用户名: 密码: 验证码:
新型载体SiO_2-TiO_2-ZrO_2载负MoP催化剂的制备、表征及加氢精制性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着日益严格环保法规的不断出台和原油重质化、劣质化趋势的不断扩大,燃料油中硫、氮以及芳烃的脱除成为一个亟待解决的重要问题。生产低硫含量、低芳烃特别是多环芳烃含量、高十六烷值和低密度的清洁柴油成为提高柴油质量的方向,对我国柴油质量的提高将会具有极为重要的现实意义。因此迫切需要研制具有高效加氢脱硫、加氢脱氮以及加氢脱芳烃的催化剂来满足油品深度加氢处理的需求。
     近年来对高效深度加氢精制催化剂的研究开发主要集中在寻找活性更高的组分和更优良的载体。复合氧化物载体不仅可以把不同氧化物的优势互补,方便地调变载体性质,还可能产生单一氧化物不具备的新性质,成为国内外学者关注的热点。
     本论文首次分别采用共沉淀法和溶胶凝胶法制备了SiO2-TiO2-ZrO2复合氧化物载体。采用共浸渍法将活性组分Mo、P负载在SiO2-TiO2-ZrO2载体上,合成了负载型MOP/SiO2-TiO2-ZrO2催化剂。采用X射线衍射、N2物理吸附、吡啶吸附红外光谱、扫描电镜等技术对其进行了表征;以噻吩、萘和喹啉为模型化合物,在小型固定床反应器上考察了催化剂的加氢脱硫、加氢脱芳和加氢脱氮性能;研究了复合氧化物中原料配比以及焙烧条件等对SiO2-TiO2-ZrO2复合氧化物结构的影响。探索以不同Si/Ti/Zr原子比的SiO2-TiO2-ZrO2复合氧化物为载体制备的催化剂在柴油加氢精制中应用的可行性,为开发具有较高活性和选择性的载体以及催化剂提供了科学依据。主要研究结果如下:
     1.共沉淀法制备三元复合氧化物SiO2-TiO2-ZrO2(Sx)
     把配方均匀设计应用到催化剂载体的原料比考察中,全面考察了Si. Ti、Zr原子比对载体性质以及催化剂活性的影响,成功制备了介孔SiO2-TiO2-ZrO2三元复合氧化物。该复合氧化物为介孔材料,颗粒直径约60 nm,其表面结构和孔结构较单一载体以及二元复合载体有一定程度的提高。当焙烧温度为500℃, n(Si)/n(Ti)/n(Zr)=0.163/0.809/0.028时,载体的晶体结构最为明显,表面结构最优,S11比表面积可达384.47m2/g,孔容0.72 cm3/g,孔径26.2 nm,是典型大比表面积的介孔材料。载体具有良好的晶相稳定性和热稳定性。Si、Ti、Zr原子比对复合氧化物的表面结构有较大影响,可以根据需要通过调节Si、Ti、Zr的原子比来调控复合氧化物的表面性质。
     2.溶胶凝胶法制备三元复合氧化物SiO2-TiO2-ZrO2(S15-x)
     SiO2-TiO2-ZrO2三元复合氧化物颗粒的形貌呈四边或五边形,颗粒直径约50 nm,其表面结构和孔结构较单一载体以及二元复合载体有一定程度的提高。Si、Ti、Zr原子比对复合氧化物的表面结构有较大影响,因此可以根据需要通过调节Si、Ti、Zr原子比来调控复合氧化物的表面性质。当焙烧温度为500℃、n(Si)/n(Ti)/n(Zr)=0.163/0.809/0.028时,载体S15-11的比表面积可达315 m2/g,孔容0.33cm3/g,孔径12.0nm,是典型大比表面积的介孔材料。该复合氧化物具有良好的晶相稳定性和热稳定性。
     3. MoP/SiO2-TiO2-ZrO2催化剂(Cx和C15-x)的制备与表征
     MoP/SiO2-TiO2-ZrO2催化剂的活性组分与载体间存在着适宜的相互作用,活性组分在载体上完全均匀分散。SiO2-TiO2-ZrO2载体负载活性组分后,表面性质变化较大,比表面积和孔容较大幅度下降,但孔径有所增加;催化剂C15-X比表面积比催化剂Cx比表面积下降的幅度更快。催化剂MoP/SiO2-TiO2-ZrO2据有相对良好的表面性质:C11的比表面积为291m2/g、孔容0.65cm3/g、孔径28.4nm;C15-11的比表面积为175m2/g、孔容0.21cm3/g、孔径15.6nm;800℃下焙烧后,催化剂MoP/Si02-TiO2-ZrO2的晶体结构无明显差异,具有良好的热稳定性;催化剂MoP/SiO2-TiO2-ZrO2的比表面积和孔容均随焙烧温度的升高而降低,但是在700℃仍然能维持较大的比表面积和孔容,说明催化剂的结构热稳定性良好。
     4.MoP/SiO2-TiO2-ZrO2催化剂的活性评价
     Si、Ti、Zr原子比对MoP/SiO2-TiO2一ZrO2催化剂的加氢精制活性影响较大。但由于载体中三种组分之间相互作用的复杂性,这种影响的趋势不够明显,各组分可以根据需要在一定范围内调变组成,得到加氢活性良好的催化剂。
     共沉淀和溶胶凝胶两种方法制备的SiO2-TiO2一Zr02复合氧化物都是新型加氢精制催化剂的优良载体。11号配比的催化剂加氢精制活性最为理想:C11的HDS达99.8%、HAD为78.2%、HDN为91.7%;C15-11的HDS为99.6%,HDA为80.0%,HDN可达92.5%。在试验条件下催化剂C11的HDS最佳99.8%;C5的HDA最佳达到82.9%;C2的HDN最佳达92.8%。
     三元载体SiO2-TiO2-ZrO2应用于加氢精制催化剂后具有比二元载体TiO2-SiO2、TiO2-ZrO2、TiO2-Al2O3更加优良的活性,C11的HDS率提高11~27%、HDN率提高6-16%、HDA率提高2-18%;C15-11的HDS率提高13~25%、HDN率提高11~19%、HDA率提高9~20%。
     催化剂的最佳活性组分负载量为20%。
     对C11、C15-11进行了1200小时长周期稳定性实验,加氢脱硫活性一直保持稳定,说明两种方法制备的催化剂稳定性良好、寿命较长。
     用C11、C15-11处理实际油品,结果表明两种催化剂都具有具有良好的柴油加氢精制性能:HDS基本都在96%以上;HAD基本在65%以上;HDN都在85%以上;十六烷值提高12~17个单位。说明两种催化剂具有良好的工业应用前景。
     5.MoP/SiO2-TiO2-ZrO2催化剂的原位还原及加氢工艺条件
     MoP/SiO2-TiO2-ZrO2催化剂的最佳原位还原条件:还原气压力1.0MPa;还原气流量100.0mL/min;升温速率小于5℃/min;还原终温600℃。
     通过单条件实验得到MoP/SiO2-TiO2-ZrO2催化剂加氢脱芳的最佳工艺条件为:反应温度为340℃、空速为2h-1、反应压力4.0Mpa、氢油比500。
     通过正交试验确定MoP/SiO2-TiO2-ZrO2催化剂加氢脱硫最佳工艺条件为:反应温度380℃,空速2h-1,氢油体积比500,氢分压4 MPa。各因素对催化活性的影响顺序为:反应温度>氢分压>体积空速>氢油体积比。
In view of more stringent environmental legislations and expanding continue of crude oil and heavy qualitative inferior trend in the fuel oils, sulfur, nitrogen and aromatic's removal from oil have becoming an important problem to be resolved. It has become direction of raiseig the diesel production low sulfur, low aromatics especially polyaromatic hydrocarbon, high hexadecane value and low density clean diesel quality. It will have important practical significance to improve the quality of our diesel.It is very urgently to develop efficient refine catalysts to meet aromatic oil depth hydrotreating requirements.
     In recent years the research and development of depth efficient catalyst hydrotreating mainly focus on the components and active higher more excellent carrier.Composite oxide has become the focus in domestic and foreign scholars,it can not only the carrier of complementary advantages of different oxide and modulation carrier properties easily, but also produce a new properties single oxide doesn't have.
     In the thesis, The composite oxide support of SiO2-TiO2-ZrO2 was prepared by coprecipitation method and sol-gel method for the first time.Active components MoP were co-impregnated on the support to form MoP/SiO2-TiO2-ZrO2 catalyst. And then characterized by XRD, nitrogen absorption, infrared spectroscopy of absorbed pyridine and scanning electron microscope; In a fixed bed reactor,The hydrofining activities of the catalysts were tested on a model compound of thiophene, naphthalene and quinoline; The influence of raw material's ratio and baking conditions on the structure of the SiO2-TiO2-ZrO2 composite oxid were examined.The feasibility of the composite oxide as the support of diesel hydrofining catalyst was examined.
     The main research results are as follows:
     1. Ternary composite oxide of SiO2-TiO2-ZrO2 (Sx) prepared by coprecipitation method
     Ternary composite carrier of SiO2-TiO2-ZrO2 was prepared by coprecipitation method successfully. the recipe uniform design was applicated in investigation of Carrier's raw material ratios.The composite oxide is mesoporous material, particle diameter is about 60 nm.Compared with single and binary composite oxide,SiO2-TiO2-ZrO2 composite oxide's specific surface area, the thermal stability and crystal stability are obviously improved.When roasting temperature is 500℃and the nsi/nTi/nzr ratio is equal to 0.163/0.809/0.028, the crystal structure is most obvious and the surface structure is optimal,the specific surface can get 384.47 m2/g,pore volume is 0.72 cm3/g and the aperture is 26.2nm; It is typical mesoporous materials with large specific surface. Carrier has good crystalling phase stability and thermal stability.Si/Ti/Zr atomic ratio of composite oxide has great influence on the surface structure,the Surface properties of composite oxide can be controlled by adjusting the Si, Ti, Zr atomic ratios.
     2. The SiO2-TiO2-ZrO2 ternary composite oxide(S15-x) prepared by sol-gel method
     The SiO2-TiO2-ZrO2 ternary composite oxide is quadrilateral or pentagons, particle diameter is about 50 nm.Compared with single and binary composite oxide,SiO2-TiO2-ZrO2 composite oxide's specific surface area, the thermal stability and crystal stability are obviously improved.Si/Ti/Zr atomic ratio of composite oxide has great influence on the surface structure,the Surface properties of composite oxide can be controlled by adjusting the Si/Ti/Zr atomic ratios.When roasting temperature is 500℃, nsi/nTi/nzr atoms ratio is equal to 0.163/0.809/0.028,the specific surface is 315 m2/g,pore volume is 0.33 cm3/g and the aperture is 12.0nm; It is typical mesoporous materials with large specific surface.The composite oxide has good crystalling phase stability and thermal stability.
     3. Preparation and Characterization of MoP/SiO2-TiO2-ZrO2 Catalyst (Cx and C15-x)
     There exists Appropriate interactions between the active components and carrier,and the active component equably dispersed totally on the carrier.SiO2-TiO2-ZrO2'surface properties have taken place great changes after loading active components,the specific surface area and pore volume dropped greatly, but aperture increase.The specific surface area of C15-x dropped more faster than Cx.Catalyst MoP/SiO2-TiO2-ZrO2 has good surface properties relatively:C11's specific surface is 291 m2/g,pore volume is 0.65 cm3/g and the aperture is 28.4 nm; C15-11's specific surface is 175 m2/g,pore volume is 0.21 cm3/g and the aperture is 15.6nm;The crystal structure of the catalyst MoP/SiO2-TiO2-ZrO2 have no significant difference after roasted on 800℃,this indicate that the catalyst has thermal stability.The MoP/SiO2-TiO2-ZrO's specific surface area and pore volume decline with the raising temperature.But it can remain large specific surface area and catalyst structure under the 700℃,this indecate that the catalyst has good thermal stability.
     4.Evaluation activity of catalysts MoP/SiO2-TiO2-ZrO2
     The effect of Si/Ti/Zr atomic ratio on hydrofining performance is big.But because the complexity of the interaction between the trend of this kind of influence, the effect isn't absolutely,each component can not absolutely according to need within the scope of certain and modulation components, get catalysts hydrogenation with good activity.
     SiO2-TiO2-ZrO2 composite oxides prepared by coprecipitation and sol-gel method are all excellent carrier of novel Hyrorefining catalyst.C11 has the best hydrotreating activity:HDS is 99.8%、HDA is 78.2 %、HDN is 91.7%;To C15-11:HDS is 99.6%、HDA is 80.0%、HDN is 92.5 %; Under the experimental conditions,Catalyst C11'HDS can reach 99.8%,C5 has the best HAD,82.9%;C2 has the best HDN,93.8%.
     Ternary carrier SiO2-TiO2-ZrO2 has more excellent activity than binary carrier in hydrotreating.
     The best active component load is 20%.
     Long cycle stability tests have been done on C11 and C15-11 for 1200 hours, hydrodesulfurization performance are stability,it indicated that two kinds of catalysts are stability and long service life.
     Processing actual oil with C11 and C15-11,two kinds of catalysts show good diesel hydrotreating performance,HDS is above 96%,HAD is above 65%,and HDN is above 85%. Hexadecane value increase 12-17 units. This means that two catalysts possess good industrial application foreground.
     5. In situ reduction and hydrogenation process conditions of MoP/SiO2-TiO2-ZrO2 catalyst
     To MoP/SiO2-TiO2-ZrO2 catalyst,the favorable conditions of the in situ reduction are as follows:total pressure 1.0 MPa、H2 flow rate 100.0 ml/min, heating rate≤5℃/min, and reduction temperature 600℃.
     The favorable conditions of the HDA were getten through single condition experiments:reaction temperature is 340℃, airspeed is 2 h-1, reaction pressure is 4.0 Mp, oil-hydrogen ratio is 500.
     The favorable conditions of the HDS were getten Through an orthogonal test:reaction temperature is 380℃, airspeed is 2h-1, reaction pressure is 4.OMp and oil-hydrogen ratio is 500.
     The influence order of each factor to the catalytic activity:reaction temperature>reaction pressure>airspeed>oil-hydrogen ratio.
引文
[1]姚国欣等.21世纪的炼油技术和炼油厂[J].炼油技术,200(1)1,1-6
    [2]李大东.我国环境友好汽车燃料的发展方向,工程科技论坛,2001
    [3]李兴虎.汽车排放污染与控制[M].北京:机械工业出版社,1999.81-82
    [4]US EPA,Diesel Fuel quality:Advanee Notice of ProPosed Rulemaking, EPA420-99-011,Office of Mobile Sourcees,May1999
    [5]Lee,S.L.,Wind,M.D.,Desai,P.H.,Johnson,C.C.,Mehmet,Y.A.Fuel Reformulation1993,5,26
    [6]K Han,M.R.,Reynolds,J.G.Chemtech1996,26,56
    [7]Unzelman,G.H.Fuel Reformulation1993,5,38
    [8]Macaud M,Milenkovje A,Schulz E.Hydrodesulfurization of alkyldibenzothiophene:Evidene of highly unreactive aromatic sulfur compounds.J.Catal.,2000,193(1),255-263
    [9]Marroquin-Sanchez G.Ancheyta-Juarez J.Catalytic hydrotreatingof middle distillates blends infixed-bed pilot reactor [J].Appl Catal A:G,.2001,207(1),407-420
    [10]Romanow S.[J]. HydrocarbonProcessing,2000,79(9):17-19
    [11]Babieh I V, Moulijn J A.Science and technology of novel Proeesses for deep desulfurization of oilrefinery streams:a review,Fuel,2003,82:607-631
    [12]尹彤华,我国轻柴油产品质量泛议,当代石油化工,2002(7),17~19
    [13]Leen A G,Frans L P,et al.Catalysts to play a large Part in ultra-low sulfur fuel.oil and gas Journal,2000,9:76-80
    [14]侯芙生.“提高科技创新实力实现我国炼油工业的持续发展”.中国石油炼制技术大会论文集,2003,3-14.大连
    [15]罗国华,徐新,杨春育.车用燃料油精制脱硫的研究与发展,现代化工,2002,22(5):19-22
    [16]Song C.An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel,Catal Today,2003,86:211-263
    [17]Sudhakar C,G.Sa ndford G,Dahlstorm P L,Patel M S and Patmoer E L. Hydortreating of Cracked Naphtha.US 5423976,1995
    [18]Kukes S G,Hopkins P D,Ollendorff L A,Hendler P D,Ontiveors C D and Washecheck D M.Selective Hydorterating Catalyst.US 5348928,1994
    [19]Sudhakar C, Cesar M R and Heinrich R A.Selective Hydrodesulfuirzation of Naphthan using Selectively Poisoned Hydorporcessing Catalyst.US 5525211,1996
    [20]Sudhakar C.Selective Hydrodesulfuirzation of Cracked Naphtha using Novel Catalysts.US 5770046,1998
    [21]Sudhakar C.Selective Hydrodesulfurization of Cracked Naphtha using Hydortalcite-Supported Catalysts.US 5851382,1998
    [22]Sudhakar C and O'Young C.Selective Hydordesulfurization of Cracked Naphtha using Novel Manganese Oxide Octahedral Molecular Sieve Supported Catalysts.US 5846406,1998
    [23]钟艳、周旭彪等,FCC催化剂的清洁化生产技术,工业催化[J],2006,14(8):28-30
    [24]沈本贤、程丽华等,石油炼制工艺学[M],中国石化出版社,2009,292-293
    [25]Topse H, Clausen B S,Massoth F E. Hydrotreating Catalysis. Springer: Berlin,1996
    [26]Gates B C, Katzer J R,Schuit G C A. Chemistry of Catalytic Processes. New York
    [27]D L. Sullivan, John G. Ekerdt. Mecha nisms of Thiophene Hydrodesulfurization on Model Molybdenum Catalysts [J]. Journal of Catalysis.1998,178(1):226-233
    [28]方向晨.加氢精制[M].北京:中国石化出版社,2006.54-55
    [29]Girgis MJ,Gates B C.J. Industrial and Engineering Chemistry Research [J],1991,30(9):2021-2058
    [30]段爱军,万国斌,赵震.柴油催化加氢脱芳烃研究进展[J].现代化工,2005,25(3):14~18
    [31]周亚松,刘全昌,马海峰NiW/CTS-n催化剂的加氢脱芳性能研究[J].石油学报(石油加工),2006,22(3):13-17
    [32]Abe H,Bellat. HDN of quinolin of quinolin over high surface area molybdenum nitride[J]. Journal of Catalysis,1993,139:3-8
    [33]Colling C W,Thomson L.T. The structure and function of supported molybdenum nitrided hydordenitorgenation [J] Journal of Catalysis,1994,146(1):193-203
    [34]Masatoshi Nagai,Yosuke Goto,Osamu Uchino,Shinzo Omi.TPD study and carbazole Hydordenitrogennation activity of nitrided molybdena-alumina[J]. Catalysis Today 1998,45:335-340
    [35]柳云骐,刘晨光.合成大比表面γ-Mo2N的新方法[J].无机化学学报,1999,15(4):541~544
    [36]Choi J G. Synthesis and characteriza tion of molybdenum nitride hydrodenitrog-enation catalysts[J]. Catal Today,1992,15:201-222
    [37]刘大壮,孙培勤.催化工艺开发[M].北京:气象出版社,2002.5
    [38]Absi-Halabi M, StanislausA,Al-Mughn T,et al.Hydroprocessing of vacuum residues:Relationbetween catalystactivity,deactivationan dpore sizedistribution[J].Fuel,1995,74:1211-1215
    [39]Daage M,Chianelli R R Structure-function relations in molyrbdenum sulfide satalysts:The "rim-edge" model[J]. CataL,1994,149:414-427
    [40]朱华元,何鸣元,宋家庆等.催化剂的大分子裂化性能与渣油裂化[J].炼油设计,2000,30(8):47-50
    [41]秦玉楠.具有高活性及扩孔结构载体的MoCo/y-Al2O3催化剂的制备方法及其性能优化[J].中国钼业,2004,28(1):26-29
    [42]李凯荣,谭克勤.加氢转化脱硫催化剂载体γ-Al2O3的改进及对催化剂性能的影响[J].无机盐工业,2003,35(2):31-34
    [43]Rayo P, Ancheyta J, Ramirez J, et al. Hydrotreating of diluted Maya crude with NiMo/Al2O3-TiO2 catalysts:effect of diluent composition [J]. Catalysis Today,2004,98(1-2):171-179
    [44]Angelici R J. Theoretical study of ethanethiol adsorption on HZSM-5 zeolite [J].Polyhedron,1997,16 (18):3073-3088
    [45]安高军,柳云骐,柴永明等.柴油加氢精制催化剂制备技术[J].化学进展,2007,19(2/3):243~249
    [46]Oyama S. T, Clark P, Teixeira da Silva V. L. S, Lede E. J, and Requejo F G.XAFS characteriza tion of highly active alumina-supported molybdenum phosphide[J].J. Phys.Chem. B,2001,105 (1):4961-4966
    [47]赵天波,赵志芳,李凤艳,等.制备条件对MoP/γ-Al2O3催化剂加氢性能的影响[J].石油化工,2004,33(10):925-927
    [48]李庆杰,赵志芳,李翠清,等.负载型磷化铝加氢精制催化剂制备的研究[J].燃料化学学报,2006,34(2):126-128
    [49]Lauritsten J V, Helveg S, Laegsgaard E, et al. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts. Journal of Catalysis, 2001,197:1-5
    [50]Angelici R J.Theoretical study of ethanethiol adsorption on HZSM-5 zeolite[J].Polyhedron,1997,16 (18):3073-3088
    [51]Oyama S. T, Clark P, Teixeira da Silva V. L. S, Lede E. J, and Requejo F G.. XAFS characteriza tion of highly active alumina-supported molybdenum phosphide[J].J. Phys.Chem. B,2001,105 (1):4961-4966
    [52]赵天波,赵志芳,李凤艳,等.制备条件对MoP/y-Al2O3催化剂加氢性能的影响[J].石油化工,2004,33(10):925-927
    [53]李庆杰,赵志芳,李翠清,等.负载型磷化铝加氢精制催化剂制备的研究[J].燃料化学学报,2006,34(2):126-128
    [54]张谦温,张苗,刘新香,朱起明Al2O3-TiO2为载体的前加氢催化剂研究[J].石油化工,2000,29(6):413-417
    [55]程松TiO2/Al2O3复合载体用于有机硫加氢转化催化剂的研究[J].化学工业与工程技术,2000,21(4):20-23
    [56]王宇红,李伟,关乃佳,陶克毅,沈炳龙.TiO2负载氮化铝催化剂的HDS活性与反应动力学的研究[J].石油学报(石油加工),2000,16(6):18-2
    [57]邓存,周振华,谢洪芳,等.TiO2调变γ-Al2O3对MoO3/γ-Al2O3催化性能的影响[J].吉林化工学院学报,1997,14(4):7-10
    [58]胡见波,李伟,张明慧,陶克毅.负载型纳米TiO2复合载体及其CoMo催化剂的酸性及孔特性的研究[J].燃料化学学报,2003,31(6):564-568
    [59]秦玉楠.新型TiO2载体系列工业用钼催化剂[J].中国钼业,2001,25(3):30-31
    [60]王丹红,李伟,陶克毅,等.氟改性Co-Mo/TiO2催化剂的加氢脱硫活性与反应动力学的研究[J].石油学报(石油加工),1998,14(4):12-14
    [61]Rayo P, Ancheyta J, Ramirez J, et al. Hydrotreating of diluted Maya crude with NiMo/Al2O3-TiO2 catalysts:effect of diluent composition [J]. Catalysis Today,2004,98(1-2):171-179
    [62]Lauritsten J V, Helveg S, Laegsgaard E, et al. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts. Journal of Catalysis, 2001,197:1-5
    [63]Wang Danhong, Qian Weihua, Ishihara A, et al. Elucidation of sulfidation state and hydrodesulfurization mechanism on Mo/TiO2 catalyst using 35S radioisotope tracer methods [J]. Journal of Catalysis,2001,203(2): 322-328
    [64]闫华甫.TiO2作为钴钼加氢转化催化剂载体的性能研究[J].无机盐工业,1997,6:9-11
    [65]刘源,钟炳,彭少逸等.催化学报,1998,19(2):107
    [66]Sun,Y.; Sermon,P.A.J.Chem.Soc.Commu.,1993:1242
    [67]魏昭彬,辛勤,盛世善,等.炭担载的Mo和CoMo加氢脱硫催化剂[J],催化学报,1995,16(5):359
    [68]Farag H, Mochida I, Sakanishi K. Fundamental comparison studies on hydrodesulfurization of dibenzothiophenes over CoMo-based carbon and alumina catalysts [J]. Applied catalysis A:General,2000,194(95):147-157
    [69]Farag H, Whitehurst D D, Sakanishi K, Mochida I. Improving Kinetic analysis of sequential and parallel reactions of hydrodesulfurization of dibenzothiophenes by establishing reasonable boundaries for reaction rate constants. Catalysis Today,1999,50(1):49-56
    [70]Bouwens S M A M, Van Veen J A R, Koningberger D C, et al. Extended X-ray absorption fine structure determination of the structure of cobalt in carbon-supported Co and Co-Mo sulfide hydrodesulfurization catalysts [J]. Journal of Physical Chemistry,1991,95:123-124
    [71]Eijsbouts S, Van Gestel J N M, Van Veen J A R, et al. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni and Ni-Mo catalysts [J]. Journal of Catalysis.1991,131(2):412-432
    [72]BejSK,MaltySK,TuragaU.Searchforaneficient4,6-DMDBThydrodesulfu riz-ation catalyst:a review of recent studies [J]. Energy Fuels,2004,18: 1227-1237
    [73]Ramirez J, Cedeno L, Busca G. The role oftitania support in Mobased hydrodesulfurization catalysts[J].Catal.1999,184:59-67
    [74]Malty S K,Ancheyta J,Soberanis L,et al.Alum ina-titania binary mixed oxide used as support of catalysts for bydrotreating of Maya heavy crude[J]. Appl. CataL A,2003,244:141-153
    [75]Breys M, AfanasievP, GeantetC, etal. Deep desulfurization: Reactions, catalysts and technological challenges[J]. CataL Today,2003, 86:5-16
    [76]DharGM, SrinivasBN, RanaM S, et al. Mixed oxide supported hydrodesulfurization catalysts:A review[J]. Catal. Today,2003,86: 45-60
    [77]刘志红.提高柴油加氢精制催化剂活性的方法[J].化工进展2008,27(2):173~179
    [78]Murali Dhar G, Massoth F E, Shabtai J, Catalytic functionalities of supported sulfides.1. Effect of support and additives on the CoMo catalyst [J]. Journal of Catalysis,1994,85:44
    [79]Liu Y, Massoth F E, Shabtai J, et al. Catalytic functionalities of. Supported Sulfides [J]. Bulletin des Societes Chimiques Belges,1984,93: 627
    [80]Ramirez J, Fuentes S, Diaz G, et al. Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt-molybdenum catalysts. Comparison of alumina-, silica-alumina-and titania-supported catalysts [J]. Applied Catalysis,1989,52(3):211-22
    [81]Flego C, Arrigoni V, Ferrari M, et al. Mixed oxides as a support for new CoMo catalysts [J]. Catalysis Today,2001,65(2-4):265-270
    [82]Damyanova S,Petrov L,Centeno M A,et al.Characterization of molybdenum hydrodesulfurization catalysts supported on ZrO2-Al2O3 and ZrO2-SiO2 carriers [J]. Applied catalysis A,2002,224:271-284
    [83]Klimova T, Rojas M L, Castillo P, et al. Characterization of Al2O3-ZrO2 mixed oxide catalytic supports prepared by the sol-gel method [J]. Microporous and mesoporous materials,1998,20(4-6):293-306
    [84]Dominguez J M, Hernandez J L, Sandoval G. Surface and catalytic properties of Al2O3-ZrO2 solid solutions prepared by sol-gel methods [J].Applied catalysis A:General,2000,197(1):119-130
    [85]Jie Zhao, Yinghong Yue, Weiming Hua, et al. Catalytic activities and properties of mesoporous sulfated Al2O3-ZrO2 [J]. Catalysis Letters,2007, 116(1-2):27-34
    [86]Lecrenay E, Sakanishi K, Mochida I, et al. Hydrodesulfurization activity of CoMo and NiMo catalysts supported on some acidic binary oxides. Applied Catalysis A:General,1998,175(1-2):237
    [87]李国然,张伟,张明慧,等CoMo/ZrO2-Al2O3催化剂的加氢脱硫活性[J].石油学报,2003,19(5):22~26
    [88]Takeuchi, Masato, Matsuda, et al. Hydrodesulfurization of hydrocarbon oil with a catalyst including titanium oxide [P]美国专利:US4206036.1980-06-03
    [89]Hamilton David J R, Adams Charles Terrell. Improved hydroconversion catalyst and process [J]欧洲专利.EP199399.1986-10-29
    [90]周亚松,范小虎.纳米TiO2-SiO2复合氧化物的制备与性质[J].高等学校化学学报,2003,24(7):1266~1270
    [91]Miciukiewiez J, Mang T, Knozinger H. Roman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide [J]. Applied Catalysis,1995,122:151-159
    [92]Maity S K, Rana M S, Bej S K, et al. j. Studies on physics-chemical characterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts [J]. Applied Catalysis A,2001,72(1-2): 115-119
    [93]Kresge C T, Leonowice M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-711
    [94]乐红英,孙渝,高滋.新型介孔分子筛KIT-1加氢脱硫催化剂的研究[J].化学学报,1998,56:649~654
    [95]李惠云,何其戈,杜燕军.新型沸石类介孔材料的合成及应用[J].安阳师专学报,1999,2:27~29
    [96]Cui J, Yue Y H, Sun Y,et al. Characterization and reactivity of Ni, Mo-supported MCM-41 catalysts for hydrodesulfurization [J]. Studies in Surface Science and Catalysis,1997,105:678
    [97]Ryoo R, Kim J M, Shin C H, et al. Synthesis and hydrothermal stability of a disordered mesoporous molecular sieve [J]. Studies in Surface Science and Catalysis,1997,105:42-45
    [98]张孔远,刘爱华,燕京,等.不同方法制备的CoMo/Al2O3加氢脱硫催化剂的表征[J].催化学报,2005,26(8):639~644
    [99]王萍,周志军,田晓飞,孙桂大.负载型氮化钴铝催化剂的制备及催化性能[J].石油化工高等学校学报,2003,16(2):13~15
    [100]HADA K, Tanabe J, Omi S, et al. Characterization of cobalt molybdenum nitrides for thiophene HDS by XRD、TEM and XPS [J]. Journal of Catalysis,2002,207(24):10-22
    [101]李建伟,李英霞,陈标华,等.Co-Mo/Al2O3催化剂上裂解汽油中单烯烃加氢宏观动力学[J].燃料化学学报,2006,34(2):170~174
    [102]Wang Yuhong, Li Wei, Zhang Minghui, Guan Naijia, et al. Characterization and catalytic properties of supported nickel molybdenum nitrides for hydrodenitrogenation [J]. Applied Catalysis A,2001,215(1-2): 39-45
    [103]柳云骐,刘晨光,阙国和.二苯并噻吩在CoMoNx催化剂上的加氢脱硫[J].催化学报,2000,21(4):337-340
    [104]李庆杰,赵志芳,李凤艳,等.负载型磷化钼加氢精制催化剂的制备研究[J].燃料化学学报,2006,34(1):126~128
    [105]左东华,谢玉萍,聂红,等.4,6-二甲基二苯并噻吩加氢脱硫的反应机理研究[J].催化学报,2002,23(3):271~275
    [106]刘武灿,何兴娇,卢春山.金属氮化物/碳化物催化加氢性能研究进展[J].工业催化,2005,13(3):1-5
    [107]李凤艳,孙桂大,赵天波,等。含磷加氢处理催化剂[J].石油化工高等学校学报,2002,15(2):1-5
    [108]Escalona Emir, Pereira Almao Pedro, Castillo Jimmy, etal. Nanometric bimetallic sulfides prepared via thermal decomposition of Ni and Fe heteropolymolybdate emulsions [J]. Catalysis Letters,2006, 112(3-4):227-230
    [109]Hubaut Robert. Characterization and hydrodesufurization activities of mixed Fe-Mo sulfides supported on alumina and carbon [J]. Fuel,2007, 86(5-6):743-749
    [110]Levy R B, Boudart M. Platinum-like Behavior of Tungsten Carbide in Surface Catalysis [M]. Science,1973,181:547-549
    [111]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene Hydrodesulfurization Over Alumina-Supported Molybdenum Carbide and Nitride Catalysts:Adsorption Sites, Catalytic Activities, and Nature of the Active Surface [J]. Journal of Catalysis,1996,164(1):109-121
    [112]Sajkowski D J, Oyama S T. Catalytic Hydrotreatment of Illinois No.6 Coal-Derived Naphtha:The Removal of Individual Nitrogen and Sulfur Compound. Applied Catalysis A,1996,134:339-349
    [113]张耀军,李新生.催化新材料γ-Mo2N的合成和表征[J].分子催化,1996,10(2):103~108
    [114]丁正新,盛世善.碳化钼催化剂的XPS研究[J].化学物理学报,1997,10(3):235~240
    [115]王新平,张文郁.Mo2N的表面性质加氢脱氮活性[J].物理化学学报,1996,12(6):513~517
    [116]周振华,张辉军.Mo2N催化剂的加氢脱硫活性[J].石油化工,1996,25(10):689~692
    [117]杨树武,纪纯新.催化剂上及H2和NO吸附性能的TDP-MS研究[J].物理化学学报[J],1996,12(12):1084~1089
    [118]Markel E J, Van Zee, J W. Catalytic hydrodesulfurization by molybdenumnitride. Journal of Catalysis,1990,126:643-657
    [119]王远强,陈思浩Ni P/TiO2的制备、表征及其加氢脱硫反应性能[J].上海化工,2006,31(11):10~12
    [120]鄢景森,王安杰,李翔,等.负载型磷化钼的原位还原制备及其加氢脱硫反应活性[J].石油学报(石油加工),2006,22(1):15~21
    [121]李翠清,王洪学,李成岳,等.噻吩在不同负载磷化钨催化剂上的 加氢脱硫[J].分子催化,2004,18(1):15~18
    [122]Yasuhiro Iwama, Nobuyuki Ichikuni, Kyoko Bando. Effect of Co addition for carburizing process of Ti-oxide/SiO2 into TiC/SiO2 [J]. Applied Catalysis, A:General,2007,323:104-109
    [123]Vit Zdenek. Iridium sulfide and Ir promoted Mo based catalysts [J]. Applied Catalysis A:General,2007,322:142-151
    [124]Leyva Carolina, Jorge Ancheyta, Mohan S Rana, et al. A comparative study on the effect of promoter content of hydrodesulfurization catalysts at different evaluation scales [J]. Fuel,2007,86(9):1232-1239
    [125]李翠清,李凤艳,孙桂大.助剂镍/钴对磷化钨催化剂加氢精制性能的影响.分子催化,2005,19(1):22~26
    [126]赵志芳,李凤艳,赵天波等.钴和镍对MoP/y-Al2O3加氢精制催化剂活性的影响.石油炼制与化工,2004,35(5):12~14
    [127]潘履让.固体催化剂的设计与制备[M].天津:南开大学出版社,1993.16
    [128]姚超,吴凤芹,林西平等.纳米技术与纳米材料(Ⅸ)与纳米TiO2的液相合成[J].日用化学工业,2004,34(3):190-194
    [129]储伟.催化剂工程[M].成都:四川大学出版社,2006.61-70
    [130]毛东森,陈庆龄,卢冠忠.制备方法对B203/TiO2-ZrO2催化环己酮肟制己内酰胺的影响[J].石油学报,2002,18(6):43~49
    [131]韩承辉,刘炳华,张惠良等TiO2-ZrO2的表征及其异丙醇催化转化性能[J].物理化学学报,2006,22(8):993-998
    [132]韦以,刘新香Al2O3-TiO2复合载体的制备与表征[J].石油化工,2006,35(2):173~177
    [133]梁健,黄惠忠,谢有畅.共沉淀法制备ZrO2-Al2O3纳米复合氧化物的物相表征[J].物理化学学报,2003,19(1):30-34
    [134]刘慷,金兑源,张立群.TiO2对共沉淀法制备Pd/Al2O3-TiO2催化活性的影响[J].北京化工大学学报,2005,32(1):47-50
    [135]张峰,张歆.Pt/介孔TiO2-SiO2的制备、表征及光催化性能研究[J].无机材料学报,2006,21(5):1268~1272
    [136]卢旭晨,徐廷献.溶胶-凝胶法及其应用[J].陶瓷学报,1998,19(1): 53-57
    [137]刘旭俐,马峻峰,欧阳胜林等.溶胶-凝胶法的发展与研究[J].现代技术陶瓷,1999,20(4):12-16
    [138]许临萍,赵永祥,武志刚等.溶胶-凝胶法制备SiO2-TiO2复合氧化物及其热稳定性研究[J].天然气化工,2003,28(3):13-15
    [139]张绍金,周亚松,徐春明TiO2-SiO2复合氧化物的理化性质及其对柴油加氢精制性能的影响[J].化工学报,2006,57(4):7697-74
    [140]李颖,周亚松,刘全昌TiO2-SiO2载体的酸性对催化剂加氢脱硫性能的影响[J].石油学报(石油加工),2005,21(1):12-17
    [141]吴淑杰,刘钢,李雪梅等.Ti-Si复合氧化物催化剂的合成、表征及邻苯二酚O-单醚化反应性能[J].吉林大学学报(理学版),2006,44(2):265~268
    [142]胡晓丽,段宏昌,王海彦等NiMo/iO2-Al2O3催化二苯并噻吩加氢脱硫反应[J].精细石油化工进展,2007,8(1):36-38
    [143]黄剑峰.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.1-15
    [1]方向晨,关明华,廖士刚.加氢精制[M].北京:中国石化出版社,2006,427-436
    [2]Rana M S,Capitaine E M R,Carolina Leyva,et al.Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil[J]. Fuel,2007,86(9):1254-1262
    [3]巫辉,赵萱,钱菁,石油加氢脱硫催化剂载体的研究[J].武汉理工大学学报,2006,28(3):113~115
    [4]顾忠华,罗来涛,夏梦君,等TiO2-Al2O3复合氧化物载体焙烧温度对Au-Pd催化剂加氢脱硫性能的影响[J].催化学报,2006,27(8):719~724
    [5]Kaluz LD, Gulkova Z. Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst [J]. Applied Catalysis A:General,2007,324:30-35
    [6]周亚松,范小虎.纳米TiO2-SiO2复合氧化物的制备与性质[J].高等学校化学学报,2003,24(7):1266~1270
    [7]Barrera M C, Viniegra M, Escobar J. Highly active MoS2 on wide-pore ZrO2-TiO2 mixed oxides[J]. Catalysis Today,2004,98(1-2):131-139
    [8]毛东森,卢冠忠,陈庆龄.钛锆复合氧化物载体的制备、物化性质及在催化反应中的应用[J].催化学报,2004,25(6):76~85
    [9]李生详,李伟,张明慧,等.负载型TiO2-Al2O3复合载体在超深度加氢脱硫中的应用[J].燃料化学学报,2005,33(6):742~745
    [10]李云雁,胡传荣.试验设计与数据处理[M],北京:化学工业出版社,2005,237
    [11]李丽娜,王海彦,魏,等MoP/TiO2-ZrO2加氢脱硫催化剂的研制[J].石油炼制与化工,2008,39(2):16~20
    [12]刘柏军,郑宇印,孟庆民,等TiO2-Al2O3复合氧化物负载NiMo加氢脱硫催化剂的研究[J].分子催化,2004,18(6):447~451
    [1]储伟,催化剂工程[M],四川大学出版社2006,70~71
    [2]金云舟,钱君律,伍艳辉,溶胶凝胶法制备催化剂的研究进展[J],工业催化,2006,14(11):60~63
    [3]方向晨,关明华,廖士刚.加氢精制[M].北京:中国石化出版社,2006,427-436
    [4]Rana M S,Capitaine E M R,Carolina L,et al. Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil [J], Fuel,2007,86(9):1254-1262
    [5]Laniecki M, Ignacik M. Water-gas shift reaction over sulfided molybdenum catalysts supported on TiO2-ZrO2 mixed oxides:Support characterization and catalytic activity[J], Catalysis Today,2006,116 (3):400-407
    [6]巫辉,赵萱,钱菁,等.石油加氢脱硫催化剂载体的研究[J],武汉理工大学学报,2006,28(3):113~115
    [7]Murali D G,Srinivas B N,Rana M S,et al. Mixed oxide supported hydrodesulfurization catalysts-a review [J], Catalysis Today,2003,86(1-4):45-60
    [8]Okamoto Y, Ochiai K, Kawano M. Effects of support on the activity of Co-Mo sulfide model catalysts[J], Applied Catalysis A:General,2002,226(1-2):115-127
    [9]Rana M S, Maity S K, Ancheyta J,et al. TiO2-SiO2 supported hydrotreating catalysts:physico-chemical characterization and activities[J], Applied Catalysis A:General,2003,253 (1):165-176
    [10]姜东,徐耀,侯博,等,SiO2-TiO2催化剂的制备及其光催化性能[J],无机材料学报,2008,23(5):1080~1084
    [9]喻瑶,林涛,张丽娟,等,锆钛复合氧化物的制备及用作Pt三效催化剂载体的性能[J],无机材料学报,2008,23(1):71~76
    [10]Kaluza LD,Gulkova Z. Effect of support type on the magnitude of synergism and promotion in CoMo sulphide hydrodesulphurisation catalyst[J],Applied Catalysis A:General,2007,324:30-35
    [11]李云雁,胡传荣.试验设计与数据处理[M],北京:化学工业出版社,2005,237
    [12]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社,1983,41~78
    [13]周亚松,范小虎.纳米TiO2-SiO2复合氧化物的制备与性质[J],高等学校化学学报,2003,24(7):1266~1270
    [14]李丽娜,王海彦,魏民,等MoP/TiO2-ZrO2加氢脱硫催化剂的研制[J],石油炼制与化工,2008,39(2):16~20
    [15]刘百军,郑宇印,孟庆民,等TiO2-Al2O3复合氧化物负载NiMo加氢脱硫催化剂的研究[J],分子催化,2004,18(6):447-451
    [16]徐长青,朱大建,李光兴.Ni-B非晶态催化材料研究进展[J].2004(增),35:1974~1978
    [1]FARAG H, SAKANISHI K, KOUZU M, HATSUMUKA A,Dibenzothiophene hydrodesulfurization oversynthesizedMoS2catalysts[J]. JMolCatalA,2003,206(1-2):399-408
    [2]NIQUILLE-R THLISBERGER A, PRINS R. Hydrodesulfurization of4,6-dimethyldibenzothiophene and dibenzothiophene over alumina-supported P,t Pd, and Pt-Pd catalysts[J]. JCata,12006,242(1):207-216
    [3]LI S, LEE J S. Molybdenum nitride and carbide prepared from heteropolyacid:IIIHydrodesulfurization ofbenzothiophene[J]. JCata,11998, 178(1):119-136
    [4]涂先红,方向晨,赵乐平.FCC汽油加氢脱硫降烯烃技术进展[J].当代化工,2006,35(2):114~116
    [5]SANO Y, CHOIK-H, KORAIY, MOCHIDA I. Effects of nitrogen and refractory sulfur species removal on the deep HDS of gas oil[J].ApplCatalB,2004,53(3):169-174
    [6]JIAN M, KAPTEIJN F, PRINS R. Kinetics of thehydrodenitrogenation oforthopropylaniline overNMi oP/Al2O3catalysts[J], J Cata,11997, 168(2):491-500
    [7]OYAMA S T, CLARK P, WANG X, SHIDO T, IWASAWA Y. Structural characterization of tungsten phosphide(WP) hydrotreating catalysts byX-ray absorption spectrodcopy and nuclearmagnetic resonance spectroscopy[J]. J PhysChem B,2002,106(8):1913-1920
    [8]李翠清,王洪学,李成岳,孙桂大,李凤艳WP/γ-Al2O3催化剂负载方式对噻吩加氢脱硫性能的影响[J].燃料化学学报,2003,31(5):439~443
    [9]OYANMA S T. Novel catalysts for advanced hydroprocessing: Transitionmetal phosphides[J]. JCata,12003,216(1-2):343-352
    [10]CLARK P, LIW, OYAMA S. Synthesis and activity ofa new catalyst forhydroprocessing:Tungsten phosphide[J]. JCata,12001,200(1):140-147
    [11]宋亚娟,李翠清,孙桂大,王新亚.助剂对WP/y-Al2O3催化剂二苯并噻吩HDS活性影响[J].石油化工高等学校学报,2005,18(3):25~29
    [12]LICui-qing, SUN Gui-da, LICheng-yue, SONG Ya-juan. Preparation, characterization, hydrogenation and hydrodenitrogenation activities ofalumina-supported tungsten. phosphide catalysts[J]. Chinese JChem Eng,2006,14(2):184-193
    [13]ZUZANIUK V, PRINS R. Synthesis and characterization of silica-supported transition-metalphosphides asHDN catalysts[J]. JCata,2003,219(1):85-96
    [1]向德辉,翁玉攀,等.固体催化剂[M].北京:化学工业出版社,1983.111-116
    [2]周亚松,范小虎.纳米TiO2-SiO2复合氧化物的制备与性质[J].高等学校化学学报,2003,24(7):1266~1270
    [3]李丽娜,王海彦,魏,等MpP/TiO2-ZrO2加氢脱硫催化剂的研制[J].石油炼制与化工,2008,39(2):16~20
    [4]刘柏军,郑宇印,孟庆民,等TiO2-Al2O3复合氧化物负载NiMo加氢脱硫催化剂的研究[J].分子催化,2004,18(6):447~451
    [1]Clark P, Wang X, Oyama S T. Characterization of silica—supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy[J]. J Catal,2002,207(2):256-265
    [2]Stinner C, Prins R, Weber T. Formation, structure, and HDN activity of unsupported molybdenum phosphide[J]. JCatal,2000,191(2):438-444
    [3]Phillips D C, Sawhill S J, Self R, et al. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal,2002,207(2):266-273
    [4]Zuzaniuk V, Prins R, Synthesis and characterization of silica supported transition metal phosphides as HDN catalysts [J]. J Catal,2003,219(1): 85-96
    [5]Li F Y, Zhao T B, Sun G D, et al. Preparation of unsupported molybdenum phosphide hydrofining catalysts[J]。ChinJ Catal,2003,24(2): 79-80
    [6]Wu Z I, Sun F X, WuWC, et al. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:IR spectroscopy and catalytic reactivity studies[J]. J Catal,2004,222(1):41-52
    [7]Chen J, Te M, Yang H, et a 1.Hydrodesulfurization of dibenzothiophenic compounds in a light cycle oil[J]. Petroleum Science and Technology, 2003,21(5/6):911-935
    [8]殷爱云,余夕志,陈长林,等Ni2P/HZSM-5上噻吩加氢脱硫性能研究[J].燃料化学学报,2006,34(5):572~577
    [9]唐新宇,张香文NiMoNx/MCM-41催化剂的制备及其加氢脱硫性能[J].石油学报(石油加工),2006,22(3):7~12
    [10]Shan H H,Li C Y,Yang C H,et al.Mechanistic studies on thiophene species cracking over USY zeolite[J].Catal Today,2002,77(1/2):117-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700