用户名: 密码: 验证码:
自动发电控制中频率偏差系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联电力系统要求控制频率和区域间联络线交换功率维持在计划值,而自动发电控制(AGC)是实现此功能的主要技术手段。AGC根据不同的控制模式实时计算区域控制偏差(ACE),并通过调节各区AGC机组的有功出力保持ACE在规定范围内,从而使频率和联络线交换功率恢复到计划值,实现系统发电与负荷在计划频率下的平衡。
     联络线频率偏差控制模式下,ACE计算公式中各区频率偏差系数的整定对控制系统稳定和频率恢复、各区AGC的动态响应特性,以及各区二次调频责任的公平分配有着重要影响。本文针对AGC中频率偏差系数的不同功能,对频率偏差系数的确定方法、设定方式以及分配原则等一些尚未得到很好解决的频率偏差系数相关问题进行了比较系统和深入的探索和研究。
     首先,基于频率偏差系数选择的基本原理,在第二章中提出了系统不同运行方式下的全天分时段频率偏差系数(B_(dp))确定方法。可将AGC调节容量充足区域的频率偏差系数定为B_(dp)+△B,以达到通过调整区域频率偏差系数来实现区域间AGC调节的相互支援。同时,结合我国电网特有的AGC分级管理模式,提出一种按频率偏差绝对值|△f|的不同等级调整网、省(市)区频率偏差系数的确定方法。
     在此基础上,基于多目标最优化技术和超短期负荷预报,在第三章中提出一种目标可控的超前频率偏差系数确定方法,以求取前述△B。该方法在频率偏差系数确定中引入控制因子,根据区域的特点和决策者的意图人为控制各运行目标的重要程度,并利用超短期负荷预报提前计算出各区的频率偏差系数,从而使系统运行满足既定的要求,实现了AGC的超前控制。
     通过理论分析和模型仿真,比较了各种电网技术条件下系统分别采用时变和固定的频率偏差系数设定方式对系统控制性能的影响。进而在第四章中提出:在现有的电网技术水平下,采用时变或固定的频率偏差系数对频率和联络线交换功率的控制效果影响很小;在各区备用容量和联络线可用传输能力充足的情况下,只要系统总频率偏差系数固定,按不同比例分配各区频率偏差系数并不影响频率质量。根据我国当前的电网技术条件及日后发展趋势,对区域频率偏差系数的设置方式给出合理化建议。
     以保证系统频率质量及公平分配区域二次调频责任为目标,通过合理整定全网和各区频率偏差系数,实现了自上而下的对各控制区安排一个更加合理和理想的二次调频特性。同时,为规范和改善区域一次调频能力,要求各区的自然频率特性系数必须达到指定的该区频率偏差系数,进而研究出一种能够实现公平分配区域一、二次调频责任的分配方式。由此频率偏差系数被赋予一个新控制功能,即按第五章提出的频率偏差系数整定方法,使区域的频率偏差系数不仅能够规范和约束区域的二次调频特性,同时可成为引导和改善区域一次调频能力达到目标要求的指挥棒。
     针对目前区域控制性能评价标准中存在的问题,第六章在区域电力市场下提出了区域调频责任偏差的概念及其交易机制。其目的是希望通过市场化模式发现区域频率控制的价值,利用价格信号促进各省区积极完成自身的频率控制责任,从而提高整个系统的频率质量和运行效率。
     由于国内外已有的电力系统仿真软件都不能很好的满足我们的研究需求,为验证本文所提理论和方法的正确性,在第七章中利用MATLAB/Simulink建立了专门针对研究互联电网短期和中长期频率调节的动态仿真系统。通过算例从理论计算与仿真结果对比的角度检验了仿真模型的正确性,利用真实数据仿真中长期频率控制动态过程验证了仿真模型的有效性和合理性。
     总之,本文对AGC中的频率偏差系数的整定进行研究,在总结借鉴国内外频率偏差系数研究成果的基础上,提出了新的频率偏差系数确定方法、频率偏差系数的新控制功能和考核功能。按照所提出的方法整定各区频率偏差系数可保证和提高系统频率质量,协调网、省调AGC动作,实现区域调频责任的公平分配。本文所做的研究可为互联电力系统更加安全、经济和优质的运行提供理论依据。
In interconnected power systems, it's required frequency and tie-line power interchanges should operate at scheduled frequency and scheduled interchanges. Automatic generation control (AGC) is the main technical means to actualize the above function. AGC calculate area control error (ACE) on different control modes, and regulate area AGC units' output power to keep ACE in the required bound. So frequency and interchanges could return to the scheduled values, and it could actualize the balance between system generation and load demand at scheduled frequency.
     In tie-line frequency bias control mode, the setting of area frequency bias coefficient in ACE formula has an important effect on controlling system frequency stability, AGC's dynamic response characteristic, and the fair distribution of area frequency support obligation. Aiming at frequency bias coefficient' different functions, some correlative problems, which have no good solution as yet, like frequency bias coefficient' ascertained method、setting mode, and distributed principle, are analyzed and studied in this paper.
     Firstly, based on the elementary principle of selecting frequency bias coefficient, under different system operation modes, it presented an all-day multi-period frequency bias coefficient setting method in Chapter 2. For actualizing power assistance between control areas, it could modify ample reserve area's frequency bias coefficient to B_(dp)+△B. Meanwhile, combining our country's AGC hierarchical control mode, it also presented another frequency bias coefficient setting method, which adjust grid area and province areas' frequency bias coefficients according to |△f| grade.
     On this basis, using multi-target optimum technology and super-short-term load forecasting (SSTLF), it presented an object-controllable and ahead frequency bias coefficient setting method to ascertain△B in Chapter 3. In the algorithm, control factors are introduced, which could control each object's importance artificially according to areas' characteristics and decision-makers' intentions. Using the results of SSTLF, it could calculate each area's frequency bias coefficient ahead to actuliaze AGC's ahead control.
     Based on the theoretical analysis and model simulation, in different system technical conditions, it compared the influence of system control performence for using variable or fixed frequency bias coefficient setting mode. Thus it presented that the influence of frequency and tie-line power interchange are small for using variable or fixed frequency bias coefficient under the existing system technical condition. And as long as sysem total frequency bias coefficient is fixed, under the condition of enough reserve capacity and available transfer capability, it doesn't impact frequency quality for distributing area's frequency bias coefficient in different proportion. On the existing system technical condition and the intending developmental tendency, some reasonable proposals for setting area's frequency bias coefficient are put forward.
     In order to guarantee frequency quality and fairly distribute area secondary frequency regulation obligation, through properly setting system's and area's frequency bias coefficients, it could arrange a more reasonably desired secondary frequency regulation characteristic to each area from above to below. Meanwhile, in order to improve area primary frequency control ability, it required each area's natural frequency characteristic coefficient must achieve the arranged this area's frequency bias coefficient. Thus it presented the fair distribution mode of area primary and secondary frequency support obligation in Chatper 5. Hence frequency bias coefficient is endued with a new function: according to the proposed frequency bias coefficient setting method, area's frequency bias coefficient not only could restrict area secondary frequency regulation characteristics, but also be a baton for leading and improving area primary frequency control ability to the required target.
     Aiming at the existing problems in control performance assessment criteria, the concept of area frequency control responsibility error and the corresponding transaction mechanism are presented in the regional layered electricity market in Chapter 6. The introduction of this transaction mechanism could inspirit area to actively accomplish its frequency regulation responsibility through market means, and improve system's frequency quality and opertiaon efficiency.
     Because the existing power system simulation software can't satisfy our research requirement, for verifying the correctness of the proposed theory and method, by using MATLAB/Simulink, a dynamic simulation system for studying short-, mid- and long-term frequency control in interconnected power systems is built in Chapter 7. By several cases, it showed the results of theory calculation and the simulation is accordant. And it verified the validity and rationality of the simulation system in mid- and long-term frequency control dynamic processes by using field data.
     In conclusion, the paper studied the setting of frequency bias coefficient in AGC. Based on summarizing and using the research achievements both at home and abroad, it presented new setting method、new control function and assessment function of frequency bias coefficient. On the proposed frequency bias coefficient setting method, it could guarantee and improve frequency quality, harmonize grid and province dispatchs' AGC action of, distribute area frequency regulation obligation fairly. The study of the paper could provide theory basis for interconnected power system operating more safely、economically and in high quality.
引文
[1]《电力系统调频与自动发电控制》编委会.电力系统调频与自动发电控制.北京:中国电力出版社,2006.
    [2]陈珩.电力系统稳态分析.北京:水利电力出版社,1995.
    [3]Jaleeli N,Louis S.Vanslyck,Donald N.Ewart,Lester H.Fink,Arthur G.Hoffman.Understanding automatic generation control.IEEE Trans.on Power Systems.1992,7(3):1106-1122.
    [4]P.Kundur.电力系统稳定与控制.北京:中国电力出版社,2002.
    [5]于尔铿,刘广一,周京阳等.能量管理系统(EMS).北京:科学出版社,2001.
    [6]刘铭刚.自动发电控制技术在电网中的应用.华北电力大学学报,2002,29(1):104-108.
    [7]N.Cohn.Recollections of the Evolution of Realtime Control Applications to Power Systems.Automatiea.1984,20(2):145-162.
    [8]洪兰秀.互联区域电网AGC模式研究与仿真:(硕士学位论文).杭州:浙江大学,2006.
    [9]江苏省电力科学研究院有限公司,张斌.自动发电控制及一次调频控制系统.北京:中国电力出版社,2005.
    [10]N.Cohn.Power flow control-basic concepts for interconnected systems,Part one-The objectives.Electric Light and Power,August,1950:82-94.
    [11]N.Cohn.Power flow control-basic concepts for interconnected systems,Part two-The solution.Electric Light and Power,September,1950:100-107.
    [12]唐跃中.AGC按联络线偏差控制时频率偏差系数的确定.电网技术,1997,21(6):5-7/13.
    [13]周全仁.自动发电控制(AGC)在我国电网中的应用(一).电力自动化设备,1996(1):60-63.
    [14]魏晖,沈善德,朱守真,罗骏.系统自然频率特性系数的实测与计算.电力系统自动化,2001,3.10:49-52.
    [15]Charles Concordia.Effect of Prime-Mover Speed Control Characteristics on Electric Power System Performance.IEEE Trans.On Power Apparatus and Systems.1969,PAS-88(5):752-756.
    [16]C.W.Taylor,'K.Y.Lee,D.P.Dave.Automatic Generation Control Analysis with Governor Deadband Effects.IEEE Trans.On Power Apparatus and Systems,1979,PAS-98(6):2030-2036.
    [17]N.Jaleeli,L.S.VanSlyck.NERC's new control performance standards.IEEE Trans.on Power Systems.1999,14(3):1092-1099.
    [18]N.Cohn.A New Method for Interconnected Systems,Part Ⅰ- The Area Regulationg Problem.Electric Light and Power,June,1953:167-173.
    [19]N.Cohn.A New Method for Interconnected Systems,Part Ⅱ-Incremental Loading.Electric Light and Power,July,1953:97-108.
    [20]N.Cohn.A New Method for Interconnected Systems,Part Ⅲ- The New Control.Electric Light and Power,August,1953:77-83.
    [21]杨冠城.电力系统自动装置原理.北京:中国电力出版社,2005.
    [22]N.Cohn.Some aspects of tie-line bias control on interconnected power systems.AIEE Trans.1957,75(2):1415-1428.
    [23]熊观佐.互联系统分析与运行.北京:水利电力出版社,1995.
    [24]L.-R.Chang-Chien,I.-C.Chu.Evaluating Customer's Regulation-control Error with Frequency-bias setting for Dynamic Regulation Service.IEE Proc-Generation.Transmission and Distribution,Vol.152,No.6.November 2005:787-794.
    [25]N.Cohn.Considerations in the Regulation of Interconnected Areas.IEEE Trans.On Power Apparatus and Systems.1967,PAS-86(12):1527-1538.
    [26]Policy 1 Generation Control and Performance.North American Electric Reliability Council,2000.
    [27]Ben Oni.Investigation of nonlinear tie line bias control of interconnected power system.IEEE.Trans.on Power Apparatus and Systems.1981,100(5):2350-2356.
    [28]Minh-Luan D.Ngo,Roger L.King,Rogelio Luck.Implications of frequency bias settings on AGC.IEEE.System Theory,Proceedings of the Twenty-Seventh Southeastem Symposium.1995:83-86.
    [29]Thomas Kennedy,Stephen M.Hoyt,Charles F.Abell.Variable,non-linear tie-line frequency bias for interconnected systems control.IEEE Trans.on Power Systems.1988,3(3):1244-1253.
    [30]Control Performance Criteria Training Document.Http://www.nerc.com,1994.1-19.
    [31]贾燕冰,高翔,余颖辉,严正.动态系数法在华东电网中的应用探讨.华东电力,2007,35(6):6-10.
    [32]Le-Ren Chang-Chien,Naeb-Boon Hoonchareon,Chee-Mun Ong,Robert A.Kramer.Estimation of βfor adaptive frequency bias setting in load frequency control.IEEE Trans.on Power Systems.2003,18(2):904-911.
    [33]Roger L.King,Minh-Luan Ngo,Rogelio Luck.Interconnected system frequency response.IEEE.System Theory,Proceedings of the Twenty-Eighth Southeastern Symposium.1996:306-310.
    [34]Louis S.VanSlyck,Nasser Jaleeli,W.Robert Kelley.Implication of frequency control bias settings interconnected system operation and inadvertent energy accounting.IEEE Trans.on Power Systems.1989,4(2):712-723.
    [35]王茂海,徐正山,谢开,吕少坤.基于WAMS的系统自然频率特性系数确定方法.电力系统自动化,2007,31(3):15-18,46.
    [36]于达仁,郭钰峰.电网一次调频能力的在线估计.中国电机工程学报,2004,24(3):72-76.
    [37]高宗和,腾贤亮,涂力群.互联电网AGC分层控制与CPS控制策略.电力系统自动化,2004.26(1):78-81.
    [38]雷晓蒙.全国互联电网的频率和功率控制及运行准则.中国电力,1996.1:32-36.
    [39]徐兴伟,林伟,金昌文.东北电网联络线和频率控制偏差系数的选择.沈阳电力高等专科学校学报,2002,4(2):22-24.
    [40]汪德星.华东电网AGC运行的若干技术问题.华东电力,1998.(05):6-8.
    [41]丁民丞,卞蓓蕾.华东电网自然频率特性系数的计算.华东电力,1998.(5):19-22.
    [42]鲁顺,金晓明,李响.东北电网静态频率特性分析.东北电力技术,2003.(12):17-19.
    [43]宋兆星,骆意,李国胜.发电机组类型对AGC运行性能的影响及对策.电网技术,2005,29(18):17-21.
    [44]Tetsuo Sasaki,Kazuhiro Enomoto.Dynamic analysis of generation control performance standards.IEEE Trans.on Power Systems.2002,7(3):806-811.
    [45]Okada.K,Shirai.G,Yokoyama.R.Load Frequency Control Incorporating Time Delay.Proceedings of the IEEE.1987,75(7):968-969.
    [46]汪德星.华东电网实行CPS标准的探讨.电力系统自动化,2000,24(8):41-44.
    [47]郭钰峰,于达仁.CPS在线计算的递推算法.中国电机工程学报,2004,24(5):73-77.
    [48]徐兴伟,林伟,王家宏.东北电网A标准AGC模式应用于CPS标准分析.电力系统自动化,2003,27(21):72-74.
    [49]Performance Standards Reference Document.Training Document Subsections.Http://www.nero.com,2002.1-19.
    [50]王晓哲,张锐,顾树生.东北电网区域联络线控制策略.电力系统自动化,2000,24(6):51-53.
    [51]徐兴伟,林伟.互联电网控制性能标准下自动发电控制策略的选择.电网技术,2003,27(10):32-34,77.
    [52]Tetsuo Sasaki,Kazuhiro Enomoto.Statistical and dynamic analysis of generation control performance standards.IEEE Trans.on Power Systems.2002,17(2):476-481.
    [53]Illian,H.F.(January 2002).Defining good and bad inadvertent.Energy Mark Inc.
    [54]唐焕文,秦学志.实用最优化方法.大连:大连理工大学出版社,2000.
    [55]胡毓达.实用多目标最优化.上海上海:科学技术出版社,1990.
    [56]高宗和,丁恰,温柏坚,姚建国.利用超短期负荷预报实现AGC的超前控制.电力系统自动化,2000,11(10):42-44.
    [57]周劼英,张伯明,郭玉金,何群,姚诸香.火电AGC机组超前控制策略.电网技术,2005,29(21):57-60.
    [58]N.Cohn.Discussion of "Non-linear tie-line frequency bias for interconnected systems control".IEEE Trans.on Power Systems.1988,3(3):1250-1251.
    [59]尚金成,张兆峰,韩刚.区域共同电力市场交易机理与交易模型的研究.电力系统自动化,2005,29(4):6-13.
    [60]傅书遢,王海宁.区域共同电力市场建设中若干问题的探讨.电力系统自动化,2005,9(21):1-4.
    [61]Robert P.Schulte.Generation Control for Deregulated Electric Power System.IEEE Power Engineering Society Summer Meeting,2000.Vol.2:707-711.
    [62]N.Bengiamin,L.Wang,H.Salehfar.Assessment of Automatic Generation Control(AGC) in a Deregulated Environment.IEEE Power Engineering Society Winter Meeting,2000,Vol 2:1331-1336.
    [63]梁吉.东北华北互联电网频率及联络线交换功率控制方案及考核原则研究:(硕士学位论文).北京:电力科学研究院,2000.
    [64]Vaibhav Donde,M.A.Pai,Ian A.Hiskens.Simulation and optimization in an AGC system after deregulation.IEEE.Trans.on Power Systems.2001,16(3):481-489.
    [65]P.Agathoklis,M.H.Hzmza.Comparision of Three Algorithms for Load Frequency Control.Electric Power Systems Research,1984(7):165-172.
    [66]Charles E.Fosha,JR.Olle I.Elgerd.The megawatt-frequency control problem:a new approach via optimal control theory.IEEE Trans.on Power Apparatus and systems.1970,89(4):563-571.
    [67]L.Hari,M.L.Kothari,J.Nanda.Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints.IEE Proceedings-C.1991,138(5):401-406.
    [68]马哈拉纳庇斯,宋文南,袁世挺.电力系统计算机辅助分析与控制.北京:水利电力出版社,1991.
    [69]M.L.Kothari,P.S.Satsangi,J.Nanda.Sampled-data automatic generation control of interconnected reheat thermal systems considering generation rate constraints.IEEE Trans.on Power Apparatus and Systems.1981,100(5):2334-2342.
    [70]N.Cohn.Discussion of"Non-linear tie-line frequency bias for interconnected systems control".IEEE Trans.on Power Systems.1988,3(3):1250-1251.
    [71]T.Hiyama.Optimization of discrete-type load-frequency regulators considering generation-rate constraints.IEE Proceedings-C.1982,192(6):285-289.
    [72]A.Kumar,O.P.Malik.Discrete analysis of load-frequency control problem.IEE Proceedings-C.1984,131(4):144.
    [73]Rerkpreedapong.D,Atic.N,Feliachi.A.Economy Oriented Model Predictive Load Frequency Control.Power Engineering.2003 Large Engineering Systems Conference on.7-9 May 2003:12-16.
    [74]Tetsuo Sasaki,Kazuhiro Enomoto.Dynamic analysis of generation control performance standards.IEEE Trans.on Power Systems.2002,7(3):806-811.
    [75]Olle I.Elgerd,Charles E.Fosha,JR.Optimum megawatt-frequency control of multiarea electric energy systems.IEEE Trans.on Power Apparatus and Systems,1970,89(4):556-563.
    [76]洪宪平.电网AGC分层控制.中国电力,2000,33(9):62-66.
    [77]Naeb-boon Hoonchareon,Chee-Mun Ong,Robert A.Kramer.Feasibility of decomposing(?)_1to identify the impact of selected loads on CPS1 and CPS2.IEEE Trans.On Power Systems,2002,17(3):752-756.
    [78]Naeb-boon Hoonchareon,Chee-Mun Ong,Robert A.Kramer.Implementation of an(?)_1Decomposition Method.IEEE Trans.On Power Systems,2002,17(3):757-761.
    [79]L.D.Douglas,T.A.Green,P.E,R.A.Kramer.New Approaches to the AGC Non-conforming Load Problem.IEEE Trans.On Power Systems,1994,1(2):619-628.
    [80]Gross G,J W Lee.Analysis of load frequency control performance assessment criteria.IEEE Trans.on Power Systems.2001,PWRS-16(3):520-525.
    [81]高志华,任震,黄雯莹.电力市场中调峰权及其交易机制.中国电机工程学报,2005,25(5):88-92.
    [82]Nasser Jaleeli,Louis S.VanSlyck.Tie-line bias prioritized energy control.IEEE Trans.On Power Systems,1995,10(1):51-57.
    [83]王洋.防止投机调节的CPS指标加权研究:(硕士学位论文).大连:大连理工大学,2007.
    [84]《华东电网省(市)际联络线功率电量管理和考核办法》.国家电力公司华东公司,2002,11.12.
    [85]Blohm,R.(April 10,2002).Economist's Assessment.Report submitted to the Joint Inadvertent Interchange Taskforce of the North American Electric Reliability Council.
    [86]周纪芗.回归分析.上海:华东师范大学出版社,1993.
    [87]Blohm,R.(August,2004).Solving the crisis in unscheduled power.Public Utilities Fortnightly:62-67.Http://www.fortnightly.com.
    [88]牟才荣.区域电力市场竞价模式的探讨.广西电业,2005,8(65):32-34.
    [89]Jayant Kumar,Kah-Hoe Ng,Gerald Sheble.AGC simulatior for price-based operation Part Ⅰ:A model.IEEE Trans.On Power Systems,1997,12(2):527-532.
    [90]Jayant Kumar,Kah-Hoe Ng,Gerald Sheble.AGC simulatior for price-based operation Part Ⅱ:Case Study Results.IEEE Trans.On Power Systems,1997,12(2):533-538.
    [91]M.M.Salama.Dynamic Model for Thermal Generation during Change of Load.Energy Conversion & Management.2000(41):299-309.
    [92]T.Michigami,T.Ishii.Construction of fluctuation load model and dynamic simulation with LFC control of DC power system and frequency converter interconnection.Transmission and Distribution Conference and Exhibition 2002:Asia Pacific.IEEE/PES.Volume 1,6-10 Oct.2002:382-387.
    [93]Miniesy.S.M,Bohn.E.V.Optimum Load-Frenquency Continuous Control with Unknown Deterministic Power Demand.IEEE Trans.On Power Apparatus and Systems.1972,PAS-91(5):1910-1915.
    [94]李正,敬东,赵强,颜泉.CPS/DCS标准在大区互联电网AGC控制策略中的应用.电力系统及其自动化学报,2003,15(2):27-32(48).
    [95]D.C.H.Prowse,P.Eng.Improvements to a Standard Automatic Generation Control Filter Algorithm.IEEE Trans.On Power Systems,1993,8(3):1204-1210.
    [96]Alan R.Oneal.A simple method for improving control area performance:area control error(ACE)diversity interchange.IEEE Trans.on Power Systems,1995,10(2):1071-1076.
    [97]Divya.K.C,Nagendra Rao.P.S.A Novel AGC Simulation Scheme Based on Reduced Order Prime Mover Models.Confernce on Converqent Technologies for Asia-Pacific Region,2003,Vol.3:1099-1103.
    [98]Athay.T.M.Generation Scheduling and Control.Proceedings of the IEEE,1987,75(12):1592-1606.
    [99]吴集光.电力市场环境下AGC和备用辅助服务研究:(博士学位论文).成都:四川大学,2005.
    [100]Maojun"Mike"Yao,Raymond R.Shoults,Randy Kelm.AGC Logic Based on NERC's New Control Performance Standard and Disturbance Control Standard.IEEE Trans.On Power Systems,2000,15(2):852-857.
    [101]魏守平,伍永刚,林静怀.水轮机调速器与电网负荷频率控制(三)区域电网交换功率控制仿真研究.水电自动化与大坝监测,2006,30(2):13-19.
    [102]李明,林静怀,张永树,魏守平,胡斌奇.基于MATLAB/SIMULINK的互联电网负荷频率控制建模仿真研究.西北电力技术,2005,2:1-4,39.
    [103]魏守平,伍永刚,林静怀.水轮机调速器与电网负荷频率控制(一)水轮机控制系统的建模及仿真.水电自动化与大坝监测,2006,29(6):18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700