用户名: 密码: 验证码:
小峰熊蜂的乙酰胆碱酯酶时空表达特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熊蜂是濒危、高寒植物和设施农业的主要授粉昆虫,农药的施用被认为是全世界熊蜂数量和种类下降的主要原因之一。以乙酰胆碱酯酶(acetylcholinesterase, AChE)为靶标的有机磷和氨基甲酸酯类杀虫剂是我国目前应用最广泛的杀虫剂。为了合理保护和利用熊蜂,本文以我国分布最广泛、最具有商业发展前景的小峰熊蜂为研究对象,利用酶活测定法和荧光定量PCR法研究了小峰熊蜂AChE的时空表达特性。另外,通过AChE离体抑制法和生物测定法测定了有机磷和氨基甲酸酯类杀虫剂对小峰熊蜂AChE的抑制作用和毒力。全文主要结果如下:
     1、利用正交试验方法优化得到了小峰熊蜂AChE最佳测定条件。结果表明:酶浓度0.25g蛋白质/L,底物浓度0.8mmol/L,pH值7.5,温度40℃,反应时间5min为小峰熊蜂AChE的最佳测定条件。这5个因素对小峰熊蜂头部AChE活性的测定均有极显著的影响(P≤0.01),影响大小依次为酶浓度、pH、温度、底物浓度和反应时间。
     2、对小峰熊蜂AChE活性分布的研究及ace2基因相对表达量的分析明确了小峰熊蜂AChE的空间表达特性。组织分布结果表明,小峰熊蜂头部AChE活性(63.55%)显著高于胸部(18.44%)和腹部(18.01%)(P≤0.05)。进一步对头部AChE亚细胞分布结果表明,AChE活性主要分布在线粒体层,其他依次为微粒体层、胞质溶液以及细胞核和细胞碎片层。另外,对克隆得到的ace2片段(GenBank登录号: JQ359006)不同组织的相对表达量分析结果表明,头部ace2基因的相对表达量最高,胸部是头部的52%,腹部是头部的14%。以上研究结果表明,小峰熊蜂AChE主要分布于神经系统发达的头部,在亚细胞上主要存在于有膜的细胞器上。
     对不同发育期小峰熊蜂AChE活性的测定及ace2基因的时间表达特性分析表明,小峰熊蜂幼虫期和蛹期AChE活性较低,出房后的工蜂头部AChE活性开始升高,5日龄,20日龄和30日龄AChE活性相对较高。进一步对ace2mRNA表达分析表明,幼虫期和蛹期ace2的表达量相对较低,表达量高峰出现在20日龄,其次是10日龄、5日龄和25日龄。据此可知,小峰熊蜂工蜂幼虫和蛹AChE活性及表达量均显著低于成年工蜂,而成年蜂之间无显著性差异,表明采集蜂和哺育蜂表达无显著性差异(P≥0.05)。
     3、AChE离体抑制作用表明,辛硫磷、三唑磷、残杀威和丙溴磷对小峰熊蜂头部AChE离体抑制中浓度(IC_(50))依次增加,抑制作用依次减弱。另外,生物测定结果表明此4种药剂对小峰熊蜂致死中浓度(LC_(50))依次增加,毒力依次减弱,经此4种药剂亚致死剂量处理后的小峰熊蜂头部AChE活性均下降。说明有机磷和氨基甲酸酯类杀虫剂对小峰熊蜂AChE具有明显的剂量-效应关系,杀虫剂LC_(50)和IC_(50)变化趋势一致。
Bumblebee is one of the most crucial pollinators for the endangered, alpine plants and greenhousecrops. Bombus hypocrita (Hymenoptera: Apidae) is one of the dominant bumblebees in China, and iswidely used as one of the most crucial pollinators in greenhouse due to easy mass-rearing, strongpopulation and effective pollinating performance. However, the application of insecticides wasconsidered as one of the most reseaons for declining of the bumblebees. Organophosphate andcarbamate insecticides are the most widely used pesticides, which taget in acetylcholinesterase (AChE).In order to properly protect and utilize bumblebee, we studied AChE in Bombus hypocrita. We usedenzyme activity determination and real time PCR to indentify the spatial and temporal expressioncharacteristics of AChE in B. hypocrita. In addition, the inhibition and toxicities of severalorganophosphate and carbamate insecticides on B. hypocrita were conducted by in vitro inhibiton assaysand bioassays.
     The results are as follows:
     (1) Optimization of conditions for assaying activity of AChE in B. hypocrita. The results showed thatenzyme concentration0.25g protein/L, substrate concentration0.8mmol/L, pH7.5, reactiontemperature40℃, and reaction time5min were the optimal conditions. The five factors allextremely significantly impact the assaying of AChE in the head of B. hypocrita. The effect sizeswith the order are enzyme concentration, pH, temperature, substrate concentration and reactiontime.
     (2) The distribution of AChE activity and ace2gene mRNA relative expression were conducted for thespatial expression characteristics. The tissue distribution results showed that the head AChEactivity (63.55%) was significantly higher than the thorax (18.44%) and abdomen (18.01%).Further study presented that the AChE in the head subcellular distribution of AChE activity wasmainly located in the mitochondrial layer, followed by the microsomal layer, and the solution ofcytoplasm and nucleus and cell debris layer. In addition, the results of the ace2(GenBankaccession: JQ359006) relative expression for the different tissues showed that the head ace2relative expression level was the highest. The thorax ace2expression was52%of the head,abdomen14%of the head. These results suggest that AChE is mainly distributed in the nervoussystem developed in the head of B. hypocrita, expecially in the subcellular membrane organelles.
     The specific activity of AChE and ace2gene relative expression of different developmentalstages showed the temporal characteristics. The results showed during the developmental stages,AChE activity for larvae was the lowest and began to increase after emergence. During thedevelopmental stages, AChE activity for5thday,20thday and30thday were higher than others. Onthe other hand, AChE mRNA was detected lowly in the larvae and pupae stage of the workers byreal-time PCR method. The highest expression level was in the20thday old adult workers,following by the10th,5th, and25th. We make conclusion that the adult stage had the highest AChE specific activity and the highest ace2mRNA expression during the development of B. hypocrita,but no significant difference was found among the different ages of adults from0thday ofemergence to the30thday, which means that no significance were found between the foragers andnurses of B. hypocrita.
     (3) In vitro inhibition assays showed that the inhibition concentration (IC_(50)) of phoxim, triazophos,propoxur and profenofos in turn weakened and the inhibiton were enhanced. In addition, bioassaysshowed that the lethal concentration (LC_(50)) of these four insecticides was enhanced and thetoxicities were weakened. After exposure to the sublethal dose of the four insecticides, the AChEactivities of the heads in B. hypocrita decreased compared to the control groups. We makeconclusion that organophosphate and carbamate insecticides on B. hypocrita have a significantdose-response relationship, and the trends of LC_(50)and IC_(50)are similar.
引文
1.安建东,吴杰,彭文君,童越敏,国占宝,李继莲.明亮熊蜂和意大利蜜蜂在温室桃园的访花行为和传粉生态学比较.应用生态学报,2007,18(5):1071-1076.
    2.陈惠娟.家蚕两种乙酰胆碱酯酶基因的表达谱分析.[硕士学位论文].南京:南京农业大学,硕士学位论文,2009.
    3.陈文锋,安建东,董捷,丁克法,高山.不同蜂在温室草莓园的访花行为和传粉生态学比较.生态学杂志,2011,30(2):290-296.
    4.刁青云.东方蜜蜂和西方蜜蜂的毒理学特性比较研究.[博士学位论文].北京:中国农业大学,
    2006.
    5.豆威,刘国瑛,肖丽莎,王进军.5种抑制剂对赤拟谷盗AChE的离体作用比较.粮食储藏,2010,39(2):3-6.
    6.高光澜,陈文龙.烟蚜羧酸酯酶和乙酰胆碱酯酶的体躯分布特征.贵州农业科学,2010,38(3):83-86.
    7.高希武. Gorun等改进的Ellman胆碱酯酶活性测定方法介绍.昆虫知识,1987,24(4):245-246.
    8.高希武,周序国,王荣京,郑炳宗.棉铃虫乙酰胆碱酯酶(AChE)的体躯分布及部分纯化.昆虫学报,1998(S1).
    9.龚忱,王智.温度对拟环纹豹蛛乙酰胆碱酯酶体躯分布的影响.湖南农业科学,2011,(1):71-74.
    10.国家环保局.化学农药环境安全评价试验准则.农药科学与管理,1990(4):4-9.
    11.何亚平,刘建全.青藏高原高山植物麻花艽的传粉生态学研究.生态学报,2004,24(2):215-220.
    12.何玉仙,王长方,陈锋,杨秀娟,翁启勇.杀虫剂处理对甜菜夜蛾幼虫体内酶活性的影响.江西农业大学学报,2003,25(6):896-899.
    13.黄诚华,方琦,叶恭银,姚洪渭,郭建洋,程家安.二化螟幼虫抗药性相关酶系的组织及亚细胞分布特征.广西农业科学,2009(2):153-158.
    14.贾玉玲,彭惠民,彭方毅,蔡强,何苗,施汉昌.鲫鱼脑AChE制备及对几种有机磷农药敏感性研究.环境科学与技术,2010,33(6):23-27.
    15.康敬涛,高希武.豆蚜对杀虫剂的敏感性及药剂对豆蚜羧酸酯酶和乙酰胆碱酯酶抑制作用的研究.中国植保导刊,2009,29(9):5-7.
    16.李继莲,彭文君,吴杰,安建东,国占宝,童越敏,黄家兴.明亮熊蜂和意大利蜜蜂为温室草莓的授粉行为比较观察.昆虫学报,2006,49(2):342-348.
    17.李继莲,彭文君,吴杰,彩万志.小峰熊蜂工蜂蛹期发育蛋白质组分析.基因组学和应用生物学,2010,29(2):279-287.
    18.李士根,公茂庆,王新国,赵玉强,刘永春,王凤刚,王怀位,孙传红,甄天民.不同品系淡色库蚊各发育阶段的非特异性酯酶和乙酰胆碱酯酶活力变化.地方病通报,2002,17(4):15-18.
    19.李滕武,沈福英,高希武.不同种群小菜蛾乙酰胆碱酯酶性质研究.河北北方学院学报(自然科学版),2005,21(1):32-35.
    20.刘波,高希武,郑炳宗.抗胆碱酯酶剂亚致死剂量对棉铃虫毒力的影响及对乙酰胆碱酯酶的诱导作用.昆虫学报,2003,46(6):691-696.
    21.刘春艳,夏朝晖.害虫的抗药性机制.农药,2004,43(4):149-152.
    22.刘高云,余蔚,吕勇,邓灵福,李文新.钉螺乙酰胆碱酯酶的动力学特性及对氯硝柳胺的敏感性.农药,2009,48(8):564-567.
    23.刘国瑛,柴玉鑫,魏丹丹,王进军.赤拟谷盗乙酰胆碱酯酶生化及毒理学特性研究.中国农学通报,2006,22(12):303-306.
    24.刘洪霞,史雪岩,高希武.摇蚊乙酰胆碱酯酶最佳反应体系的建立及有机磷类药剂敏感度比较.安全与环境学报,2005,5(5):67-70.
    25.罗术东,安建东,陈军,彭文君,吴杰,杨文寿.4种菊酯类杀虫剂对小峰熊蜂的经口毒性测定.农药,2009,48(12):909-911.
    26.罗术东,安建东,彭文群,李继莲,吴杰.小峰熊蜂工蜂触角感器的扫描电镜观察.应用昆虫学报,2011,48(2):397-403.
    27.马敏,张宾,葛衍珍,李生才.星豹蛛头胸部乙酰胆碱酯酶最佳反应体系及其药剂敏感度.安全与环境学报,2010,10(3):1-4.
    28.蒙艳华,徐环李,陈轩,蔡青年.塔落岩黄芪主要传粉蜂的传粉效率研究.生物多样性,2007,15(6):633-638.
    29.苗建忠,马伏宁,曾鑫年.红火蚁对辛硫磷敏感性及其乙酰胆碱酯酶活性的研究.中国农学通报,2009,25(19):200-202.
    30.彭梅,邓新平.甜菜夜蛾不同龄期幼虫药剂敏感性及酶活性差异.西南农业大学学报(自然科学版),2005,17(2):173-183.
    31.彭文君,黄家兴,吴杰,安建东.华北地区六种熊蜂的地理分布及生态习性.昆虫知识,2009,46(1):115-120.
    32.彭宇,王荫长,韩召军,陈长琨,李国清.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,2002,45(2):209-214.
    33.钱坤,高希武,曾晓芃.德国小蠊乙酰胆碱酯酶活性的体躯分布和亚细胞分布.中国媒介生物学及控制杂志,2010,21(4):312-314.
    34.汤方,杨海江,高希武,严敖金.黑翅土白蚁乙酰胆碱酯酶最佳反应体系的建立及药剂敏感度比较.昆虫学报,2008,51(7):714-719.
    35.王冬生,於文俊,袁永达,赵京音.熊蜂对番茄常用农药的敏感性.上海农业学报,19(4):67-69.
    36.王莹.四种农药对枸杞木虱及其乙酰胆碱酯酶活性的影响.[硕士学位论文].内蒙古:内蒙古农业大学,2008.
    37.王智,付秀芹,宋大祥,颜亨梅.不同防治田内不同发育期拟环纹豹蛛乙酰胆碱酯酶及羧酸酯酶的活性比较.农药学学报,2006,8(2):180-183.
    38.吴刚,赵士熙,尤民生,江树人.小菜蛾及菜蛾绒茧蜂乙酰胆碱酯酶敏感性的相关变化.昆虫学报,2002,45(5):623-628.
    39.吴杰,安建东,姚建,黄家兴,冯学全.河北省熊蜂属区系调查(膜翅目,蜜蜂科).动物分类学报,2009,34(1):87-97.
    40.吴杰,邵有全,安建东,黄家兴.华北地区小峰熊蜂的分布及其生态特性.中国蜂业,2007,58(12):5-8.
    41.吴杰.小峰熊蜂的生物学及传粉生态学研究.[博士学位论文].浙江:浙江大学,2009.
    42.伍一军,冷欣夫.杀虫药剂的神经毒理学研究进展.昆虫学报,2003,46(3):382-389.
    43.邢艳红,彭文君,安建东.不同蜂授粉对设施番茄产量和品质的影响.中国养蜂,2005,56(7):8-10.
    44.徐恩斌,张忠兵,谢渭芬.乙酰胆碱酯酶的研究进展.国外医学(生理、病理科学与临床分册),2003,23(1):73-75.
    45.宣涛,杨美玲,张建珍,刘晓健,龙文敏,郭亚平,马恩波.东亚飞蝗不同龄期解毒酶和靶标酶活性研究.山西大学学报,2009,32(2):280-284.
    46.姚洪渭,蒋彩英,叶恭银,程家安.白背飞虱羧酸酯酶与乙酰胆碱酯酶的体躯与亚细胞分布特征.浙江大学学报(农业与生命科学版),2001,27(1):5-10.
    47.叶榕村.黄粉虫体内乙酰胆碱酯酶(AChE)的分布和纯化方法.福建教育学院学报,2010,11(2):115-116.
    48.于蓉,贾永华,崔静英,王学梅,郭守金,冯志红.设施农业生产常用农药对熊蜂的毒性.西北农业学报,2008,17(6):222-224.
    49.翟启慧.昆虫分子生物学的一些进展:杀虫剂抗性的分子基础.昆虫学报,1995,38(4):493-501.
    50.张千,王取南.乙酰胆碱酯酶生物功能的研究进展及其应用.国外医学(卫生学分册),2008,35(3):143-147.
    51.张莹,黄建,高希武.正交试验法确定测定意大利蜜蜂头部乙酰胆碱酯酶反应的最佳条件.昆虫学报,2005,48(4):627-632.
    52.张莹.中华蜜蜂与意大利蜜蜂乙酰胆碱酯酶生物化学性质比较.[博士学位论文].福建:福建农业大学,2005.
    53.张元建,王真,竹傲,朱福兴.溴氰菊酯和辛硫磷亚致死剂量对甜菜夜蛾酶活性的影响.天津农业科学,2009,15(5):37-40.
    54.朱坤炎,张建珍.昆虫乙酰胆碱酯酶及其在抗药性中的作用.见:刘同先,康乐,编.昆虫学研究进展与展望.北京:科学出版社,2005,227-234.
    55.竹傲,游红,王晓燕,朱福兴.不同龄期和性别德国小蠊羧酸酯酶、谷胱甘肽S-转移酶、乙酰胆碱酯酶活性研究.中国媒介生物学及控制杂志,2009,20(5):423-426.
    56. Al-Hakkak Z.S., Al-Azzawi M.J., Al-Adhamy B.W., Khalil S.A. Inhibitory action of phosphine onacetylcholinesterase of Ephestia cautella (Lepidoptera: Pyralidae). Journal of Stored ProductsResearch,1989,25(3):171-174.
    57. Alout H., Berthomieu A., Hadjivassilis A., Weill M. A new amino-acid substitution inacetylcholinesterase1confers insecticide resistance to Culex pipiens mosquitoes from Cyprus.Insect Biochemistry and Molecular Biology,2007,37(1):41-47.
    58. Alout H., Weill M. Amino-acid substitutions in acetylcholinesterase1involved in insecticideresistance in mosquitoes. Chemico-Biological Interactions,2008,175(1-3):138-141.
    59. Arme C. Histochemical and biochemical studies on some enzymes of Ligula intestinalis (Cestoda:Pseudophyllidea). The Journal of Parasitology,1966,52(1):63-68.
    60. Arpagaus M., Toutant J.P. Polymorphism of acetylcholinesterase in adult Pieris brassicae heads.Evidence for detergent-insensitive and triton X-100-interacting forms. NeurochemistryInternational,1985,7(5):793-804.
    61. Baek J.H., Kim J.I., Lee D.W., Chung B.K., Miyata T., Lee S.H. Identification and characterizationof ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutellaxylostella. Pesticide Biochemistry and Physiology,2005,81(3):164-175.
    62. Belzunces L.P., Lenoir-Rousseaux J.J., Bounias M. Properties of acetylcholinesterase from Apismellifera heads. Insect Biochemistry,1988,18(8):811-819.
    63. Belzunces L.P., Colin M.E. Differential responses of Apis mellifera acetylcholinesterase towardspirimicarb. Neuroreport,1991,2(5):265-268.
    64. Besard L., Mommaerts V., Vandeven J., Cuvelier X., Sterk G., Smagghe G. Compatibility oftraditional and novel acaricides with bumblebees (Bombus terrestris): a first laboratory assessmentof toxicity and sublethal effects. Pest Management Science,2010,66(7):786-793.
    65. Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemüller R., Edwards M., Peeters T., Schaffers A.P.,Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. Parallel declines in pollinators andinsect-pollinated plants in Britain and the Netherlands. Science,2006,313(5785):351-354.
    66. Booth G.M., Lee A.H. Distribution of cholinesterases in insects. Bull World Health Organ,1971,44(1-2-3):91-98.
    67. Booth G.M., Stratton C.L., Larson J.R. Isoxymes: Developmental Biology. in: Markert C.L. eds.Localization and substrate inhibitor specificity of insect esterase isozymess. New York: AcademicPress,1975,721-738.
    68. Bourguet D., Raymond M., Fournier D., Malcolm C.A., Toutant J.P., Arpagaus M. Existence oftwo acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae). Journal ofNeurochemistry,1996,67(5):2115-2123.
    69. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254.
    70. Brittain C.A., Vighi M., Bommarco R., Settele J., Potts S.G. Impacts of a pesticide on pollinatorspecies richness at different spatial scales. Basic and Applied Ecology,2010,11(2):106-115.
    71. Bull D.L., Lindquist D.A. Cholinesterase in boll weevils, Anthonomus grandisBoheman-Distribution and some properties of the crude enzyme. Comparative Biochemistry andPhysiology,1968,25(2):639-649.
    72. Cameron S.A., Hines H.M., Williams P.H. A comprehensive phylogeny of the bumble bees(Bombus). Biological Journal of the Linnean Society,2007,91(1):161-188.
    73. Chadwick L.E. Actions on insects and other invertebrates, in: Koslle G.B. eds. Cholinesterases andanticholinesterase agents. Berlin, Springer-Verlag,1963,741-765.
    74. Chen X.L., Wang S.F. A study on phylogenetic relationships among the subgenera of bumble bees.Entomologia Sinica,1997,4(4):324-336.
    75. Chen M.H., Han Z.J., Qiao X.F., Qu M.J. Mutations in acetylcholinesterase genes ofRhopalosiphum padi resistant to organophosphate and carbamate insecticides. Genome,2007,50(2):172-179.
    76. Colla S.R., Packer L. Evidence for decline in eastern North American bumblebees (Hymenoptera:Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation,2008,17(6):1379-1391.
    77. Combes D., Fedon Y., Grauso M., Toutant J.P., Arpagaus M. Four genes encodeacetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.cDNA sequences, genomic structures, mutations and in vivo expression. Journal of MolecularBiology,2000,300(4):727-742.
    78. Cousin X., Str hle U., Chatonnet A. Are there noncatalytic functions of acetylcholinesterases?Lessons from mutant animal models. BioEssays,2005,27(2):189-200.
    79. Cui F., Raymond M., Berthomieu A., Alout H., Weill M., Qiao C.L. Recent emergence ofinsensitive acetylcholinesterase in Chinese populations of the mosquito Culex pipiens (Diptera:Culicidae). Journal of Medical Entomology,2006,43(5):878-883.
    80. Czubaj A. Ultrastructural distribution of AChE in Catenula leptocephala (Nuttycombe,1956).Histochemistry and Cell Biology,1979,61(2):189-198.
    81. Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine. TheJournal of Pharmacology and Experimental Therapeuties,1914,6:147-190.
    82. Duffy K.J., Stout J.C. The effects of plant density and nectar reward on bee visitation to theendangered orchid Spiranthes romanzoffiana. Acta Oecologica,2008,34(2):131-138.
    83. Eldefrawi A.T. Acetylcholinesterases and anticholinesterases. In: Kerkut G.A. and Gilbert L.I. eds.Comprehensive Insect Physiology, Biochemistry and Pharmacology. New York. Pergamon Press.1985,12:115-130.
    84. Fournier D., Bride J.M., Hoflman F., Karch F. Acetylcholinesterase. Two types of modificationsconfer resistance to insecticide. The Journal of Biological Chemistry,1992,267(20):14270-14274.
    85. Gao J.R., Zhu K.Y. Comparative toxicity of selected organophosphate insecticides against resistantand susceptible clones of the greenbug, Schizaphis graminum (Homoptera: Aphididae). Journal ofAgricultural and Food Chemistry,2000,48(10):4717-4722.
    86. Gao J.R., Zhu K.Y. Increased expression of an acetylcholinesterase gene may conferorganophosphosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae).Pesticide Biochemistry and Physiology,2002,73(3):164-173.
    87. Gao X.W., Zheng B.Z., Zhang F., Sun T., Zhong H.M., Li H.T. Substrate specificity anddevelopmental changes of acetylcholinesterase in cotton bollworm. Insect Science,1996,3(1):80-89.
    88. Garavini C., Poli A. Dimensions, osmotic fragility, acid hemolysis acetylcholinesterase activity oferythrocytes in some vertebrates. Biochemistry and Experimental Biology,1976,12:447-453.
    89. Golicnik M., Fournier D., Stojan J. Interaction of Drosophila acetylcholinesterase withD-tubocurarine: An explanation of the activation by an inhibitor. Biochemistry,2001,40(5):1214-1219.
    90. Gradish A.E., Scott-Dupree C.D., Shipp L., Harris C.R., Ferguson G. Effect of reduced riskpesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera:Apidae). Pest Management Science,2010,66(2):142-146.
    91. Grzelak K., Lassota Z., Wroniszewska A. The activity of acetylcholinesterase during developmentof the moth, Celerio euphorbiae. Journal of Insect Physiology,1970,16(7):1405-1411,1413-1417.
    92. Hall J.C., Kankel D.R. Genetics of acetylcholinensterase in Drosophila melanogaster. Genetics,1976,83:517-535.
    93. Hall L.M., Spierer P. The ace locus of Drosophila melanogaster: structural gene foracetylcholinesterase with an unusual5′leader. The EMBO Journal,1986,5(11):2949-2954.
    94. Hingston A.B. Is the exotic bumblebee Bombus terrestris really invading Tasmanian nativevegetation? Journal of Insect Conservation,2006,10(3):289-293.
    95. Huchard E., Martinez M., Alout H., Douzery E.J.P., Lutfalla G., Berthomieu A., Berticat C.,Raymond M., Weill M. Acetylcholinesterase genes within the Diptera: takeover and loss in trueflies. Proceedings Biological sciences/The Royal Society,2006,273(1601):2595-2604.
    96. Hussein A.S., Chacón M.R., Smith A.M., Tosado-Acevedo R., Selkirk M.E. Cloning, expression,and properties of a nonneuronal secreted acetylcholinesterase from the parasitic nematodeNippostrongylus brasiliensis. The Journal of Biological Chemistry,1999,274:9312-9319.
    97. Ings T.C., Schikora J., Chittka L. Bumblebees, humble pollinators or assiduous invaders? Apopulation comparison of foraging performance in Bombus terrestris. Oecologia,2005,144(3):508-516.
    98. Inoue M.N., Yokoyama J., Washitani I. Displacement of Japanese native bumblebees by therecently introduced Bombus terrestris (L.)(Hymenoptera: Apidae). Journal of Insect Conservation,2008,12(2):135-146.
    99. Kim J.I., Jung C.S., Koh Y.H., Lee S.H. Molecular, biochemical and histochemical characterizationof two acetylcholinesterase cDNAs from the German cockroach Blattella germanica. InsectMolecular Biology,2006,15(4):513-522.
    100. Koellner G., Kryger G., Millard C.B., Silman I., Sussman J.L., Steiner T. Active-site gorge andburied water molecules in crystal structures of acetylcholinesterase from Torpedo californica.Journal of Molecular Biology,2000,296(2):713-735.
    101. Kono Y., Tomita T. Amino acid substitutions conferring insecticide insensitivity in Ace-paralogousacetylcholinesterase. Pesticide Biochemistry and Physiology,2006,85(3),123-132.
    102. Kral K., Schneider L. Fine structural localisation of acetylcholinesterase activity in the compoundeye of the honeybee (Apis mellifera L.). Cell and Tissue Research,1981,221(2):351-359.
    103. Kumar M., Gupta G.P., Rajam M.V. Silencing of acetylcholinesterase gene of Helicoverpaarmigera by siRNA affects larval growth and its life cycle. Journal of Insect Physiology,2009,55(3):273-278.
    104. Lee A.H., Metcalf R.L., Booth G.M. House cricket acetylcholinesterase: histochemical localizationand in situ inhibition by O, O-dimethyl S-Aryl phosphorothioates. Annals of the EntomologicalSociety of America,1973,66(2):333-343.
    105. Lee D.W., Choi J.Y., Kim W.T., Je Y.H., Song J.T., Chung B.K., Boo K.S., Koh Y.H. Mutations ofacetylcholinesterase1contribute to prothiofos-resistance in Plutella xylostella (L.). Biochemicaland Biophysical Research Communications,2007,353(3):591-597.
    106. Lee D.W., Kim S.S., Shin S.W., Kim W.T., Boo K.S. Molecular characterization of twoacetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenée),Biochimica et Biophysica Acta (BBA)-General Subjects,2006,1760(2):125-133.
    107. Lenoir-Rousseaux J.J., Gautron J. Activity, localization and molecular form of acetylcholinesterasein the male accessory glands of metamorphosing Tenebrio molitor L.. Insect Biochemistry,1987,17(5):739-750.
    108. Li J.L., Huang J.X., Cai W.Z., Zhao Z.W., Peng W.J., Wu J. The vitellogenin of the bumblebee,Bombus hypocrita: studies on structural analysis of the cDNA and expression of the mRNA.Journal of comparative physiology B: Biochemical, systemic, and environmental physiology,2010,180(2):161-170.
    109. Loewi O., Navratil E. über humorale übertragbarkeit der Herznervenwirkung. Pflügers Arch,1926,214:689-696.
    110. McLaren D.J. Ultrastructural and cytochemical studies on the sensory organelles and nervoussystem of Dipetalonema viteae (Nematoda: Filariodea). Parasitology,1972,65:507-524.
    111. Mizuno H., Oh S., Komagata O., Kasai S., Honda H., Kono Y., Tomita T. Differential tissuedistribution of two acetylcholinesterase transcripts in the German cockroach, Blattella germanica.Applied Entomology and Zoology,2007,42(4):643-650.
    112. Morandin L.A., Winston M.L. Effects of novel pesticides on bumble bee (Hymenoptera: Apidae)colony health and foraging ability. Environmental Entomology,2003,32(3):555-563.
    113. Morandin L.A., Winston M.L., Franklin M.T., Abbott V.A. Lethal and sub-lethal effects ofspinosad on bumble bees (Bombus impatiens Cresson). Pest Management Science,2005,61(7):619-626.
    114. Mutero A., Pralavorio M., Bride J.M., Fournier D. Resistance-associated point mutations ininsecticide-insensitive acetylcholinesterase. PNAS,1994,91(13):5922-5926.
    115. Nabeshima T., Kozaki T., Tomita T., Kono Y. An amino acid substitution on the secondacetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae.Biochemical and Biophysical Research Communications,2003,307(1):15-22.
    116. Ott P., Jenny B., Brodbeck U. Multiple molecular forms of purified human erythrocyteacetylcholinesterase. European Journal of Biochemistry,1975,57(2):469-480.
    117. Paraoanu L.E., Layer P.G. Acetylcholinesterase in cell adhesion, neurite growth and networkformation. FEBS Journal,2008,275(4):618-624.
    118. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. NucleicAcids Research,2001,29(9): e45.
    119. Pichon Y. The pharmacology in the insect nervous system. In Rockstein M. eds. The Physiology ofInsecta2ndedtied. New York: Academic Press,1974,4:101-174.
    120. Reutter K. Die Erregungsiibertragung bei Lineus sanguineus Rathke (Nemertini). Cell and TissueResearch,1972,123(4):508-519.
    121. Revuelta L., Piulachs M.D., Bellés X., Casta era P., Ortego F., Díaz-Ruíz J.R., Hernández-CrespoP., Tenllado F. RNAi of ace1and ace2in Blattella germanica reveals their differential contributionto acetylcholinesterase activity and sensitivity to insecticides. Insect Biochemistry and MolecularBiology,2009,39(12):913-919.
    122. Russell R.J., Claudianos C., Campbell P.M., Horne I., Sutherland T.D., Oakeshott J.G. Two majorclasses of target site insensitivity mutations confer resistance to organophosphate and carbamateinsecticides. Pesticide Biochemistry Physio1ogy,2004,79(3):84-93.
    123. Ruz L., Herrera R. Preliminary observations on forging activities of Bombus dahlbomii andBombus terrestris (Hym: Apidae) on native and non native vegetation in Chile. Acta Horticulturae,2001,561:235-240.
    124. Schuntner C.A., Roulston W.J. A resistance mechanism in organophosphorus-resistant strains ofsheep blowfly (Lucilia cuprina). Australian Journal of Biological Sciences,1968,21(1):173-176.
    125. Shapira M., Thompson C.K., Soreq H., Robinson G.E. Changes in neuronal acetylcholinesterasegene expression and division of labor in honey bee colonies. Journal of Molecular Neuroscience,2001,17(1):1-12.
    126. Smissaert H.R. Cholinesterase inhibition in spider mites susceptible and resistant toorganophosphate. Science,1964,143(3602):129-131.
    127. Soreq H., Seidman S. Acetylcholinesterase-new roles for an old actor. Neuroscience,2001,2(4):294-302.
    128. Stedman E., Stedman E., Easson L.H. Choline-esterase. An enzyme present in the blood-serum ofthe horse. The Biochemical Journal,1932,26(6):2056-2066.
    129. Stokstad E. Field research on bee raises concern about low-dose pesticides. Science,2012,335(6076):1555.
    130. Sun H.Q., Luo Y.B., Ge S. A preliminary study on pollination biology of an endangered orchid,Changnienia amoena, in Shennongjia. Acta Botanica Sinica,2003,45(9):1019-1023.
    131. Torretta J.P., Medan D., Abrahamovich A.H. First record of the invasive bumblebee Bombusterrestris (L.)(Hymenoptera, Apidae) in Argentina. Transactions of the American EntomologicalSociety,2006,132(3,4):285-289.
    132. Toutant J.P. Insect acetylcholinesterase: catalytic properties, tissue distribution and molecularforms. Progress in Neurobiology,1989,32(5):423-446.
    133. Weill M., Fort P., Berthomieu A., Dubois M.P., Pasteur N., Raymond M. A novelacetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous tothe ace gene in Drosophila. Proceedings of the Royal Society,2002,269(1504):2007-2016.
    134. Whitehorn P.R., O’Connor S., Wackers F.L., Goulson D. Neonicotinoid pesticide reduces bumblebee colony growth and queen production. Science,2012,336(6079):351-352.
    135. Williams P.H. An annotated checklist of bumble bees with an analysis of patterns of description(Hymenoptera: Apidae, Bombini). Bulletin of the Natural History Museum (Entomology),1998,67:79-152.
    136. Williams P.H. Mapping variations in the strength and breadth of biogeographic transition zonesusing species turnover. Proceedings of the Royal Society of London,1996,263(1370):579-588.
    137. Williams P.H., Osborne J.L. Bumblebee vulnerability and conservation world-wide. Apidologie,2009,40(3):367-387.
    138. Wu J., Li J.L., Peng W.J., Hu F.L. Sensitivities of three bumblebee species to four pesticidesapplied commonly in greenhouses in China. Insect Science,2009,17(1):67-72.
    139. Xu G., Bull D.L. Acetylcholinesterase from the Horn Fly (Diptera: Muscidae): Distribution andPurification. Journal of Economic Entomology,1994,87(1):20-26.
    140. Zhu K.Y., Bindley W.A. Molecular properties of acethylcholinesterase purified from LygusHesperus Knight (Hemiptera: Miridae). Insect Biochemistry and Molecular Biology,1992,22(3):253-260.
    141. Zhu K.Y., Clark J.M. Purification and characterization of acetyl-cholinesterase from the Coloradopotato beetle, Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology,1994,24(5):453-461.
    142. Zhu K.Y., Clark J.M. Validation of a point mutation of acetylcholinesterase in Colorado potatobeetle by polymerase chain reaction coupled to enzyme inhibition assay. Pesticide Biochemistryand Physiology,1997,57(1):28-35.
    143. Zhu K.Y., Gao J.R. Increased activity associated with reduced sensitivity of acetylcholinesterase inorganophosphate-resistant greenbug, Schizaphis graminum (Homoptera: Aphididae). PesticideScience,1999,55(1):11-17.
    144. Zhu K.Y., Lee S.H., Clark J.M. A point mutation of acetylcholinesterase associated withazinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistryand Physiology,1996,55(2):100-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700