CA model can adapt to rapid changes of wetland environments and reflect the Self-adaptability of complex systems.
     (5)Based on LC -Logistic-CA model and CBR-CA model respectively, the diffusion condition of the emergent plants in Wuliangsuhai wetlands in 2015 was predicted and the results showed that the area of the emergent plants were 174.34km2 and 172.92 km2, the number of patches were 634 and 646, patches density were 0. 7287/km2 and 0.7311/km2, the ratio of the gest patches area were 18.0019% and 17.9558%, the shape index were 32.8392 and 33.1556 and the degree of fragmentation of patches decreased, moreover, the edge structure became simple.
引文
1陈宜瑜.中国湿地研究[M].吉林:吉林科学技术出版社,1995
    2 Mitsch W J,JAMNES G G.Wetlands[M].New York:Van Nostrand Reinhold,1986,539
    3金相灿,刘树坤,章宗涉.等.中国湖泊环境第一册[M].北京:海洋出版社,1995,235
    4尚士友,杜健民,李旭英,等.草型富营养化湖泊生态恢复工程技术的研究—内蒙古乌梁素海生态恢复工程试验研究[J].生态学杂志,2003,22(6):57-62
    5白冰.我国湿地保护面临六大威胁[J].环境经济,2005,(3):59
    6 Janssen R.,Goosen H.,Verhoeven M.,etal.Deeision support for integrated wetland management[J].Environmental Modelling and software,2005,20(2):215-229
    7 Mathiyalagan V.,Grunwald S.,Reddy K.R.,etal.A web GIS and geodatabase for Florida wetlands[J].Computers and Electronics in Agriculture,2005,47(1):69-75
    8 Ellison A.M.Wetlands of Central Ameriea[J].Wetlands Ecology and Management,2004,12(l):3-55
    9 Mariano P.How can habitat selection affect the use of a wetland complex by waterbirds? [J].Biodiversity and Conservation,2006,15(14):4569-4582
    10袁立.基于RS、GIS生态景观格局动态变化及其驱动力的研究—以扎龙湿地为例[J].东北林业大学学报,2007,35(12):25-28
    11黎夏,叶嘉安,刘小平等.地理模拟系统:元胞自动机与多智能体[M].北京:科学出版社,2008.7-39
    12 Wolfram S.Cellular automata as models of complexity[J].Nature,1984,31(4):419-424
    13张显峰,崔伟宏.集成GIS和细胞自动机模型进行地理时空过程模拟与预测的新方法[J].测绘学报,2001,30(2):148-149
    14 Tomas H,During H J,Law R.Spatio-temporal patterns in grassland communities.The Geometry of Ecological Interactions:Simplifying Spatial Complexity[M].Cambridge of Cambridge University Press,2000,456
    15 Busing R.T.A Spatial Model forestdynamice[J].Vegetation,1991,92:167-179
    16 Pacala S.P.,Tilman D.Limiting similarity in mechanistic and spatical models of plant competition in heterogeneous[J].Ameriean Naturalist,1994,143:222-257
    17 Los S O,Justiee C O,Tucker C J.A global 1 degree by 1 degree NDVI data set for climate studies derived from the GIMMS continental NDVI data[J].International Joumal of Remote Sensing,1994,15:3493-3518
    18曹毅,周嘉友.川西北线叶篙草草地群落动态规律及其与环境因子的效应分析[J].草业学报,1998,2(7):70-73
    19刘振国,李镇清.不同放牧强度下冷篙种群小尺度空间格局[J].生态学报,2004,24:227-234
    20周先叶,王伯荪.黑石顶自然保护区森林次生演替过程中群落主要种的种间协变分析[J].应用生态学报,2004,15(3):367-371
    21辛晓平,高琼等.放牧和水淹干扰对松嫩平原碱化草地空间格局影响的分形分析[J].植物学报,1999,41(3):775-781
    22辛晓平,徐斌,王秀山.碱化草地群落恢复演替空间格局动态分析[J].生态学报,2001,6:877-882
    23李镇清.中国东北样带植物群落复杂性与多样性研究[J].植物学报,2000,42(9):971-97
    24郭程轩,甄坚伟.基于TM图像的城市生态绿地格局分析与评价[J].国土资源遥感,2003, 3:33-36
    25刘健康.高级水生植物学[M].北京:科学出版社,1999.45-226
    26 Edward B,etal.Economic valuation of wetlands[J].Ramsar Convention Bureau Gland Switzerland,1997.55
    27段晓男,王效科,郭玉华,等.乌梁素海芦苇资源演化及影响因素分析[J].干旱区资源与环境,2006,20(3):175-179
    28 Shukla J B,Dubek B.Effect of changing habitat on species:application to keoladeo national park.indian[J].Ecol Model,1996,86:90-91
    29韩敏,孙燕楠.基于RS、GIS技术的扎龙沼泽湿地景观格局变化分析[J].地理科学进展,2005,24(6):42-49
    30黄华梅,张利权,袁琳.崇明东滩自然保护区盐沼植被的时空动态[J].生态学报,2007,27(7):4166-4171
    31 Neill R V,Krummel J R,Gardner R H ,etal.Indices of landscape [J].Landscape Ecology,1998,1:153-162
    32秦向东,闵庆文.元胞自动机在景观格局优化中的应用[J].资源科学,2007,7,29(4):85
    33傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2001.59-60
    34肖笃宁,李秀珍.当代景观生态学的进展和展望[J].地理科学,1997,17(4):357-359
    35杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,17(4):508-514
    36潘辉,罗彩莲,谭芳林.3S技术在湿地研究中的应用[J].湿地科学,2006,4(1):75-77
    37 Kingsford R T,Thomas R F.Use of satellite image analysis to track wetland loss on the Murrumhidgee River flood plain in arid Australia[J].Water Science and Technology,2002,45(11):45-53
    38蒋卫国,王文杰,谢志仁,等.基于RS和GIS的三江平原湿地景观变化研究[J].地理与地理信息科学,2003,19(2):28-31
    39汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2):237-243
    40侯伟,张树文,卜坤,等.三江平原浓江、别拉洪河地区湿地退缩过程及其成因[J].地理研究,2005,24(7):507-514
    41郭笃发.黄河三角洲滨海湿地土地覆被和景观格局的变化[J].生态学杂志,2005,24(8):907-912
    42李素英,李晓兵,王丹丹,等.基于马尔柯夫模型的内蒙古锡林浩特典型草原的退化格局预测[J].生态学杂志,2007,26(1):78-82
    43边延辉,张光辉,包洪福,等.马尔柯夫模型在洪河湿地景观变化研究中的应用[J].东北农业大学学报,2008,39(3):53-57
    44王学雷,吴宜进.马尔柯夫模型在四湖地区湿地景观变化研究中的应用[J].华中农业大学学报,2002,21(3):288-291
    45李书娟,曾辉,夏洁,等.景观空间动态模型研究现状和应重点解决的问题[J].应用生态学报,2004,15(4):701-706
    46 Toffoli T.Cellular Automata as an alternative to (rather than an approximation of) differential equations in modeling physics[J].Physica D,1984,10:117-127
    47 Murry A B,Paola C.A cellular model of braided rivers[J].Nature,1994,371:54-57
    48 Barca D,Crisci G M,Di Gregorio S.Cellular Automata methods for modeling lava flow:Simulation of the 1986-1987 eruption[J].Active Lavas London Press,1993,283-301
    49宋伟国,范围澄,汪秉宏.中国火灾的自组织临界性[J].科学通报,2001,46(6):521-525
    50马力,杨新民,吴照柏,等.不同土地利用模式下土壤侵蚀空间演化模拟[J].水土保持通报,2003,23(1):49-51
    51李幼铭,胡健行.细胞自动机在地震波传播研究中的应用[J].地球物理学报,1995,38(5):651-661
    52管玉娟.基于COCA的海岸带盐沼植被动态扩散模型[D].华东师范大学,2008.25-66
    53 Hua-mei Huang,Li-quan Zhang,Yu-juan Guanel.A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals[J].Estuarine,Coastal and Shelf Science,2008,47-55
    54梅安新,彭望,秦其明.遥感导论[M].北京:高等教育出版社,2001.31-86
    55刘永学,张忍顺,李满春.江苏沿海互花米草盐沼动态变化及影响因素研究[J].海洋地质动态,2004,20(2):18-21
    56陈宏友.盐城滩涂珍禽自然保护区环境演变研究[J].河海大学学报,1998,26(8):79-85
    57牛明香,赵庚星,李尊英.南四湖湿地遥感信息分区分层提取研究[J].地理与地理信息科学,2004,20(2):45-52
    58黄桂林,张建军,韩爱慧,等.3S技术在辽河三角洲湿地监测中的应用—辽河三角洲湿地资源及其生物多样性的遥感监测[J].林业资源管理,2000,5:51-56
    59刘振乾,徐新良,吕宪国.3S技术在三角洲湿地资源研究中的应用[J].地理学与国土研究,1999,15(4):87-91
    60孙娟,夏汉平,蓝崇钰,等.基于缓冲带的贵港市城市景观格局梯度分析[J].生态学报,2006,26(3):655-659
    61于瑞宏,李畅游,刘廷玺,等.乌梁素海湿地环境的演变[J].地理学报,2004,59(6):948-955
    62王润生.遥感地质技术发展的战略思考[J].国土资源遥感.2008,75(1),1-12
    63汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2):237-241
    64王颖,宫辉力,赵文吉,等.北京野鸭湖湿地资源变化特征[J].地理学报,2005,60(4):656-660
    65戴晓爱,杨武年,徐云霞,等.基于RS和GIS的九寨沟景观格局动态分析[J].物探化探计算技术,2008,30(3):245-251
    66 Openshaw S.Computational human geography[J].Leeds Review,1994,37:201-202
    67柯新利,边馥苓.地理元胞自动机研究综述[J].咸宁学院学报,2009,29(3):103
    68 Hagerstrand T.A Monte-Carlo Approach to Diffusion[J].European Journal of Sociology,1965,6,43-67
    69 Tobler W R,Cellular geography.In:Gale S Olsson G(Reidel D ,Dordrecht) [J].Philosophy in Geography ,1979,279-386
    70 Couclelis H.Of mice and men: what rodent poplulations can teach us about complex spatial dynamics[J].Environment and Planning A,1998,20:99-109
    71 Couclelis H . What Rodent Popula-tions Can Teach Us About Complex Spatial Dynamics[J].Environment and Planning A,1988,20:99-109
    72 White R,Engelen G.Cellular automata and fractal urban form:A cellular modeling approach to the evolution of urban landuse patterns[J].Environment and Planning,1993,25:1175-1199
    73 Embutsu I.,Goodchild M.F.,Church R.,Takeya-ma,M. A Cellular Automaton Model in for Urban Heat Island Mitigation[J].Proceeding of GIS/LIS,1994,262-271
    74 Batty M,Xie.Form cells to cities[J].Environment and Planning ,1994,21:531-548
    75 Clarke K C,Brass J A, Riggan P J. A celluar automata model of wildfire propagation and estinction[J].Photogrammetric Engineering and Remote Sensing ,1994,60:1355-1367
    76 Wu F.A prototype to simulate land conversion through the interngrated GIS and CAwith AHP-derived transition rules[J] . International Journal of Geographical Information Science,1998,12(1):63-82
    77 Li X,Yeh A G O.Modelling sustainable urban development by the integration of constrained cellular automata and GIS[J].International Journal of Geographical Information Science,2000,14(2):131-152
    78 Wu F,Webster C J.Simulation of land development through the integration of cellular automata and multicriteria evaluation[J].Environment and Planning B, 1998,25:103-126
    79 Itami.Simulating spatial dynamics:celler automata theory[J].Landscape Urban Planning,1994,30:27-47
    80 Sui D Z,Zeng H.Modeling the dynamics of landscape structure in Asia’s emerging desakota regions:a case study in Shenzhen[J].Landscape and Urban Planning,2001,53:37-52
    81 Sprott J C,Bolliger J,David J M.Self-organized criticality in forest-landscape evolution[J].Physics Letters,2002,297,267-271
    82 Balzter H,Braun P.W,Koehler W.Cellular automata models for vergetation dynamics[J].Ecological Modelling,1998,107,113-125
    83周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,2001.25-74
    84黎夏,叶嘉安.基于神经网络的单元自动机CA及真实和优化的城市模拟[J].地理学报, 2002,57(2):159-166
    85黎夏,叶嘉安.基于神经网格的元胞自动机及模拟复杂土地利用系统[J].地理研究, 2005, 1:19-27
    86何春阳,史培军,陈晋,等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学(D),2005,35(5):464-473
    87孙燕楠.扎龙湿地时空格局演变的细胞自动机模型研究[D].大连理工大学.2008.26-95
    88 Itzhak.The scale of land-use CA is changing Computers[J].Environment and Urban Systems,2007,31:107-113
    89邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社,2007.103-129
    90 White R.W.,Engelen G.Cellular automata and fractal urban from :a cellular modeling approach to the evolution of urban land use patterns[J].Environment and Planning A,1993,25:1175-1193
    91 Batty,M, Xie,Y.From cells to cities[J].Environment and Planning B,1994, 21:531-548
    92 Wu F.A linguistic cellular automata simulation approach for sustainable land development in a fast growing region [J].Computers,Environment and Urban, 1996,20(6):367-387
    93 Clarke K C.,Gaydos L.Loose-coupling of a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore[J] . International Journal of Geographical Information Science,1998,12(7):699-714
    94 Li Xia,Yeh A G O.Neural-network based Cellular Automata for Simulating Multple Land Use Changes Using GIS [J].International Journal of Geographical Information Science,2002,16(4):323-343
    95陈述鹏.地球系统科学[M].北京:中国科学技术出版社,1998.5-36
    96钱学森,于录元,戴汝为.一个新的科学领域—开放的复杂巨系统及其方法论[M].1990,12(5):1-8
    97 Clarke K.C.Hoppen,S.and L.Gaydos.A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J].Environment and Planning B:Planning and Design,1997,24:247-261
    98史忠植.高级人工智能[M].北京:科学出版社,1998.21-75
    99 Sarkar P.A brief history of cellular automata.ACM Computing Survery[J].2000,32(1):80-107
    100曹中初,孙苏南.CA与GIS的集成用于地理信息的动态模拟和建模[J].测绘通报,1999,11:7-9
    101 Stevens S.,Dragicevic K.,Rothley.City:A GIS-CA modeling tool for urban planning and decision making[J].Environmental Modelling and Software,2007,22:761-773
    102 Wu Fulong.Calibration of stochastic cellular automata:the application to rural-urban land conversions[J] . International Journal of Geographical Information Science,2002,16(8):795 -818
    103李哈滨,伍业刚.景观生态学的数量研究方法—当代生态学博论[M].北京:科学出版社1992.65
    104肖笃宁.宏观生态学的研究方法[J].应用生态学报,1994,5(1):95-102
    105尚士友,杜健民,李旭英,等.草型富营养化湖泊生态恢复工程技术的研究—内蒙古乌梁素海生态恢复工程试验研究[J].生态学杂志,2003,22(6):57-62
    106邢莲莲,杨贵生.乌梁素海鸟类志[M].内蒙古:内蒙古大学出版社,1995,13-14
    107尚士友.乌梁素海富营养化及其防治研究[J].内蒙古农业大学学报,2003,24(4):6-12.
    108任春涛,基于遥感监测的湖泊富营养化状态的模糊识别研究[D].内蒙古农业大学,2008:32
    109乌拉特前旗志编纂委员会.乌拉特前旗旗志[M].1994,106-124
    110杨龙,高占义.灌区建设对生态环境的影响[J].水利发展研究,2005,5(9):18-23
    111杨志岩.挺水植物对乌梁素海营养元素去除能力研究[D].内蒙古农业大学,2008.4-19
    112王丽敏.水草收割工程对乌梁素海氮元素专业过程的研究[D].内蒙古农业大学,2004.24-35
    113 Neill R V,Krummel J R,Gardner R V,etal.Indices of landscape pattern[J].Landscape Ecology,1988,1(3):153-162
    114 Bu R C,Li X Z, Hu Y M,etal.Scaling effects on landscape pattern indices[J].Chinese JournalofApplied Ecology,2003,14(12):2181-2186
    115金相灿,刘鸿亮,唐清瑛,等.中国湖泊富营养化[M].中国环境出版社,1990,25
    116李建国,李贵宝,刘芳等.白洋淀芦苇资源及其生态功能与利用[J].南水北调与水利科技,2004,2(5):37-39
    117南开大学,内蒙古水产研究所.乌梁素海哈素海渔业资料考察论文集[M].南京:南开大学出版社,1982.6-35
    118中国科学院生态环境研究中心.内蒙古河套灌区节水改造与续建配套工程生态环境影响报告[R].2000.25-41
    119 Hejny,S.Z.Hroudova.Plant adaptations to shall water habitats[J], Archiv fuer Hydrobiologie-Advances in Limnology,1987,27:157-166
    120 Koerselman,W,A.F.M.Meuleman.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33:1441-1450
    121 Mauchamp,A.,S.Blanch P.Grillas.Effect of submer-gence on the growth of Phragmites australisseeding[J].Aquatic Botany,2001,69:147-164
    122 Lefor,M.W.Phalaris arundinaceaL.(reed canarygrass_Gramineae) as a hygrophyte in Essex,Connecticut[J].Environmental Management,1987,11:771-773
    123 Hecky,R.E.P.Kilman.Nutrient limitation of phyto-plankton in freshwater and marine environment: a reviewof recent evidence of the effects of enrichment[J], Limnology and Oceanogra-phy,1988,33:796-822
    124 Wu Y.,Sklar F.H.,Rutckey K.Analysis and stimulations of fragmentation patterns in the Everglades[J].Ecol Appl,1997,7:268-276
    125 Chambers R.M.,Meyerson L.S.,Saltonstall K.Expansion of Phragmites austral is into tital wetlands of North America[J].Aquatic Botany,1999,64:261-273
    126 Grarath L.Vegetation changes in Lake Vanern: Arssknift fran Vanerns Vattenvardsf Zorbund.Mariestad,Report[R].2000,11:13-20
    127 Adams J.B.,Bate G.C.Growth and photosynthetic performance of Phragmites australis in estuarine waters:a field and experimenta evaluation[J].Aquatic Botany,1999,64:359-367
    128 D.P.Ward,A.T.Murray,S.R.Phinn a.A stochastically constrained cellular model of urban growth.Computers[J].Environment and Urban Systems,2000,24:539-558
    129 Yeh A G-O,Li X.A constrained CA model for the simulation and planning of sustainable urban forms by using GIS[J].Environment and Planning B:Planning and Design,2001,28(5):733-753
    130 Wu,Fulong.Calibration of stochastic cellular automata:the application to ruralurban land conversions[J].International Journal of Geographical Information Science,2002,16(8):795-818
    131黎夏,叶嘉安.主成分分析与Cellular Automata在空间决策与城市模拟中的应用[J].中国科学D辑, 2001,21(8):683-690
    132 D.P.Ward,A,T,Murray.S.R.Phinn a.A stochastically constrained cellular model of urban growth computers[J],Environment and Urban Systems,2000,24: 539-558
    133李晓文,方精云,朴世龙.上海城市土地利用转变类型及其空间关联分析[J].自然资源学报,2004,19(4):438-446
    134吕晓芳,王仰麟,彭建,等.深圳快速城市化地区公路沿线土地利用空间集聚[J].地理学报,2008,63(8):845-855
    135任春涛.基于遥感监测的湖泊富营养化状态的模糊模式识别研究[D].内蒙古农业大学,2007.42
    136潘文斌.湖泊水生植物空间格局分形与地统计学研究–以保安湖及邻近湖泊为例[D].中国科学院水生生物研究所,2000.89-109
    137汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社, 2006,4:300-350
    138 Norlen,U.Simulation model building,a statistical approach to modeling in thee social sciences with the simulation method[M].New York:John Wiley,1995.105
    139 Naylor,T.H.,Finger,J.M.Verification of computer simulation models[J].Management Scienece,1967,14:92-106
    140冯永玖.集成遥感和GIS的城市扩展与模拟研究[D].同济大学,2009.30-46
    141 Clarke,K.C.,Hoppen,S.and L.Gaydos.A self-modifying cellular automata model of historical urbanization in the San Francisco Bay area[J].Environment and Planning B:Planning and Design,1997,24:247-261
    142 Moshe Sipper.Studying artificial life using a simple,general cellular model[J].Artificial Life Journal,1995,2(1):1-35
    143 White R,Engelen G.Cellular automata and fractal form:a cellular modelingapproach to the evolution of urban land-use patterns[J].Environment and Planning A,1993,25:1175-1199
    144 David W . Aha . The omnipresence of case-based reasoning in science and application[J].ELSEVIER:Knowledge-based Syestms,1998,11:261-273
    145袁小红.基于事例的推理:综述与分析[J].模式识别与人工智能,1995,8:18-29
    146姜丽红,刘豹.案例推理在智能化预测支持系统中的应用[J].决策与决策支持系统,1996,6(4):63-69
    147杜云艳,周成虎,邵全琴,等.案例推理的地学应用方法[J].地球信息科学,2002,57(2):151-158
    148胡兆亮,陈宗兴.地理环境概述[M].北京:科学出版社,1997.87-100
    149 Holt A . Understanding environmental and geographical complexities through similarity matching[J].Internationalcomplexity,2000,54:7
    150 Lekkas G P,Avouris N M,Viras L G.Case-based Reasoning in Environmental Moitoring Applications[J].Applied Artificial Intelligence An International Journal,1994,8:359-376
    151 Holt A , Benwell G L . Applying case-based reasoning techniques in GIS[J].International Journal of Geographical Information Science,1999,13(1): 9-25
    152 Yeh A G O,Shi X.Applying Case-based Reasoning to Urban Planning:A New Planning-Support System Tool[J].Environment and Planning B,1999,26(1):101-115
    153黎夏,叶嘉安,等.利用案例推理CBR方法对雷达图像进行如里利用分类[J].遥感学报,2004,8(3):246-253
    154柳少军,秦作睿,韩崇昭,等.基于案例的决策支持及实现[J].系统工程理论与实践,1996,2:10-16
    155边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.11-85
    156 Tobler W . A computer movie simulating urban growth in the detroit region[J].Economic Geography,1970,46(2):234-240
    157 Dasarathy B V . Nearest Neighbor(NN) Norms : NN Pattern Classifiction Techniques[J].Los Alamition,CA:IEEE Computer Society Press,1991,447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700