用户名: 密码: 验证码:
兰州地区多环芳烃环境归趋模拟和风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)是一类典型的持久性有毒物质,主要来自化石燃料和生物质的不完全燃烧。多数多环芳烃(PAHs)具有“三致”效应。兰州是西北重要工业城市,能源消耗以煤为主,多环芳烃(PAHs)的污染不容忽视。兰州地区多环芳烃(PAHs)的来源、赋存状态、多介质环境行为和归趋,迄今尚不明确。因此,本文利用改进型的大流量主动采样器,于2008年8月到2009年7月对兰州市大气样品进行采集,并检测了气相和颗粒相中的多环芳烃(PAHs)的浓度。兰州市区大气中多环芳烃(PAHs)的分布存在明显的季节特征。16种多环芳烃(PAHs),总量的平均浓度冬季最高,明显高于其他三个季节。低环PAHs主要集中在气相,而高环PAHs则吸附在颗粒相上。
     沙尘天气发生时,大气颗粒物中多环芳烃的浓度显著上升,远远高于非沙尘天气期间,说明沙尘天气对兰州地区大气的多环芳烃浓度大小有直接的影响。在所分析的3种气象条件中,降水能够明显降低TSP中多环芳烃(PAHs)的浓度。非采暖期TSP和气相中的多环芳烃(PAHs)的浓度随温度的升高而降低,采暖期TSP和气相中的多环芳烃(PAHs)的浓度与温度没有明显的相关性。采暖期风速的增加,会导致TSP和气相中多环芳烃(PAHs)的浓度的下降,而非采暖期TSP和气相中不同环数的多环芳烃(PAHs)和风速大小之间的关系存在差异。
     通过特征分子比值法和主成分分析法推断出兰州市大气中PAHs的来源是燃烧源和石油源混合的结果,为混合输入型。
     以黄河兰州段11个不同采样点3种多环芳烃的监测浓度及其对6-38种水生生物的LC50为基础资料,分别应用商值法、概率密度函数重叠面积和联合概率曲线3种风险评价方法对黄河兰州段苯并[a]芘、荧蒽、芘的生态风险进行了评价。结果表明:黄河兰州段3种PAHs残留具有一定的生态风险。其中低暴露风险条件下(受威胁生物不超过1%),苯并[a]芘的风险性较大,荧蒽次之,芘风险相对较低;反之,在较高风险区间(约3%以上生物受到危害),危害化合物的影响大小顺序变为:芘>苯并[a]芘>荧蒽。通过对不同方法及评价结果的分析表明,联合概率曲线方法更适合于黄河兰州段PAHs的风险表征。
     近年来黄河兰州段的多环芳烃污染日渐严重。为研究黄河兰州段水体中多环芳烃类有机污染物对人体产生的潜在健康危害风险,根据黄河兰州段2004年11个采样点水质监测数据,应用美国环境保护局(USEPA)的健康风险评价方法对黄河兰州段多环芳烃类有机污染物通过饮水和皮肤接触2种途径进入人体的健康风险进行了初步评价。结果表明:黄河兰州段多环芳烃类有机污染物的非致癌风险指数均小于1,苯并[a]芘的致癌风险指数在10-4数量级以下;从位于西固八盘峡的1号采样点(S1)采集的水样中苯并[a]芘的致癌风险值偏高;在所有采样点中,西固八盘峡的1号采样点(S1)污染较重,具有较高的健康风险;与国内其他地区相比,黄河兰州段苯并[a]芘致癌风险亦较高。常规的自来水处理工艺不能有效地去除源水中微量PAHs等有机污染物,因此地面水特别是饮用源水PAHs污染具有较大的健康风险。
     在参照国外相关标准基础上,对兰州地区表层土壤PAHs进行区域环境风险评价。按照荷兰风险评价标准,兰州地区表层土壤萘、荧蒽超标严重,屈和茚并[1,2,3-cd]芘亦超标,ZPAH超标严重。
     运用逸度方法构建了兰州地区的III Level多介质逸度模型,对苯并[a]芘、荧蒽、芘在兰州地区不同环境相的迁移、转化和归宿进行了模拟研究。结果表明:大气的平流输入和化石燃料燃烧是该区域苯并[a]芘、荧蒽、芘的主要来源,土壤是苯并[a]芘、荧蒽、芘最大的储库,占总残留量的90%以上;土壤、大气中降解和随大气平流输出是苯并[a]芘、荧蒽、芘在兰州地区环境中的主要输出途径。系统内部最重要的跨界面迁移方式是气地和气水界面的交换。模型计算浓度与同期实测浓度吻合较好,验证了模型的可靠性,并通过灵敏度分析,确定了模型的关键参数。
Polycyclic aromatic hydrocarbons (PAHs) is a group of ubiquitous persistent toxic compounds, PAHs are mainly originated from incomplete combustion of fossil fuel and biomass. Lanzhou is an important industrial city in the northwest of China, and the fuel consumption in the Lanzhou area is mainly from coal, from which PAHs pollution can't be neglected. By now, the source, state, and multimedia environmental fate or behavior of PAHs hadn't been elucidated. Hence, air samples were collected using an improved high volume active air sampler August,2008 to July,2009 in Lanzhou City. Concentrations of polycyclic aromatic hydrocarbons(PAHs) in both gas and particle phases were measured. The distribution of PAHs in atmosphere of Lanzhou city has obviously seasonal characteristics. The average concentration of the sixteen kinds of PAHs in winter was highest, obviously higher than the other three seasons. Lower ring PAHs dominated in the gas phase, while the major higher ring PAHs were adsorbed on particle phase.
     When dust weather occurred, PAHs concentrations in TSP will increase significantly, much higher than non-dust weather. It is indicated that dust weather have direct effect on PAHs concentration of air in the Lanzhou area. Regarding to the meteorological parameters, precipitation distinctly lowered the PAHs concentration in TSP; in non-heating period, PAHs concentrations in both TSP and gas fall with the temperature goes up, but there is no obvious relation between concentration and temperature in heating period; the increase of wind speed causes the decrease of PAHs concentrations in both TSP and gas in the heating period, but relation between PAHs concentrations in both TSP and gas and wind speed varied with aromatic rings of PAHs and levels of wind speed in the non-heating period.
     Diagnostic ratios of some individual PAHs and principal component analysis were applied for qualitative source apportionment. According to above-mentioned analytical result, PAHs in atmosphere environment in Lanzhou originated both from combustion sources and the petrogenic source, showing a mixed PAHs input pattern.
     Based on the observed concentrations of polycyclic aromatic hydrocarbons in 11 surface water samples from the Lanzhou reach of the Yellow River and LC50 values of 6-38 of aquatic organisms, the quotient method and two probabilistic risk approaches were adopted to characterize ecological risks of benzo[a]pyrene, fluoranthene, and pyrene in water from the Lanzhou reach of the Yellow River. The results indicated that three residual PAHs carries some ecological risk. While at the lower exposure level (percent of species affected less than 1%), ecological risk of benzo[a]pyrene is the highest and that of pyrene was the lowest. Conversely, at the higher exposure level (percent of species affected more than 3%), the ecological risk of 3 individual PAHs followed the order of pyrene >benzo[a]pyrene> fluoranthene. In addition, comparing the results among the three approaches, the joint probability curve was the most appropriate method for risk characterization of PAHs in the Lanzhou reach of the Yellow River.
     The polycyclic aromatic hydrocarbons (PAHs) pollution of the Lanzhou reach of the Yellow River has been more and more serious in recent year. In order to investigate potential health risk to human bodies caused by organic pollutants of polycyclic aromatic hydrocarbons in waters there, based on water quality monitoring data from 11 sampling sites in the Lanzhou reach of the Yellow River in 2004, a preliminary assessment of the health risk caused by ingestion from drinking water and dermal contact with shower water was performed by using a health risk method of US EPA. The results showed that the non-carcinogenic risk indexes of organic pollutants of polycyclic aromatic hydrocarbons were far below 1. The carcinogenic risk index of benzo[a]pyrene was below 10"4. The carcinogenic risk value of benzo[a]pyrene at sampling site 1(S1) located in the Bapan Gorge of Xigu district was relatively high. Among all the sampling sites, the sampling site 1(S1) in the Bapan Gorge of Xigu district was the most heavily polluted, and might carry a higher health risk. Compared with other regions in China, the carcinogenic risk value of benzo[a]pyrene in the Lanzhou reach of the Yellow River were higher. The routine treatment technology of tap water can not remove effectively the trace organic pollutants (such as PAHs, etc). Therefore, the PAHs pollution of surface water carries a great health risk, especially when surface water is used as a drinking-water resource.
     Based on some foreign standards of soil PAHs assessment, regional environment risk assessment of topsoil PAHs in the Lanzhou area was done. Naphthalene, fluoranthene, chrysene and indeno[123-c,d]Pyrene in the topsoil of the Lanzhou area are exceed the standard of Holland.
     A level III fugacity model was used to calculate the transfer, transport, and fate of benzo[a]pyrene, fluoranthene, and pyrene in different compartments in the Lanzhou area. The results indicated that: advection inflows in air and combustion of fossil fuel were the major sources of benzo[a]pyrene, fluoranthene, and pyrene in this area, and soil was the largest storage of benzo[a]pyrene, fluoranthene, and pyrene, accounting for more than 90% of the total amount of residual. Degradations in soil, air, and advection outflow of atmosphere were main route of output. The transfer of between air to soil, and air to water surface is the most important transfer process among different compartments. The reliability of the model was verified by the coincidence of the calculated and the measured concentration in the same period. The key model parameters were identified through sensitivity analysis.
引文
Ao, J T Chen J W, Tian F L, et al., Application of a level IV fugacity model to simulate the long-term fate of hexachlorocyclohexane isomers in the lower reach of Yellow River basin, China [J]. Chemosphere,2009,74(3):370-376
    Azuma H, Toypla M, Asakawa Y, et al., Naphthalene-A constituent of Magnolia flowers [J]. Phytochemistry,1996,42(4):999-2004
    Back S 0, Field R A, Goldstone M E, et al., A review of atmospheric polycyclic aromatic hydrocarbons: source, fate and behavior [J]. Water, Air, and Soil Pollution,1991,60,279-300.
    Bae S Y, Yi S M, Kim Y P. Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea [J]. Atmospheric Environment,2002,36(35):5461-5500
    Baek S O, Field R A, Goldstone M E, et al., A review of atmospheric polycyclic aromatic hydrocarbons:source, fate and behavior [J]. Water, Air, and Soil Pollution,1991,60(3-4):279-300 Baker K H, Herson D S. Bioremediation. McGraw-Hill, Inc. New York,1994
    Behymer T D, Hites R A. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash [J]. Environmental Science Technology 1988,22(11):1311-1319
    Beyer A, Mackay D, Matthies M, et al., Assessing long-range transport potential of persistent organic pollutants [J].Environmental Science Technology,2000,34(4):699-703
    Bintein S, Devillers J. The environmental fate of lindane in France [J]. Chemosphere,1996,32(12): 2427-2440
    Bocio A, Llobet J M, Domingo J L. Human Exposure to Polychlorinated biphenyl Ethers through the Diet in Catalonia, Spain [J]. Journal of Agricultural and Food Chemistry,2004,52(9): 1769-1772
    Boehm P I, Farrington J. Aspects of the polycyclic aromatic hydrocarbons geochemistry of recent sediments in the Georges Bank region [J]. Environmental Science Technology,1984,18(11): 840-845
    Boffetta P, Jaurenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons [J]. Gancer Causes Control,1997,8(3):444-472
    Bright D A, Dushenko WT, Grrundy SL, et al., Evidence for short-range transport of polychlorinated biphenyls in the Canadian Arctic using congener signatures of PCBs in soils[J]. The Science of the total Environment,1995,160-161:251-263
    Bruinsma O S L, Moulijin J A. The polycyclic formation of polycyclic aromatic hydrocarbons from benzene, toluene, ethylbenzene, styrene, phenylacetylene and n-decane in relation to fossil fuel combustion [J].Fuel Process technology,1988,18(3):213-216
    Buehler S S, Hites, R A. The great lakes’integrated atmospheric deposition network [J]. Environmental Science Technology,2002,36(17):354A-359A
    Calmaari F, Vihgi M, Bacci E. The Use of Terrestrial Plant Biomass As a parameter in the Fugacity Model. Chemosphere,1987,16:(10-12):2359-2364.
    Castellano A V, Cancio J L, Aleman PS, et al., Polycyclic aromatic hydrocarbons in ambient air particles in the city of Las Palmas de Gran Canaria [J]. Environment International,2003,29(4): 475-480 Catania P. China's rural energy system and management [J]. Applied Energy.1999,64:229-240
    Colombo J C, Pelletier E, Brochu C, et al., Determination of hydrocarbon sources using n-Alkane and polyaromatic hydrocarbon distribution indexes Case study: Rio de La Plata estuary, Argentina [J]. Environmental Science Technology,1989,23(7):888-894
    Connell D W, Wu R S S, Richardson B J, et al., Fate and risk evaluation of persistent organic contaminants and related compounds in Victoria Harbour [J].Chemosphere,1998,36(9):2019-2030 Cook J W, Hewett C. L, Hieger I. The Isolation of a Cancer-producing Hydrocarbon from Coal Tar [J]. Journal of the Chemical Society,1933:395
    Costantino J P, Redmond G K, Bearden A. Occupationally related cancer risk among coke oven workers: 30 years of follow-up [J]. Journal of Occupational and Environmental Medicine,1995, 37(5):597-604
    Cousins I T, Beck A J, Jones K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface [J]. The Science of the Total Environment,1999,228(1):5-24
    Cretney J R, Lee H K, Wright G J, et al., Analysis of polycyclic aromatic hydrocarbons in air particulate matter from a lighty industrialized urban area [J]. Environmental Science Technology, 1985,19:397-404
    Diamond M, Mackay D, Cornett R, et al., A model of the exchange of inorganic chemicals between water and sediments [J]. Environmental Science and Technology,1990,24(5):713-722
    Diamond M L, Mackay D, Welboum M. Models of multi-media partitioning of multi-species chemicals: The fugacity/aquivalence approach [J]. Chemosphere,1992,25(12):1907-1921
    Diamond M L, Priemer D A, Law N L. Developing a multimedia model of chemical dynamics in an urban area [J]. Chemosphere,2001,44(7):1655-1667
    Di Guardo A, Calamari D, Zanin G, etal., AGRIFUG:Previsione dellae contaminazione diacqua superficiali con un modello seuqenziale di fugacita [J]. Ingengeria Ambientale,1993,22(7/8): 386-394.
    Dimitroulopoulou C, Ashmore M R, Byrne M A, et al, Modelling of indoor exposure to nitrogen dioxide in the UK [J]. Atmospheric Environment,2001,35(2):269-279
    Diana J, Freeman, Frank, C R, Cattell. Wood burning as a source of atmosphere polycyclic aromatic hydrocarbons [J].Environmental Science Technology,1990,90(24):1581-1585
    Doll R. The causes of death among gas-workers with special reference to cancer of the lung [J]. British Journal of Industrial Medicine,1952,9:180-185
    Doll R, Fisher R E w, Gammon E J, et al., Mortality of gas workers with special reference to cancers of the lung and bladder, chronic bronchitis, and pneumoconiosis [J]. British Journal of Industrial Medicine,1965,22:1-12
    Doll R, VesseuM P, Fisher R E W, et al., Mortality of gas workers-final report of a prospective study [J]. British Journal of Industrial Medicine,1972,29(4):394-406
    EC.1996. EUSES, the European Union System for the Evaluation of Substances. National Institute of Public Health and the Environment (RIVM),The Netherlands[available from European Chemicals Bureau (EC/DGXI), Ispra, Italy
    Edwards N T. Polycyclic aromatic hydrocarbons in the terrestrial environment a review [J]. Journal of Environment Quality,1983,12:427-441
    Efroymson R A, Murphy D L. Estimating exposure Ecological risk assessment of multimedia hazardous air pollutants: and effects [J]. Science of the Total Environment,2001,274(1-3):219-230 Fang G C, Chang C N, Wu Y S, et al., Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung [J]. Science of the Total Environment,2004,327(1/3):135-14
    Frank A S,2001. human exposure model comparison study: state of play [J]. Land contamination reclamation,9(1):101-106
    Gassett J W, wiesler D P, Baker A G, Volatile compounds from the fore Head region of male white-tailed deer (Odocoileus virginianus) [J]. Journal of Chemical ecology,1997,23 (3):569-578
    Greenberg A, Bozzelli J W, Cannova F, et al., Correlation between lead and coroene at urban, suburban and industrial sites in New Jerrsey [J]. Environmental Science Technology,1981,17: 895-902
    Golomb D, Ryan D, Underhill J, et al., Atmospheric deposition of toxics onto Massachusetts Bay-II. Polycyclic aromatic hydrocarbons [J]. Atmospheric Environment,1997 31(9):1361-1368
    Golomb D, Barry G, Fisher G, et al., Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters [J]. Atmospheric Environment,2001,35(36):6245-6258.
    Guo Z G, Sheng L F, Feng J L, et al., Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China [J]. Atmospheric Environment,2003,37(13):1825-1834
    Harrad S, Wijesekera R, Hunter S, et al., Preliminary Assessment of U.K. Human Dietary and Inhalation Exposure to Polybrominated biphenyl Ethers [J]. Environmental Science Technology, 2004,38(8):2345-2350
    Harrison, R M, Smith, D J T, Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K [J]. Environmental Science and Technology,1996,30(3):825-832.
    Henry R C Lewis G W, Hopke P K, et al., Review of receipt modeling fundamentals [J]. Atmospheric Environment,1984,18:1507-1515
    Kennaway E L. Further Experiments on Cancer-producing Substances [J]. Biochemical Journal, 1930,24:497
    Heuvelink G B, Burrough P A. Error propagation in cartographic modeling using Boolean logic and continuous classification [J]. International Journal of Geographical Information Systems,1993,7: 231-246
    Holysh M, Paterson S, MacKay D. Assessment of the fate of linear alkbenzensulphonates [J]. Chemosphere,1986,20:153-170
    Hong H S, Xu L, Chen J C, et al., Environmental Fate and Chemistry of Organic Pollution in the Sediment of Xinmen and Victoria Barbour [J].Marine Pollution Bulletin 1995,31:229-236
    Howsam M, Jones K C. Sources of PAHs in the environment In: Neilson AH(Ed) The hand book of environmental chemistry. Vol.3, Part Ⅰ, PAHs and related compounds, New York: Springer.1998 137-174
    Hunga H, dun C L, Wania F, et al., Measuring and simulating atmospheric concentration trends of polychlorinated biphenyls in the Northern Hemisphere [J]. Atmospheric Environment,2005,39(35): 6502-6512
    IARC,1983. Evaluation of the carcinogenic risk of chemicals to humanS-polycyclic aromatic compounds. Part one: chemical, environmental and experimental data. Volume 32. World Health Organization, Lyons, France
    Jacobs C M J, Van Pui W A J. In: Long-range atmospheric transport of persistent organic pollutants, I: description of surface atmospheric exchange modules and implementation in EUROS, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, Report no.722401013, 1996
    Jager T, Vermeire T G, Rikken M G J, et al., Opportunities for a probabilistic risk assessment of chemicals in the European Union [J]. Chemosphere,2001,43(2):257-264
    Jaklin J, Krenmary P. A routine method for the quantitative determination of polycyclic aromatic hydrocarbons in urban air [J]. International journal of environmental analytical chemistry,1985, 21(1-2):33-42
    Jianmin M, Daggupaty S, Harner T, et al., Impacts of Lindane usage in the Canadian Prairies on the Great Lakes Ecosystem.-modeled fluxes and loading to the Great Lakes [J]. Environmental Science Technology,2004,38(4):984-990
    Jones, K C, Grimmer G, Johnston A E. Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland over the last century from one site in the U.K. [J] Science of the Total Environment,1989a,78:117-130
    Jones K C, Stratford J A, Waterhouse, K S, et al., Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons [J]. Environmental Science Technology,1989b,23(5):540-55
    Jury W A, Spencer W F, Farmer W J. Behavior assessment model for trace organics in soil I, Model description [J]. Journal of Environmental Quality,1983,12(4):558-563
    Kagan J, Wang T P, Benight A S, et al., The phototoxicity of nitro polycyclic aromatic hydrocarbons of environmental importance [J]. Chemosphere,1990,20(5):453-466
    Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments [J]. Water Research,1979,13(3):241-248
    Karickhoff S W. Semi-empirical estimates of sorption of hydrophobie pollutants on natural sediments and soil [J]. Chemosphere,1981,10:833-849
    Karman, C C, Reerink H G, Dynamic assessment of the ecological risk of the discharge of produced water from oil and gas producing platforms [J]. Journal of Hazardous Materials,1998,61(1-3): 43-51
    Kennicutt M C, Wade T L, Presley B J, et al., Sediment contaminants in Casco Bay:inventories, sources and potential for biological impact [J]. Environmental Science Technology,1994,28(1): 1-15
    Keith L H, Telliard W A. Priority pollutants: I-a perspective [J]. Environmental Science Technology,1979,13(4),416-423
    Lang C, Tao S, Wang X J, et al., Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China [J]. Atmospheric Environment,2007 41(37):8370-8379
    Larsen R K, Baker J E. Source Apportionment of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere: A Comparison of Three Methods [J]. Environmental Science Technology,2003,37(9): 1873-1881
    Latlammc R L, Hites R A. The global distribution of PAHs in recent sediments [J]. Geochinica et Cosmochinica Acta,1978,42(3):289-303
    Lee L M, Vassilaros L M, Aouglasr W L. Capillary column gas chromatography of environmental polycyclic aromatic compounds [J].Internal Journal of Environmental Analysis Chemistry,1982, 11(4):251-262
    Lloyd J W, Lundin P E, Redmond C K, et al., Long term mortality study of steelworkers. IV Mortality by work area [J]. Journal of Occupational Medicine,1970,12(5):151-157
    Lobscheid A B, Maddalena R L, Mckone T E. Contribution of locally grown foods in cumulative exposure assessments [J]. journal of exposure Analysis and environmental epidemiology,2004, 14(1):60-73
    Macdonald R W, Barrie L A, Bidleman T F, Contaminants in the Canadian Arctic: 5 years of progress in understanding sources occurrence and pathway [J]. The Science of the Total Environment,2000,254(2-3):93-204
    Macleod M., Mackay D. An assessment of the environmental fate and exposure of benzene and the chlorobenzenes in Canada [J]. Chemosphere,1999,38(8):1777-1796
    Mackay D. Finding fugacity feasible [J]. Environmental Science Technology,1979,13(10): 1218-1223
    Maekay D, Paterson S. Calculating fugacity [J]. Environmental 5cienee and Technology,1981, 15(9):1006-1014
    Mackay D, Paterson S. Fugacity Revisited [J]. Environmental Science Technology,1982,16(12): 654A-660A
    Mackay D, Joy M, Paterson S. A Quantitative Water, Air, Sediment Interaction (QWASI) Fugacity Model for Describing the Fate of Chemicals in Lakes [J].Chemosphere,1983,12(7-8):981-997
    Mackay D, Paterson S. Model describing the rate of transfer processes of organic chemicals between atmosphere and water [J]. Environmental Science Technology,1986,20(8):810-816
    Mackay D, Diamond M. Application of the QWASI fugacity model to the dynamics of organic and inorganic chemicals in lakes [J]. Chemosphere,1989,18(7-8):1343-1365
    Mackay D, Paterson S.1990,1992. Development of a fugacity model for assessing chemical fate in Canada. Report prepared for the Health Protection Branch of Health and Welfare Canada
    Mackay D. Multimedia environmental Models: the fugacity approach [M]. Levis Publishers, Chlelsea MI, USA,1991
    Mackay D, Paterson S. Evaluating the multimedia fate of organic chemicals:A level III fugacity model [J]. Environment Science Technology,1991,25(3):427-436
    Mackay D, Shiu W, Ma K.1992. Illustrated Handbook of Physical-Chemical Properties and Environment Fate for Organic Chemicals. Volume II: 59-245.FL:Lewis Publishers
    Mackay D, Shiu W Yand, K C. Illustrated handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol.2 Polynuclear Aromatic 1-lydrocarbons, Polychlorinated Dioxins and Dibenzofurans. Lewis Publishers. Boca 12aton, FL.1992.
    Mackay D, Hickie B. Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec [J]. Chemosphere,2000,41(5):681-692
    Mackay D. Multimedia Environmental Models: The Fugacity Approach [M]. second edition, CRC Press,2001
    Mackay D. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals [M]. second edition, CRC Press,2006.
    Malins D C, Hodgins, H O.Petroleum and Marine Fishes: A Review of Uptake, Deposition and Effects[J]. Environment Science Teclnology,1981,15:1272-1280
    Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis [J]. RAC-Trends in Analytical Chemistry,1999,18(6):417-428
    Manoli E, Kouras A, Samara C. Profile analysis of ambient and source emitted Particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece [J]. Chemosphere,2004,56 (9):867-878
    Margni M, Pennington D W, Amman C, et al., Evaluating multimedia/multi pathway model intake fraction estimates using POP emission and monitoring data [J]. Environmental Pollution,2004, 128(1-2):263-277
    McKone T E.1993. CALTOX, A Total-Exposure Model for Hazardous-Wastes Sites. Lawrence Livermore National Laboratory, Livermore, CA(UCRL-CR-11456PTI)
    Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environmental Science Technology,1992,26(7):1278-1283
    Motelay-Massei A, Ollivon D, Garban B et al., Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France [J]. Chemosphere,2004,55 (4):555-565. Miton L L. Analytical chemistry of Polycyclic Aromatioc Compound. INC,1981,17-40
    Naito W, Bartell K I. Application of chemicals for a Japanese an Miyamoto, Junko Nakanishi, Shigeki Masunaga, Steven ecosystem model for aquatic ecological risk assessment lake [J]. Water Research,2002,36(1):1-14
    NAS (National Academy of Sciences).1983. Polycyclic Aromatic Hydrocarbons: Evaluation of sources and effects. Committee on Pyrene and Selected Analogues. Board on Toxicology and Environmental health hazards; Commission on Life Sciences, National Research Council, NAS, Washington, DC
    NAS (National Academy of Sciences).1991. Human Exposure Assessment for Airbone Pollutants: Advances and Opportunities. National Academy Press. Washionton, DC
    Neff J M, Richards N L, Jackson B. L. Environment Protection Agency Polycyclic aromatic hydrocarbons in the aquatic environment and cancer risk to aquatic organisms and man [J]. Carcinogenic polynuclear aromatic hydrocarbons in the marine environment,1982,385-409
    Penniugton DW, Amman C, Pelichet T, Margni M, et al., Spatial multimedia chemical fate and human exposure modeling: General and Western Europe scenario carcinoma: results from a case-control study in the district of Prievidza, Slovakia [J]. American Journal of Epidemiology, 2002,155(9):798-809
    Pio, C A, Alves C A, Duarte A C. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area [J]. Atmospheric Environment,2001,35(8):1365-1375
    Pretty G C, Gerbec P E, Livingston S K, et al., An Indexing System for Comparing Toxic Air Pollutants Based upon Their Potential Environmental Impacts. Chemosphere,1993,27(8): 1359-1379
    Prevedouros K, Macleod M., Jones K C, et al., Modeling the fate of persistent organic pollutants in Europe:parameterization of a gridded distribution model [J].Environmental Pollution,2004, 128(1/2):251-261
    Reilley K A, Banks MK, Schwab A R. Organic Chemicals in the Environment Dissipation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere [J]. Journal of Environmental Quality 1996, 25:212-219
    Reisen F, Arey J. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene [J]. Environmental Science Technology,2002,36(20):4302-4311
    Reynaud S, Deschaux, P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review [J]. Aquatic Toxicology,2006,77(2):229-238
    Sexton K, Kleffman D, Callaltan M. An introduction to the national human exposure assessment survey [J]. Journal of Exposure Analysis and Environmental Epidemiology,1995,5:229-232
    Sharma H, Jain V K, Khan Z H. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi [J]. Chemosphere,2007,66(2):302-310
    Sharpe S, Mackay D. A Framework for Evaluating Bioaccumulation in Food webs [J]. Environmental Science technology,2000,34(12); 2373-2379.
    Shcrmam K W, Reishcl A, Hutzinger O. UNIT Tree A multimedia compartment model to estimate the fate of lipophilic compounds in Plants [J]. Chemosphere,1987,16(10-12):2653-2663
    Simick M F, Eisenreich S J, Lioy P J. Source appointment and soureelsink relationships of PAHs in the: coastal atmosphere of Chicago and lake Michigan [J]. Atmospheric Environment,1999,33(30): 5071-5079
    Simonich S L, Hites R A. Organic pollutant accumulation in vegetation [J]. Environmental Science Technology,1995,29(12):2905-2914
    Simpson C D, Mosi A A, Cullen W R, et al., Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor Canada[J]. Science of the Total Environment,1996,181(3):265-278
    Sims R C, Overcash M R. Fate of Polynuclear Aromatic Compounds (PNAs) in Soil-Plant Systems [J]. Residue Review,1983,88:1-68
    Smith D J T, Edelhauser E C, Harrison R M. Polynuclear aromatic hydrocarbons concentrations in road dust and soil samples collected in the United Kingdom and Pakistan [J]. Environment Technology,1995,16:45-53
    Smith J R, Egbe M E, Lyman W L. Bioremediation of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. In Bioremediation of contaminated Soil, No.37, Adriano D C, Bollag J M, Frankenberger Jr W T and Sims R C(editors), American Society of Agronomy, Madison, Wl. pp. 665-713
    Thomann K V, Ditoro D. Great lakes model [J]. Journal of great lakes research,1983,9:474-496.
    Tsai P J, Shieh H Y, Lee W J, et al.Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry[J]. The Science of the Total Environment,2001,278:137-150
    Tsai P J, Shieh H Y, Lee W J, et al. Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces [J]. Journal of Hazardous Materials,2002, A91:25-42
    USEPA.1984. Health assessment for Polycyclic Aromatic Hydrocarbons (PAHs). EPA /540/1-R6-013. USEPA Research and Development office of Health and Environmental Assessment Environmental Criteria and Assessment Office Cincinnati, OH 45268
    USEPA,1998. Locating and estimating air emissions from sources of polycyclic organic matter SPA-45418-98-014.USEPA Office of Air Quality Planning and standards. Washington DC
    Van Brummelen T C, Van Hattum B, Crommentuijn T, et al.,Bioavailability and ecotoxicity of PAHs. In: Neilson AH Ed The hand book of environmental chemistry. Vol 3. Part J. PAHs and related compounds New York: Springer,1998,203-215
    Vione D, Barra S De, Gennaro G, et al., Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. Ⅱ: Sinks and fate. Annali di Chimica Journal of Analytical, Environmental, and Cultural Heritage Chemistry (Rome),2004,94,257-268
    Wania F, Mackay D, A global distribution model for persistent organic chemicals [J]. The Science of the Total Environment,1995,161:211-232
    Wania F, Daly G L. Estimate the contribution of degradation in air and deposition to the deep sea to the global loss of PCBs [J]. Atmospheric Environment,2002,36(36-37):5581-5593
    Warren C S, Mackay D, Bahadur N P, et al., A suite of multi-segment fugacity modes describing the fate of organic contaminants in aquatic system [J] Water Research,2002,36(17):4341-4355
    White P A, Claxton L D. Mutagens in contaminated soil: a review [J]. Mutation Research-Reviews in Mutation Research,2004,567 (2-3):227-345.
    Wilcke W, Lilicnfein J, Lima S D, et al., Contamination of highly weathered urban soils in Uberlandia, Brazil [J]. Journal of Plant Nutrition and Soil Science,1999a 162(5):539-548
    Wilcke W, Muller S, Kanchanakool N, et al., Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok [J]. Geoderma,1999b,91 (3-4):297-309
    Wilcke W, Muller S, Kanchanakool N,rt al., Urban soil contamination in Bangkok concentration and patterns of polychlorinated biphenyls(PCBs) in top soils [J]. Australian Journal of Soil Research,1999c,37(2) 245-254
    Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) in soil a review [J]. Journal of Plant Nutrition and Soil Science,2000,163 (3):229-248
    Wild S R, Jones, K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment-A preliminary source inventory and budget [J].Environmental Pollution,1995,88(1):91-108 18
    Xu S S, Liu W X, Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environment Science Technology,2006,40(3):702-708 Yuan H S, Li B G, Tao S, Fang J Y, et al, Emission of polycyclic Aromatic Hydrocarbons from Wildfires in China from 1996 to 2002. To be submitted
    Yoshida K, Shigeoka T, Yamauchi F. Mufti-phase Un-steady State Equilibrium Model for evaluation of environmental fate, of organic chemicals [J]. Toxicological and Environmental Chemistry,1987,15:159-183.
    Yunker, M B, Macdonald, RW, Vingarzan, R, et al., PAHs in the Fraser River basin: a critical appraisal PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry,2002, 33(4):489-515
    Zedeek M S, Polycyclic Aromatic Hydrocarbons: A Review [J]. Journal of Environment Pathology and Toxicology,1980,3:537-567
    Zhang X L, Tao S, Liu W X, et al., Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach [J]. Environment Science and Technology,2005,39 (23): 9109-9114
    Zhang Y, Zhao B. Simulation and health risk assessment of residential particle pollution by coal combustion in China [J]. Building and Environment,2007,42(2):614-622
    摆亚军.环渤海西部地区地表水多环芳烃污染特征[D].北京:北京大学,2008
    曾凡刚,彭林,李剑等.兰州市大气总悬浮颗粒物中有机污染物分布特征及来源[J].岩矿测试,2002,21(2):125-128.
    程元恺,杨宪桂主编.环境致癌物—多环芳烃研究[M].北京:中国科学技术出版社,1990戴树桂.环境化学[M].北京:高等教育出版社,1997
    段刚,刘晓海.环境风险评价构架的探讨[J].四川环境,2005,24,(4):59-66
    段永红.天津表土中多环芳烃的分布与源汇关系[D].北京:北京大学,2005
    冯承莲,雷炳莉,王子健.中国主要河流中多环芳烃生态风险的初步评价[J].中国环境科学,2009,29(6):583-588
    郭淼,陶澍,杨宇等.天津地区人群对六六六的暴露分析[J].环境科学,2005,26(1):164-167
    胡望钧.常见有毒化学品环境事故应急处置技术与监铡方法[M].北京:中国环境科学出版社,1993
    郎畅.珠江三角洲多环芳烃归趋与输出模拟[D].北京:北京大学,2008
    历曙光,潘定华,汪国雄.食油及其加热过程中的Bap, DBahA含量分析[J]上海环境科学,1991,10(9):35-36
    李全林.利用多介质逸度模型研究天津、太湖地区DDTs环境归宿[D].北京:北京大学,2004
    李新荣,李本纲,陶澍等.天津地区人群对多环芳烃的暴露[J].环境科学学报,2005,25(7):989-993
    李新荣.天津地区多环芳烃排放、扩散和人群暴露的空间分异[D].北京:北京大学,2007
    李新荣,赵同科,于艳新等.北京地区人群对多环芳烃的暴露及健康风险评价[J].农业环境科学学报,2009,28(8):1758-1765
    李静,吕永龙,王铁宇,等.苯并(a)芘的环境多介质迁移和归宿模拟[J].环境工程学报,2008,2(2):280-284.
    刘振宇.辽河流域残留多氯有机物的多介质环境模拟[D].大连:大连理工大学,2005
    刘娅囡.多环芳烃的土气交换研究[D].北京:北京大学,2008
    刘书臻.环渤海西部地区大气中的PAHs污染[D].北京:北京大学,2008
    毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-273
    盂范平,吴方正.土壤的PAHs污染及其生物治理技术进展[J].土壤学进展,1995,23(1):32-42
    彭林,陈名梁,张春梅.兰州市大气飘尘中多环芳烃分布及来源判识[J].太原理工大学学报,2000,31(2):126-128.
    盛光耀,许欧泳.有机毒物暴露分析模拟系统使用手册[M].北京:中国环境科学出版社,1988
    史坚,黄成臣,徐鸿,等.杭州市大气总悬浮颗粒物中多环芳烃的HPLC分析[J]..环境化学,2003,22(6):629-630
    施治.天津地区河流系统中的多环芳烃污染[D].北京:北京大学,2003
    石璇,杨宇,徐福留,等.天津地区地表水中多环芳烃的生态风险[J].环境科学学 报,2004,24(4):619-624.
    孙慧超.大连市区部分多环芳烃(PAHs)的来源和多介质环境行为[D].大连:大连理工大学,2005
    万显烈,杨凤林.大连市区大气中PAHs来源、分布及随季节变化分析[J].大连理工大学学报,2003,43(2):160-163
    王喜龙.天津污灌区苯并[a]芘迁移、归宿及生态风险分析[D].北京:北京大学,2002
    王连生,邹惠仙,韩朔睽,等.多环芳烃分析技术[M].南京:南京大学出版社,1988
    王连生.有机污染化学下册[M].北京:科学出版社,1991
    王连生.有机污染化学[M].北京:高等教育出版社,2004
    王平.黄河兰州段典型污染物水生生态系统风险评价[D].天津:南开大学,2006
    王震.辽宁地区土壤中多环芳烃的污染特征_来源及致癌风险[D].大连:大连理工大学,2007
    王志增.河口水环境中多溴联苯醚PBDEs生态风险评价研究[D].长春:吉林大学,2009
    文君.千岛湖区域生态风险评价研究[D].杭州:浙江大学,2004
    吴水平.天津地区大气颗粒物中PAHs的含量及干沉降研究[D].北京:北京大学,2004
    吴磊.广州市二嗯英排放与POPs物质环境行为评估的研究[D].北京:北京大学,2007
    刑权大气污染与肺癌.见:蔡宏道主编现代环境卫生学[M].北京:人民卫生出版社,1995:429-432
    杨若明.环境中有毒有害化学物质的污染与监测[M].北京:中央民族大学出版社,2001
    杨建丽,刘征涛,冯流等.长江口水体中PAHs的基本生态风险特征[J].环境科学研究,2009,22(7):784-787
    殷浩文.水环境生态风险评价程序[J].上海环境科学,1995,14(11):11-14
    岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版,2003,24(3):40-44
    张永春,林玉锁,孙勤芳,等.有害废物生态风险评价[M].北京:中国环境科学出版社,2002、
    张丽.多介质环境归趋模型研究方法[D].天津:南开大学,2005
    赵振华等著.多环芳烃的环境健康化学[M].北京:中国科学技术出版社,1993,13-17
    智昕,牛军峰,唐阵武,等.长江水系武汉段典型有机氯农药的生态风险评价[J].环境科学学报,2008,28(1):168-173
    周婷,蒙吉军.区域生态风险评价方法研究进展[J].生态学杂志,2009,28(4):762-767
    朱琳,佟玉洁.中国生态风险评价应用探讨[J].安全与环境学报,2003,3(3):22-24
    左谦.环渤海西部地区表土中PAHs污染[D].北京:北京大学,2007
    AN XQ, ZUO HC, CHEN LJ. Atmospheric environmental capacity of SO2 in winter over Lanzhou in China: a cases study [J]. ADVANCES IN ATMOSPHERIC SCIENCES,2007,27(4):688-699
    CHU PC, CHEN YC, LU SH, et al. Particulate air pollution in Lanzhou, China [J]. Environment International,2008,34(5):698-713
    Mackay D. Multimedia Environmental Models: The Fugacity Approach [M]. second edition, CRC Press,2001
    Mackay D. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals[M]. second edition, CRC Press,2006.
    陈根.黄河兰州段重金属和多环芳烃污染对土壤线虫生态多样性影响的研究[D].兰州:兰州大学,2009
    戴树桂.黄河兰州段典型污染物迁移转化特性及承纳水平研究[M].北京:化学工业出版社,2006,17-190.
    邓祖琴.兰州市冬季大气颗粒物中有机污染物的分布特征及来源[D].兰州:兰州大学,2006甘肃年鉴编委会.甘肃年鉴2005[M]..北京:中国统计出版社.2005.9:140
    高建华.能源结构改变对兰州大气污染的影响[D].兰州:甘肃工业大学,2001
    兰州市环境保护局.兰州市环境质量报告书1991-1995[R] 1996.
    兰州市志[M].城建综合志.甘肃:兰州大学出版社,2002:88
    兰州市统计局.兰州年鉴2004[M].北京:中国统计出版社,2004.
    兰州市环境保护局.兰州市环境质量报告书2001-2005[M].兰州:兰州市环境保护局,2005.
    郎畅.珠江三角洲多环芳烃归趋与输出模拟[D].北京:北京大学,2008
    李静,吕永龙,王铁宇,等.苯并(a)芘的环境多介质迁移和归宿模拟[J].环境工程学报,2008,2(2):280-284.
    刘振宇.辽河流域残留多氯有机物的多介质环境模拟[D].大连:大连理工大学,2005
    马和梅.黄河兰州段水污染现状调查与防治[J].甘肃环境研究与检测,2002,15(4):303-304
    彭林,陈名梁,张春梅.兰州市大气飘尘中多环芳烃分布及来源判识[J].太原理工大学学报,2000,31(2):126-128
    孙慧超.大连市区部分多环芳烃(PAHs)的来源和多介质环境行为[D].大连:大连理工大学,2005
    陶燕.兰州市大气颗粒物理化特性及其对人群健康的影响[D].兰州:兰州大学,2009
    王喜龙.天津污灌区苯并[a]芘迁移、归宿及生态风险分析[D].北京:北京大学,2002
    王有乐,张建奎孙苑菡,等.黄河兰州市区段泥沙特性及水质预测研究[J].甘肃科技,2006,22(7):69
    王平.黄河兰州段典型污染物水生生态系统风险评价[D].天津:南开大学,2006
    汪新,安兴琴.兰州市污染物排放及能源状况分析[J].甘肃科技,2006,22(10):5-8
    徐惠,刘振全,翟钧.天然气应用对兰州大气环境的影响[J].重庆环境科学,2002,24(5):67-69.
    徐惠,翟钧,刘振全.兰州市大气环境污染现状及治理对策研究[J].环境保护科学,2003,29(119):4-5.
    许姗姗,刘文新,陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报,2005,24(3):476-479
    杨苏才,曾静静,王胜利,等.兰州市表层土壤Cu、Zn、Pb污染评价及成因分析[J].干旱区资 源与环境,2004,18(8):28-31
    杨民,丁瑞强,王式功,等.兰州市大气气溶胶的特征及其对呼吸道疾病的影响[J].干旱气象,2005,23(1):54-57.
    杨玉霞,徐晓琳.黄河兰州段水环境中多环芳烃来源解析[J].地下水,2007,29(1):20-23
    姚焕炬.基于逸度模型的持久性有机污染物多介质环境行为与生态风险研究[D].兰州:兰州大学,2009
    余晔,夏敦胜,陈雷华,等.兰州市PM1o污染变化特征及其成因分析[J].环境科学2010,31(1):22-28
    曾凡刚,彭林,李剑等.兰州市大气总悬浮颗粒物中有机污染物分布特征及来源[J].岩矿测试,2002,21(2):125-128.
    曾静静,杨苏才,徐文青,等.兰州市不同功能区表层土壤Cu,Zn,Pb污染特征分析[J].兰州大学学报(自然科学版),2007,43(1):24-28
    张存洁.兰州市空气污染现状与防治对策.甘肃环境研究与监测[J].2001,14(4):251-252 随风速水平增加而下降。
    (7)冬季采暖季大气中多环芳烃(PAHs)暴露量明显高于非采暖季。采暖期室外大气中多环芳烃(PAHs)对人体健康的影响明显大于非采暖期。在2009年3月19号至3月20号,兰州地区出现沙尘天气时大气中多环芳烃(PAHs)暴露量明显高于3月11日沙尘天气过境前和3月27日沙尘天气过境后的暴露量,沙尘天气发生时大气中多环芳烃(PAHs)对人体健康的影响明显大于非沙尘天气时。
    (8)特征化合物比值法和主成分分析法的结果显示,兰州地区大气环境中多环芳烃的来源是燃烧源和石油源混合的结果,为混合输入型。
    Caricchia, A M, Chiavarini, S, Pezza, M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples(Italy) [J].Atmospheric Environment,1999, 33(23):3731-3738.
    Daisey, J M, Leyko M A, Kneip,T J. Source identification and allocation of polynuclear aromatic hydrocarbon compounds in the New York City aerosol: methods and applications. In: ones, P.W., Leber,P. (Eds.), Polynuclear Aromatic Hydrocarbons. Ann Arbor Science: Ann Arbor,1979, pp.201-215.
    Fang, G C, Chang, C N,Wu,Y S, et al.,. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung [J]. Science of the Total Environment,2004,327,135-146
    Fraser, M P, Yue, Z W, Tropp, R J, et al., Molecular composition of organic fine particulate matter in Houston, TX [J]. Atmospheric Environment,2002,36(38):5751-5758
    Guo, H, Lee, S C, Ho, K F, et al., Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong [J].Atmospheric Environment,2003,37(38):5307-5317
    Guo, Z G, Sheng, L F, Feng,J L et al., Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China [J]. Atmospheric Environment,2003,37(13):1825-1834
    Harrison, R M, Smith, D J T, Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K[J].Environmental Science and Technology,1996,30(3):825-832
    Kumata, H, Uchida, M, Sakuma, E, et al,. Compound class specific 14C analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1.1 aerosols from residential areas of suburban Tokyo [J]. Environmental Science and Technology,2006,40(11):3474-3480
    Nielsen, T, Jorgensen, E, Larsen, J C, et al., City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects [J]. Science of the Total Environment,1996,189/190,41-49
    Nisbet C, LaGoy P. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology,1992,16:290-300
    Okuda, T, Naoi, D, Tenmoku, M, et al., Polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Beijing, China, measured by aminopropylsilane chemically-bonded stationary-phase column chromatography and HPLC/fluorescence detection [J].Chemosphere,2006,65(3):427-435
    Panther B C, Hooper M A, Tapper N J. A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments [J]. Atmospheric Environment,1999,33 (24-25):4087-4099.
    Tan, J H, Bi, X H, Duan J C, et al.,. Seasonal variation of particulate polyaromatic hydrocarbons associated with PM10 in Guangzhou, China [J] Atmospheric Research,2006,80(4):250-262
    Tang, N, Hattori, T, Taga, R, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries [J]. Atmospheric Environment,2005,39(32):5817-5826.
    Sawicki, E J. Analysis for airborne particulate hydrous, their relative proportion affected by different types of pollution[J]. National Cancer Monograph,1962,9,201-220
    Wang, G H Kawamura, Huang, L M, Zhao, X, et al., Aliphatic and polycyclic aromatic hydrocarbons of atmospheric aerosols in five locations of Nanjing urban area, China [J]. Atmospheric Research,2006,81(1):54-66
    Yassea N, Meklati B Y, Cecinato, et al., Particulate n-Alkanes, n-Alkanoic Acids and Polycyclic Aromatic Hydrocarbons in the Atmosphere of Algiers city area [J]. Atmospheric Environment,2001, 35(10):1843-1851
    Yunker, M B, Macdonald, RW, Vingarzan, R, et al., PAHs in the Fraser River basin:a critical appraisal PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry,2002, 33(4):489-515
    胡焱弟,张力,白志鹏,等.交通协警多环芳烃暴露与健康风险的初步研究[J].环境与健康杂志,2007,27(2):66-69
    李军,张干,祁士华.广州市大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学学报,2004,25(3):7-13
    刘书臻.环渤海西部地区大气中的PAHs污染[D].北京:北京大学,2008
    王式功,王金艳,周子江,等.中国沙尘天气的区域特征[J].气候与环境研究,2003,58(2):193-200
    王震.辽宁地区土壤中多环芳烃的污染特征_来源及致癌风险[D].大连:大连理工大学,2007
    吴水平.天津地区大气颗粒物中PAHs的含量及干沉降研究[D].北京:北京大学,2004
    熊胜春,陈颖军,支国瑞,等.上海市大气颗粒物中多环芳烃的季节变化特征和致癌风险评价[J].环境化学,2009,28(1):117-120
    张莉,任国玉.中国北方沙尘暴频数演化及其气候成因分析[J].气象学报,2003,61(6):744-750
    赵振华等著.多环芳烃的环境健康化学[M].北京:中国科学技术出版社,1993,13-17 的风险性相对较高,芘次之,荧蒽最低。反之,在较高风险区间(约3%以上生物受到危害),危害化合物的影响大小顺序变为:芘>苯并[a]芘>荧蒽。通过对不同方法及评价结果的分析表明,联合概率曲线方法更适合于黄河兰州段多环芳烃的风险表征。
    黄河兰州段多环芳烃类有机污染物健康风险值都在能够接受的合理范围内,故认为目前其并不会对人体健康构成明显的危害。但与国内其他地区相比,多环芳烃类的苯并[a]芘致癌风险仍较高,尤其是位于兰州市城市生活饮用水地表水源保护区范围内的西固八盘峡监测断面苯并[a]芘的致癌风险值偏高,健康危害的风险相对较大,应引起环保部门的重视,必要时建议采取相应的措施。
    CHEN BL, XUAN XD, ZHU LZ, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China [J]. Water Research,2004,38(16): 3558-3568.
    Fernandes M B, Sicre, M A, Boireau A, et al. Poly aromatic hydrocarbon (PAH) distributions in the Seine R iver and its estuary [J]. Marine Pollution Bulletin,1997,34(11):857-867
    LI G C, XIA XH, YANG ZF, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China [J]. Environmental Pollution,2006, 144(3):985-993.
    MacDonald D D, Ingersoll C G, Berger T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives of Environmental Contamination and Toxicology,2000,39:20-31.
    Mitra S, Bianchi T S. Preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico [J]. Marine Chemistry,2003,82(4):273-288
    Malik A, Singh K P, Mohan D,et al.Distribution of polycyclic aromatic hydrocarbons in Gomti River system, India[J]. Bulletin of Environmental Contamination and Toxicology, 2004,72(6):1211-1218.
    Qiao M,Wang CX, Huang SB, et al. Composition,sources,and potential toxicologyical significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China [J]. Environment International,2006,32(1):28-33
    Smith S L, MacDonald D D, Keenleyside K A, et al.A preliminary evaluation of sediment quality assessment values for freshwater ecosystems[J]. Jouranal of Great Lakes Research,1996,22(3): 624-638.
    U.S.EPA. Risk assessment guidance for superfund (Volume Ⅰ) human health evaluation manual, EPA/540/1-89/002 [R]. Washington: Office of Emergency and Remedial Response,1989.
    U.S.EPA. Guidelines for exposure assessment[R].FRL4129-5Washington DC: Office of Health and Environmental Assessment, U. S.EPA,1992.
    USEPA. A Case Study Residual Risk Assessment for EPA's Science Advisory Board Review Secondary Lead Smelter SourceCategory Volume Ⅰ: Risk Characterization [R]. North Carolina: 2000,68-D6-0065.
    WANG XL,Tao S, Dawson R W, et al.Characterizing andcomparing risks of polycyclic aromatic hydrocarbons in a Tianjinwastewater-irrigated area[J]. Environment Research,2002,90:201-206.
    曾光明,卓利,钟政林,等.水环境健康风险评价模型及其应用[J].水电能源科学,1997,15(4):28-33.
    曾光明,卓利,钟政林,等.水环境健康风险评价模型[J].水科学进展,1998,9(3):212-217.
    戴树桂.黄河兰州段典型污染物迁移转化特性及承纳水平研究[M].北京:化学工业出版社,2006,17-190.
    冯承莲,夏星辉,周追,等.长江武汉段水体中多环芳烃的分布及来源分析[J].环境科学学报2007,27(11):1900-1908.
    冯承莲,雷炳莉,王子健.中国主要河流中多环芳烃生态风险的初步评价[Jl.中国环境科学,2009,29(6):583-588
    郭志顺,罗财红,张卫东,等.三峡重庆库区PAHs污染研究[J].四川大学学报,2006,43(6):1337-1340.
    罗雪梅,刘昌明,何孟常.黄河沉积物中多环芳烃的分布特征及来源分析[J].环境科学研究,2005,18(2):48-50.
    马和梅.黄河兰州段水污染现状调查与防治[J].甘肃环境研究与检测,2002,15(4):303-304.
    石璇,杨宇,徐福留,等.天津地区地表水中多环芳烃的生态风险[J].环境科学学报,2004,24(4):619-624.
    王平.黄河兰州段典型污染物水生生态系统风险评价[D].天津:南开大学,2006
    杨宇,石璇,徐福留,等.天津地区土壤中萘的生态风险分析[J].环境科学,2004,25(2):115-118
    杨玉霞,徐晓琳.黄河兰州段水环境中多环芳烃来源解析[J].地下水,2007,29(1):20-23.
    张映映,冯流,刘征涛.长江口区域水体半挥发性有机污染物健康风险评价[J].环境科学研究,2007,20(1):18-23.
    智昕,牛军峰,唐阵武,等.长江水系武汉段典型有机氯农药的生态风险评价[J].环境科学学报,2008,28(1):168-173
    Annokkee G J. MT2TNO Research into the Biodegradation of Soils and Sediments Contaminated with Oils and PAHs [A].In: Wolf K, Van den Brink J, Colon F J(Eds).Contaminated Soil [C]. Kluwer Academic Publishers,1990.941-945
    Bucheli T D, Blum F, Desaules A, et al. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland [J]. Chemosphere,2004,56 (11):1461-3476
    CCME (Canadian Council of Ministers of the Environment). Interim Canadian Quality Criteria for Contaminated Sites[R].In: Report CCME EPC 2CS3.Winnipeg,Manitoba,Canada,1991.26227
    Chen L G, Ran Y, Xing B S, et al. Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China [J]. Chemosphere,2005,60: 879-890
    Darmendrail D. The French Approach to Contaminated land Management [R]. BRGM/RP-510982-FR,2001.150
    Heywood E, Wright J, Wienburg C L,et al. Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils [J]. Environmental Science and Technology,2006,40 (24):7629-7635
    ICRCL. The assessment and redevelopment of contaminated land [R].ICRCL 59ⅠⅠ83,1983
    Imray P, Langley A. Health 2 based Soil Investigation Levels[C]. National Environmental Health Forum Monographs.Soil Series No.1.3rd Edition,1999
    Jones, K C, Stratford, J A, Waterhouse, K S, et al. Increases in the Polynuclear Aromatic Hydrocarbon Content of an Agricultural Soil over the Last Century [J]. Environmental Science and Technology,1989,23:95-101
    Li X H, Ma L L, Liu X F, et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing, China [J]. Journal of Environment Science,2006,18(5):944-950
    Nam J J, Song B H, Eom K C, et al. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea [J]. Chemosphere,2003,50:1281-1289
    Patterson J, Hakkinen P J, Wullenweber A E. Human health risk assessment: selected internet and world wide web resources [J].Toxicology,2002,173:123-143
    Wilcke W, Amelung W. Persistent organic pollutants in native grassland soils along a climo sequence in North America [J]. Soil Science Society of America Journal,2000,64 (6):2140-2148
    Yang Y, Zhang X X, Korenaga T. Distribution of Polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan [J]. Water, Air, and Soil Pollution,2002,138:51-60
    国家环境保护总局.工业企业土壤环境质量风险评价基准HJ/T25—1999.1999
    刘瑞民.天津表土PAHs的多元空间特征、来源分析及区域环境风险评价[D].北京:北京大学,2004
    盂范平,吴方正.土壤的PAHs污染及其生物治理技术进展[J].土壤学进展,1995,23(1):32-42
    张从,夏立江,陈光,等.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000
    模型的灵敏度分析常用相对灵敏度表示。相对灵敏度的定义如下(Mackay,2001):Sx=(ΔX/X)/(ΔP/P)
    式中:Sx:模型灵敏度因子;X:所模拟系统的状态变量;P:模型的输入参数。
    取参数增量为10%,将每个参数对各环境相的灵敏度系数的绝对值相加,对结果进行排序后得到对模型结果影响明显的参数。通过对50个主要模型输入参数的灵敏度分析发现,大气平流输入浓度、平流大气停留时间及与区域环境特征密切相关的大气高度、干沉降速率、降水速率等对各环境相中浓度有直接的影响。由此可知,对关键性模型参数可靠性的保证也是对模拟结果可靠性的保证。本研究中主要模型输入参数均为收集尽可能多的数据,可基本保证其代表性和可靠性。
    多介质三级逸度模型较好地模拟了兰州地区苯并[a]芘、荧蒽、芘的跨界面迁移与归趋行为。模拟结果表明:兰州地区苯并[a]芘、荧蒽芘的主要来源是研究区域上风向大气平流输入和本地燃烧排放、土壤是苯并[a]芘、荧蒽、芘的主要储存库;随大气平流输出和土壤中降解则是苯并[a]芘、荧蒽、芘从研究区域环境中消失的最主要途径。兰州地区苯并[a]芘、荧蒽芘的跨界面迁移与归趋行为与天津地区、环渤海西部地区、珠江三角洲地区相比存在一定的差异。
    Lang C, Tao S, Wang XJ, et al., Modeling polycyclic aromatic hydrocarbon composition profiles of sources and receptors in the Pear River Delta, China[J]. Environmental Toxicology and Chemistry, 2008,27(1):4-9
    Dimaond M, Priemer D, Law N. Developing a multimedia model of chemical dynamics in an urban area [J]. Chemosphere,2001,44(7):1655-1667.
    Mackay D. Multimedia Environmental Models: The Fugacity Approach[M]. second edition, CRC Press,2001.
    曹红英,陶澍,王喜龙等.天津地区菲的空间分异多介质归趋模型[J].环境科学,2003,24(5):54-59.
    戴树桂.黄河兰州段典型污染物迁移转化特性及承纳水平研究[M].北京:化学工业出版社,2006,17-190.
    李静,吕永龙,王铁宇,等.苯并(a)芘的环境多介质迁移和归宿模拟[J].环境工程学报,2008,2(2):280-284.
    彭林,陈名墚,张春梅.兰州市大气飘尘中多环芳烃分布及来源判识[J].太原理工大学学报,2000,31(2):126-128.
    王喜龙.天津污灌区苯并[a]芘迁移、归宿及生态风险分析[D].北京:北京大学,2002
    曾凡刚,彭林,李剑等.兰州市大气总悬浮颗粒物中有机污染物分布特征及来源[J].岩矿测试,2002,21(2):125-128.
    左谦.环渤海西部地区表土中PAHs污染[D].北京:北京大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700