用户名: 密码: 验证码:
用于海洋碳酸盐体系参数测定的微电极的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐体系是深海沉积物、海洋贝类生物微环境以及海底热液和冷泉研究的重要内容,对研究全球碳循环和全球气候变迁具有重要意义。利用化学传感器精确地确定各无机碳种类(包括CO2气体、碳酸氢根离子和碳酸根离子)的浓度,是研究海洋无机碳酸盐体系的核心技术手段之一。论文在pH电极的基础上,研制了溶解二氧化碳电极和碳酸根离子选择性电极,为确定海洋无机碳酸盐体系的溶解二氧化碳和碳酸根离子浓度,提供了理论基础与技术支持。
     论文基于已有的制作海洋原位地球化学传感器的经验和工艺,制作了溶解二氧化碳电极。该电极的核心响应部位是pH电极,内电解质溶液为0.002mol/L NaHC03和3.5%NaCl的混合溶液,整个测试体系密封,仅通过聚四氟乙烯气透膜与被测溶液进行气体交换,从而改变内部体系的pH值。该电极在NaHC03溶液10-3mol/L~10-1mol/L的浓度区间内满足能斯特响应定律。然而,由于电极的响应过程主要受气体扩散作用控制,电极响应缓慢,可测试的线性区间有限。
     为提高电极响应的灵敏性,扩展其可测线性区间,论文制作了基于有机复合膜的碳酸根离子选择性电极。该碳酸根离子选择性电极的膜溶液以胆酸衍生物为离子选择性敏感试剂,以三-十二烷基甲基氯化铵膜添加剂,以2-硝基苯基辛基醚为膜溶剂,以聚氯乙烯为增塑剂,该电极的内电解质溶液为pH约为9的硼酸盐与碳酸盐混合溶液。采用三种不同的溶液和标定方法分别对电极进行了标定,结果表明该电极的性能大大提高,其响应时间<30s,检测限在10-5mol/L~10-2.5mol/L。为了实现电极的集成封装与深海探测,使液膜型电极固态化:将Ag丝外表层涂覆聚二氧乙烯噻吩,固化后将前述液膜型电极的膜溶液涂覆至电极表面。该固态碳酸根离子选择性电极体积更小,具有高机械强度和韧性,工作性能重现性良好,但其能斯特方程的斜率未能符合能斯特定律。
     为改进碳酸根离子选择性电极的性能,论文制作了基于锌铝型水滑石(ZA-LDH)为离子载体的微型C02电极。该电极采用pH Ir/IrOx电极为基材,其碳酸(氢)根离子敏感膜成份以共沉淀法自制的ZA-LDH为离子载体,以氯仿或四氢呋喃为溶剂,以硅烷偶联剂为表面活性剂,聚二甲基硅氧烷或聚氯乙烯为成膜剂。该电极对不同浓度的NaHC03和NaCl昆合溶液响应良好,其响应时间为30s-1min,检测限在10一4~10-1mol/L.
     论文将基于有机复合膜的碳酸根离子选择性微电极应用于沉积物和珊瑚生长微环境的测试,得到沉积物-孔隙水界面以下和珊瑚口附近的高分辨率的pH和C032-离子浓度剖面。沉积物经过长时间培养,其深层缺乏氧气供给,同时微表层由于细菌的厌氧分解产生大量还原性硫化物,从而造成pH值和C032-离子浓度急剧下降。珊瑚生长受周围海水微环境的DIC和文石饱和度等因素的影响,这与珊瑚生长过程中需要大量C032-和Ca2+有关。上述结果表明,液膜型pH和碳酸根离子选择性微电极是测试沉积物和珊瑚等微环境良好的探针。基于锌铝型水滑石的微型CO2电极与其它pH、Eh、H2S及温度传感器构成传感器链,按一定轨迹在台湾东北部龟山岛热液区进行探测,获得了海底热液扩散流三维空间分布规律。并且将其中一组传感器应用于研究白色热泉,得到87h的pH、Eh、H2S、C032离子浓度及温度等化学、物理参数的原位观测序列。通过小波变换和经验模分解变换的方法,从原位观测时间序列中解析出潮汐周期。由于碳酸根离子选择性电极膜材料的耐酸性欠佳,仅得到不足24h的C032-离子浓度序列,但C032-离子电极从另一个角度(除Eh、H2S探测等)为寻找海底热液喷口给出了依据,同时为研究热液喷发对周围海洋环境影响提供了一种可行的方法。
Inorganic carbon system is an important part of studying deep sea sediment, shellfish microenvironment, and the hydrothermal and cold seep. It is also of great significance to study the global carbon cycle and the global climate change. To utilize chemical sensor to accurately determine the concentration of each inorganic carbon species (CO2gas, bicarbonate ions, and carbonate ions) is one technique for studying the ocean inorganic carbon system. This study fabricated the dissolved CO2electrodes and carbonate ion selective microelectrodes based on pH microelectrode. The microelectrodes were utilized to determine the concentration of the dissolved CO2and the carbonate ions in the ocean, and provide theoretical basis and technique support.
     In view of the ready experience and technique to make the in-situ oceanic geochemicstry sensors, we made the dissolved CO2electrode based on the ready experience and technique to make oceanic in-situ geochemical sensor. The key part of the dissolved CO2electrode that response the electromotive force is Ir/IrOx pH electrode. The internal electrolyte of this electrode is0.002mol/L NaHCO3and3.5%NaCl mixed solution which was sealed. And this sealed system exchanged gas with external measured solution by polytetrafluoroethylene membrane through which only gas could permeate and altered the pH of the internal electrolyte. This electrode reponse by the Nernst Law in the range of10-3mol/L to10-1mol/L. However, the work process of dissolved CO2electrode is controled by the diffusion, and it severely slows the electrode response. And the available linear range of the electrode is limited.
     This study also tried to make the carbonate ion selective microelectrodes based on the organic composed membrane hydrotalcite as for enhancing the response rapid and extending the available linear range. The carbonate ion selective electrode based on the organic composed membrane utilized cholic derivative as the ion selective sensitive reagent, tridodecylmethyl-ammonium chloride as membrane additive reagent,2-nitrophenyloctyl ether as membrane solvent, poly (vinyl chloride) as plastisizer, together to make the membrane solution. Borate and carbonate salt solution of pH9was the internal electrolyte. We calibrated the microelectrode applying three distinct solution and calibration methods. The results indicate that response time of the electrode is less than 30s, and the detection limitation is from10-5mol/L to10-2.5mol/L. For the purpose of realizing integration and package of the electrodes and detection in the deep ocean, we solidified the liquid membraned electrode:depositing poly (2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) to Ag wire surface, coating the above-mentioned membrane solution to the electrode surface after it solidification. This solid carbonate ion selective electrode is more miniature, strong and robust in mechanical characteristics, and it performs good stability.
     This study makes micro-CO2electrode based on Zinc aluminum type hydrotalcite (ZA-LDH) to improve the characteristic of the carbonate ion-selective microelectrode. We utilize pH Ir/IrOx electrode as the matrix. And the carbonate (or bicarbonate) ions sensitive membrane solution uses self-coprecipitated prepared ZA-LDH as carbonate ion carrier, chloroform or tetrahydrofuran as solvent, silane coupling agent as surface active agent, N,N-dimethyltrimethylsilylamine or poly (chloride vinyl) as membrane-forming agent. The calibration results show that the electrode response well to NaCl and different-concentration of NaHCO3mixed solutions. The response time is30s~1min, and the detection limitation is10-4~10-1mol/L.
     We applied the carbonate ion selective electrode of organic composed membrane to study the sediment and the survival microenvironment of coral. High-resolution pH and CO32-profile under the sediment-porewater interface and arround the coral mouth were obtained. After long time cultivation, the sediment was lack in O2in the deep. pH and CO32-concentration drop quickly under the sediment-porewater interface due to a great deal of reductive sulfide produced by bacterial anaerobic decay. Coral survival need CO32-and Ca2+. And it is limited by the factors of DIC and aragonite saturation. All evidenced that liquid-membraned pH and CO32-microelectrodes are good indicatiors to reflect the microenvironment of the sediment and the coral. We also utilize the miniature ZA-LDH type CO2electrode, with pH、Eh、H2S and temperature sensor, to detect the hydrothermal at Kueishan Tao, Northeast of Taiwan. The three-dimensional spatial distribution of the seabed hydrothermal diffusion of the white spring vent were observed. We applied a set of sensor to study the white spring, and obtained87hours long chemical and physical parameter time series of of pH, Eh, H2S concentration、CO32-concentration and temperature. The tidal period is decomposed from the in-situ observation time series through wavelet transform analysis and empirical mode decomposition. However, only less than24hours CO32-concentration time series were obtained, due to the poor acid resistance of the membrane material. Besides Eh and H2S detection, the carbonate ion-selective electrode offers another evidence to in search of submarine hydrothermal vent, and provides an available method to study the erupted hydrothermal influence on the surrounding oceanic environment.
引文
1. F.J. Millero, Chemical Oceanography. Third edition. U.S.:Traylor & Francis Group, 2006:241-295.
    2. W.-J. Cai, C.E. Reimers, The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface. Limnology and Oceanography,1993.38(8):1762-1773.
    3. W.-J. Cai, P.S. Zhao, Y.C. Wang, pH and pCO2 microelectrode measurements and the diffusive behavior of carbon dioxide species in coastal marine sediments. Marine Chemistry,2000.70(1-3):133-148.
    4. J.W. Morse, F.T. Mackenzie, Geochemistry of sedimentary carbonates.1990.
    5. R.A. Berner, Atmospheric carbon dioxide levels over phanerozoic time. Science, 1990.249(4975):1382-1386.
    6. W.S. Broecker, E. Clark, Glacial-to-Holocene redistribution of carbonate ion in the deep sea. Science,2001.294(5549):2152-2155.
    7. J. Trefry, S. Metz, T. Nelsen, et al., Transport of particulate organic carbon by the Mississippi River and its fate in the Gulf of Mexico. Estuaries and Coasts,1994. 17(4):839-849.
    8. A. Lerman, F.T. Mackenzie, CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle. Aquatic Geochemistry,2005.11(4):345-390.
    9. A. Lerman,.F.T. Mackenzie, CO2 air-sea exchange due to calcium carbonate and organic matter storage:pre-industrial and Last Glacial Maximum estimates. Biogeosciences Discussions,2004.1(1):429-495.
    10. J.E. Damuth, Quaternary climate change as revealed by calcium carbonate fluctuations in western Equatorial Atlantic sediments. Deep Sea Research and Oceanographic Abstracts,1975.22(11):725-743.
    11. T.E. Ceding, The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters,1984.71(2):229-240.
    12. W.S. Broecker, K.K. Turekian, B.C. Heezen, The relation of deep sea sedimentation rates to variations in climate. American Journal of Science,1958.256(7):503-517.
    13. J. Wu, S. Wang, Climatic variation during the Last Interglacial Period recorded in the lake carbonate deposit, eastern Qinghai-Xizang Plateau. Chinese Science Bulletin,1997.42(12):1017-1020.
    14. A.J. Ridgwell, M.J. Kennedy, K. Caldeira, Carbonate deposition, climate stability, and neoproterozoic ice ages. Science,2003.302(5646):859-862.
    15. C.M. John, M. Mutti, T. Adatte, Mixed carbonate-siliciclastic record on the North African margin (Malta)—coupling of weathering processes and mid Miocene climate. Geological Society of America Bulletin,2003.115(2):217-229.
    16. T. Volk, Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial. Nature,1989.337(6208):637-640.
    17. K. Shitashima, CO2 supply from deep-sea hydrothermal systems. Waste Management,1998.17(5-6):385-390.
    18. H. Sakai, T. Gamo, E-S. Kim, et al., Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin. Science,1990.248(4959): 1093-1096.
    19.刘志飞,徐建,田军,等,南海第四纪冰期旋回中的碳酸钙泵.科学通报,2003.48(9):962-968.
    20.李保华,赵泉鸿,陈民本,等,南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义.微体古生物学报,2001.18(1):1-9.
    21.汪品先,闵秋宝,卞云华,等,十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义.地质学报,1986.3:215-225
    22.房殿勇,翦知,汪品先,南沙海区南部近30ka来的古生产力记录.科学通报,1998.43(18):2005-2008.
    23. R.C. Thunell, Q. Miao, S. E. Calvert, et al., Glacial-Holocene biogenic sedimentation patterns in the South China Sea:productivity variations and surface water pCO2. Paleoceanography,1992.7(2):143-162.
    24.李保华,王永吉,冲绳海槽南部两万年来的浮游有孔虫与古海洋学事件.海洋学报,1997.19(4):90-98.
    25.汪品先,古海洋学.地球科学进展,1994.9(4):94-96.
    26.秦大河,全球碳循环.北京:气象出版社,2003.
    27.姬泓巍,徐环,辛惠蓁,等,海水中溶解无机碳DIC的分析方法.海洋湖沼通报,2002.4:16-24.
    28. Sabine, C.L., R.A. Feely, N. Gruber, et al., The oceanic sink for anthropogenic CO2. Science,2004.305(5682):367-371.
    29. C.L. Sabine, R.A. Feely, R.M. Key, et al., Distribution of anthropogenic CO2 in the Pacific Ocean. Global Biogeochemical Cycles,2002.16(4):1-17.
    30. C.L. Sabine, R.M. Key, K.M. Johnson, et al., Anthropogenic CO2 inventory of the Indian Ocean. Global Biogeochemical Cycles,1999.13(1):179-198.
    31. J.L. Sarmiento, T.M.C. Hughes, R.J. Stouffer, et al., Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature,1998.393:245-249.
    32. C. Langdon, Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Jouranl of Geophysical Research,2005.110(9):1-16.
    33. D.A. Lashof, The dynamic greenhouse:Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change,1989.14(3):213-242.
    34. P.M. Cox, R.A. Betts, C.D. Jones, et al., Acceleration of global warrning due to carbon-cycle feedbacks in a coupled climate model. Nature,2000.408(6809):184-187.
    35. R.A. Feely, C.L. Sabine, K. Lee, et al., Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science,2004.305(5682):362-366.
    36. J.C. Orr, J.F. Victoria, O. Aumont, et al., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature,2005.437(29): 681-686.
    37. H.L. Wood, J.I. Spicer, S. Widdicombe, Ocean acidification may increase calcification rates, but at a cost. Porceedings of the Royal Society B,2008. 275(1644):1767-1773.
    38. Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society:Plolicy document,2005.
    39. S.C. Doney, V.J. Fabry, R.A. Feely, et al., Ocean acidification:The other CO2 problem. Annual Review of Marine Science,2009.1(1):169-192.
    40. J.M. Guinotte, V.J. Fabry, Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences,2008.1134(1):320-342.
    41. C. Le Quere, C.R. Denbeck, E.T. Buitenhuis, et al., Saturation of the southern ocean CO2 sink due to recent climate change. Science,2007.316(5832):1735-1738.
    42. J.E. Dore, R. Lukas, D.W. Sadler, et al., Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature,2003.424(6950):754-757.
    43. S.C. Doney, The dangers of ocean acidification. Scientific American,2006.294:58-65.
    44. C. Langdon, W.S. Broecker, D.E. Hammond, et al., Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles,2003.17(1):1-14.
    45. O. Hoegh-Guldberg, Climate change, coral bleaching and the future of the world's coral reefs. Marine Freshwater research,1999.50:839-866.
    46. O. Hoegh-Guldberg, Low coral cover in a high-CO2 world. Journal of Geophysical Research,2005.110(9). C09S06, doi:10.1029/2004JC002528.
    47. R.A. Jahnke, D.B. Jahnke, Calcium carbonate dissolution in deep sea sediments: reconciling microelectrode, pore water and benthic flux chamber results. Geochimica et Cosmochimica Acta,2004.68(1):47-59.
    48. U. Riebesell, Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography,2004.60(4):719-729.
    49. U. Riebesell, I. Zondervan, B. Rost, et al., Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature,2000.407(6802):364-367.
    50. P.M. Holligan, J.E. Robertson, Significance of ocean carbonate budgets for the global carbon cycle. Global Change Biology,1996.2:85-95.
    51. M.S. Varney, Chemical sensors in oceanography.2000.
    52. Y. Dandonneau, Sea-surface partial pressure of carbon dioxide in the eastern equatorial Pacific (August 1991 to October 1992):A multivariate analysis of physical and biological factors. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography,1995.42(2-3):349-364.
    53. A. Vodacek, F.E. Hoge, R.N. Swift, et al., The use of in situ and airborne fluorescence measurements to determine UV absorption coefficients and DOC concentrations in surface waters. Limnology and Oceanography, 1995.40(2): 411-415.
    54. J.M. Gieskes, Interstitial water studies, log 15- alkalinity, pH, Mg, Ca, Si, PO4 and NH4. Initial Rep. Deep Sea Drilling Project,1973.20:813-829.
    55. J.-P. Carmouze, V. Bellotto, J. Maddock, et al., A versatile in situ sediment pore water sampler. Mangroves and Salt Marshes,1997.1(2):73-78.
    56. F.L. Sayles, P.C. Mangelsdorf Jr., T.R.S. Wilson, et al., A sampler for the in situ collection of marine sedimentary pore waters. Deep Sea Research,1976.23:259-264.
    57. M. Bender, W. Martin, J. Hess, A whole core squeezer for interfacial pore-water sampling. Limnology and Oceanography,1987.32:1214-1225.
    58. C.D. Johnson, D.W. Paul, In situ calibrated oxygen electrode. Sensors and Actuators B,2005.105(2):322-328.
    59. M. Sosna, G. Denuault, R.W. Pascal, et al., Development of reliable microelectrode dissolved oxygen sensor. Sensors and Actuators B,2007.123(1):344-351.
    60. P.T. Visscher, J. Beukema, H. van Gemerden, In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode Limnology and Oceanography,1991.36(7):1476-1480.
    61. C.-C. Wu, T. Yasukawa, H. Shiku, et al., Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors and Actuators B:Chemical,2005. 110(2):342-349.
    62. Y. Sheng, M. Wang, Electrochemical sensor for dissolved carbon dioxide measuremenmt. Journal of the Electrochemical Society,2002.149(1):28-32.
    63. P.S. Zhao, W.-J. Cai, An improved potentiometric pCO2 microelectrode. Analytical Chemistry,1997.69(24):5052-5058.
    64. Y.S. Choi, L. Lvova, J.H. Shin, et al., Determination of oceanic carbon dioxide using a carbonate-selective electrode. Analytical Chemistry,2002.74(10):2435-2440.
    65. D. de Beer, A. Bissett, R. de Wit, et al., A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnology and Oceanography:Method,2008.6:532-541.
    66. M. Trojanowicz, Application of conducting polymers in chemical analysis. Microchimica Acta,2003.143:75-91.
    67. A.G. Dickson, The measurement of sea water pH. Marine Chemistry,1993.44(2-4): 131-142.
    68. T.D. Clayton, R.H. Byrne, Spectrophotometric seawater pH measurements:total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Research Part I:Oceanographic Research Papers,1993.40(10):2115-2129.
    69. R.G.J. Bellerbym, D.R. Turner, J.E. Robertson, Surface pH and pCO2 distributions in the Bellingshausen Sea, Southern Ocean, during the early Austral summer. Deep Sea Research Ⅱ,1995.42(4-5):1093-1107.
    70. F.J. Millero, J.Z. Zhang, K. Lee, et al., Titration alkalinity of seawater. Marine Chemistry,1993.44:153-165.
    71. A.G. Dickson, An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research,1981.28(6):609-623.
    72. A.G. Dickson, F.J. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers,1987.34(10):1733-1743.
    73. R. Wanninkhof, K. Thoning, Measurement of fugacity of CO2 in surface water using continuous and discrete sampling methods. Marine Chemistry,1993.44(2-4):189-204.
    74. F.J. Millero, R.H. Byrne, R. Wanninkhof, et al., The internal consistency of CO2 measurements in the equatorial Pacific. Marine Chemistry,1993.44(2-4):269-280.
    75. F. Millero, Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta,2007.59(4):661-677.
    76. K. Tsukada, Y. Miyahara, Y. Shibata, et al., An integrated chemical sensor with multiple ion and gas sensors. Sensors and Actuators B:Chemical,1990.2(4):291-295.
    77. C. Lee, S.A. Akbar, C.O. Park, Potentiometric CO2 gassensor with lithium phosphorous oxynitride electrolyte. Sensors and Actuators B:Chemical,2001.80(3): 234-242.
    78. F. Qian, J. Lu, Z.B. Zhou, et al., Combined amperometric sensors for simultaneous measurement of carbon dioxide and oxygen. Sensors and Actuators B:Chemical, 1993.17(1):77-83.
    79. T. Ishihara, K. Kometani, Y. Mizuhara, et al., Mixed oxide capacitor of CuO— BaTiO3 as a new type CO2 gas sensor. Journal of the American Ceramic Society, 1992.75(3):613-618.
    80. M. Holzinger, J. Maier, W. Sitte, Potentiometric detection of complex gases: Application to CO2. Solid State Ionics,1997.94(1-4):217-225.
    81. R. Fasching, F. Keplinger, G. Hanreich, et al., A novel miniaturized sensor for carbon dioxide dissolved in liquids. Sensors and Actuators B:Chemical,2001.78(1-3):291-297.
    82. M. Nagai, T. Nishino, T. Saeki, A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sensors and Actuators,1988.15(2):145-151.
    83. T. Ishiji, D.W. Chipman, T. Takahashi, et al., Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators B:Chemical,2001. 76(1-3):265-269.
    84. C. Goyet, A.K. Snover, High-accuracy measurements of total dissolved inorganic carbon in the ocean:comparison of alternate detection methods. Marine Chemistry, 1993.44(2-4):235-242.
    85. J. Evans, D. Pletcher, P.R.G. Warburton, et al., Amperometric sensor for carbon dioxide:design, characteristics, and performance. Analytical Chemistry,1989.61(6): 577-580.
    86.孙培菊,谭忠印,谷波,等,电流型二氧化碳传感器的研制.化学传感器,1995.2:96-100.
    87. R. Fasching, F. Keplinger, G. Hanreich, et al., A novel miniaturized sensor for carbon dioxide dissolved in liquids. Sensors and Actuators B,2001.78:291-297.
    88. L.R. Kuck, R.D. Godec, P.P. Kosenka, et al., High-precision conductometric detector for the measurement of atmospheric carbon dioxide. Analytical Chemistry, 1998.70(22):4678-4682.
    89. S. Bruckenstein, J.S. Symanski, Continuous conductometric sensor for carbon dioxide. Analytical Chemistry,1986.58(8):1766-1770.
    90. C.S. Wong, Y.H. Chan, Temporal variations in the partial pressure and flux of CO2 at ocean station P in the subarctic northeast Pacific Ocean. Tellus B,1991.43(2): 206-223.
    91. P.D. Tortell, Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnology and Oceanography:Methods,2005.3:24-37.
    92.黄为勇,童敏明,任子晖,采用热导传感器检测气体浓度的新方法研究.传感技术学报,2006.19(4):973-975.
    93.叶信火,反应-气相色谱法测定微量一化碳和二氧化碳气体的研究.广东有色金属学报,1994.4(2):153-155.
    94. D. Luthi, M. Le Floch, B. Bereiter, et al., High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature,2008. 453(7193):379-382.
    95. R.F. Weiss, F.A. Van Wov, Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography:Results from expeditions between 1977 and 1990.1992.
    96. B. Hales, L. Burgess, S. Emerson, An absorbance-based fiber-optic sensor for CO2(aq) measurement in porewaters of sea floor sediments. Marine Chemistry,1997. 59(1-2):51-62.
    97. D.R. Walt, G. Gabor, C. Goyet, Multiple-indicator fiber-optic sensor for high-resolution pCO2 sea water measurements. Analytica Chimica Acta,1993.274(1): 47-52.
    98. Hawe, E., P. Chambers, C. Fitzpatrick, et al., CO2 monitoring and detection using an integrating sphere as a multipass absorption cell. Measurement Science and Technology,2007.18(10):3187.
    99. E. Ohtaki, T. Matsui, Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorology,1982. 24(1):109-119.
    100. D.L. Auble, T.P. Meyers, An open path, fast responseinfrared absorption gas analyzer for H2O and CO2. Boundary-Layer Meteorology,1992.59(3):243-256.
    101. T. Corman, E. Kalvesten, M. Huiku, et al., An optical IR-source and CO2-chamber system for CO2 measurements. Journal of Microelectromechanical Systems,2000. 9(4):509-516.
    102.张永怀,白鹏,林继鹏,等,一种新型红外多组份气体传感器.光电工程,2004.31(1):49-51.
    103.鲁中明,戴民汉,许昆明,等,一种光纤化学二氧化碳传感器的研制.高技术通讯,2003:38-43.
    104. N. Lefevre, J.P. Ciabrini, G. Michard, et al., A new optical sensor for PCO2 measurements in seawater. Marine Chemistry,1993.42(3-4):189-198.
    105. A.J. Guthrie, R. Narayanaswamy, D.A. Russell, Optical fibres in chemical sensing -a review. Transactions of the Institute of Measurement and Control,1987.9(2):71-80.
    106. C. Goyet, D.R. Walt, P.G. Brewer, Development of a fiber optic sensor for measurement of pCO2 in sea water:design criteria and sea trials. Deep Sea Research Part A. Oceanographic Research Papers,1992.39(6):1015-1026.
    107.王洪,冯金垣,彭玉成,CO2气体浓度光纤传感器研究.仪表技术与传感器,2001.6:4-6.
    108. Z.A. Wang, W.-J. Cai, Y.C. Wang, et al., A long pathlength liquid-core waveguide sensor for real-time pCO2 measurements at sea. Marine Chemistry,2003.84(1-2): 73-84.
    109. Z. Zhujun, W.R. Seitz, A carbon dioxide sensor based on fluorescence. Analytica Chimica Acta,1984.160:305-309.
    110.于玉忠,严河清,陆君涛,等,二氧化碳电化学传感器的研究现状和发展前景.武汉大学学报(自然科学版),1998.44(2):179-182.
    111. T. Lang, H.-D. Wiemhofer, W. Gopel, Carbonate based CO2 sensors with high performance. Sensors and Actuators B:Chemical,1996.34(1-3):383-387.
    112. N. Imanaka, T. Kawasato, G.-y. Adachi, A carbon dioxide gas sensor probe based on a Lithium ionic conductor. Chemical Letters,1990.19(4):497.
    113. Y.-I. Bang, K.-D. Song, B.-S. Joo, et al., Thin film micro carbon dioxide sensor using MEMS process. Sensors and Actuators B:Chemical,2004.102(1):20-26.
    114. Y. Yang, C.-C. Liu, Development of a NASICON-based amperometric carbon dioxide sensor. Sensors and Actuators B:Chemical,2000.62(1):30-34.
    115. F.B. Qiu, Q.F. Zhu, X.T. Yang, et al., Preparation of planar CO2 sensor based on solid-electrolyte NASICON synthesized by sol-gel process. Materials Chemistry and Physics,2004.83(2-3):193-198.
    116. J.-S. Lee,, J.-H. Lee, S.-H. Hong, Solid-state amperometric CO2 sensor using a sodium ion conductor. Journal of the European Ceramic Society,2004.24(6):1431-1434.
    117. Y. Sadaoka, M. Matsuguchi, Y. Sakai, et al., Solid state electrochemical CO2 gas sensor using zircon-based sodium ionic conductors. Journal of Materials Science, 1993.28(8):2035-2039.
    118. F.H. Garzon, R. Mukundan, E.L. Brosha, Solid-state mixed potential gas sensors: theory, experiments and challenges. Solid State Ionics,2000.136-137:633-638.
    119. S. Capone, A. Forleo, L. Francioso, et al., Solid state gas sensors:state of the art and future activities. Journal of Optoelectronics and Advanced Materials,2003.5(5): 1335-1348.
    120. M. Gauthier, A. Chamberland, Solid-state detectors for the potentiometric determination of gaseous oxides. Journal of the Electrochemical Society,1977. 124(10):1579-1583.
    121. N. Miura, et al., Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode. The Journal of Electrochemical Society,1992.139(5): 1384-1388.
    122.张彬,季惠明,初振华,等,电导型CuO-BaTiO3基薄膜的制备与CO2气敏特性的研究.硅酸盐学报,2004.32(4):490-493.
    123.朱棋锋,邱法斌,全宇军,等,Ba/Ti、Ba/Cu比对电容型CuO-BaTiO3 CO2气体传感器灵敏度的影响.仪器仪表学报,2002.23(3):563-566.
    124.刘锦淮,刘伟,张鉴,等,银掺杂的半导体氧化物二氧化碳传感器研究功能材料与器件学报,2003.9(4):457-460.
    125.全宝富,张爽,刘晓宁,等,C02传感器的制作及特性.传感器技术,2002.21(10):11-12.
    126.孙良彦,洪军,王梅,等,C02传感器的研究.郑州轻工业学院学报,1994.9(1):40-43.
    127. K.M. Johnson, A. Kortzinger, L. Mintrop, et al., Coulometric total carbon dioxide analysis for marine studies:measurement and internal consistency of underway TCO2 concentrations. Marine Chemistry,1999.67(1-2):123-144.
    128. K.M. Johnson, A.E. King, J.M. Sieburth, Coulometric TCO2 analysis for marine studies:an introduction. Marine Chemistry,1985.16(1):61-82.
    129. C.S. Wong, Quantitative analysis of total carbon dioxide in sea water:A new extraction method. Deep Sea Research and Oceanographic Abstracts,1970.17(1): 9-17.
    130.邢宝忠,张永琴,马红武,相对库仑滴定法.天津大学学报,1996.3(2):283-285.
    131. http://www.bios.edu/Labs/co21ab/research/CO2_instrumentation.html.
    132. K. Park, G.H. Kennedy, H.H. Dobson, Comparison of gas chromatographic method and pH alky method for detn. of total CO2 in sea water. Analytical Chemistry,1964. 36:1686.
    133. R.F. Weiss, Pricise shipboard determination of dissolved nituogen,oxygen.argon and total inorganic carbon by gas chromatography. Deep Sea Research,1973.20:291-293.
    134. D.W. Townsend, M.D. Keller, Dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in relation to phytoplankton in the Gulf of Maine. Marine Ecology Progress,1996.137:229-241.
    135. T. Takahashi, P. Kaiteris, W.S. Broecker, A method for shipboard measurement of CO2 partial pressure in seawater. Earth and Planetary Science Letters,1976.32(2): 451-457.
    136. W.S. Broecker, C.S. Tucek, E.A. Olson, Radio-carbon analysis of oceanic CO2. The International Journal of Applied Radiation and Isotopes,1959.7(1):1-10.
    137. C. Copin-Montegut, A method for the continuous determination of the partial pressure of carbon dioxide in the upper ocean. Marine Chemistry,1985.17(1):13-21.
    138. M. Frankignoulle, A. Borges, Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (The Scheldt Estuary). Aquatic Geochemistry, 2001.7(4):267-273.
    139. Pierrot, D., C. Neill, K. Sullivan, et al.,Recommendations for autonomous underway pCO2 measuring systemsand data-reduction routines. Deep Sea Research 2,2009.56: 512-522.
    140.张富江,一种新型cO2传感器.郑州轻工业学院学报(自然科学版),2000.15(4):128-129.
    141. D.W. O'Sullivan, F.J. Millero, Continual measurement of the total inorganic carbon in surface seawater. Marine Chemistry,1998.60(1-2):75-83.
    142. W.-J. Cai, L.R. Pomeroy, M.A. Moran, et al., Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnology and Oceanography,1999.44(3):639-649.
    143. W.-J. Cai, W.J. Wiebe, Y.C. Wang, et al., Intertidal marsh as a source of dissolved inorganic carbon and a sink of mitrate in the Satilla River-estrarine complex in the southeastern. Limnology and Oceanography,2000.45:1743-1752.
    144.范世福,陈莉,光纤化学传感器及其发展现状.光学仪器,1999.21(1):37-44.
    145.杨荣华,王柯敏,肖丹,等,基于环糊精/卟啉包络物荧光猝灭的二氧化碳光学敏感膜的研究.高等学校化学学报,2001.22(1):38-42.
    146.赵卫东,宋金明,海洋化学传感器研制的动态评述.海洋与湖沼,2000.31(4):453-459.
    147. R.W. Stow, R.F. Baer, B. Randall, Rapid measurement of the tension of carbon dioxide in blood. Archives of Physical Medicine and Rehabilitation,1957.38:646-650.
    148. R.W. Stow, B.F. Randall, Electrical measurement of the pCO2 of blood. American Journal of Physiology,1954.179:678.
    149. J.W. Severinghaus, A.F. Bradley, Electrodes for blood pO2 and pCO2 determination. 1958.13:515-520.
    150. R.M. Onorato, D.E. Otten, R.J. Saykally, Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proceedings of the National Academy of Sciences,2009.106(36):15176-15180.
    151. H. Suzuki, H. Arakawa, S. Sasaki, et al., Micromachined severinghaus-type earbon dioxide electrode. Analytical Chemistry,1999.71(9):1737-1743.
    152. J.H. Shin, D.S. Sakong, H. Nam, et al., Enhanced serum carbon dioxide measurements with a silicone rubber-based carbonate ion-selective electrode and a high-pH dilution buffer. Analytical Chemistry,1996.68(1):221-225.
    153. S. Hanstein, D. de Beer, H.H. Felle, Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sensors and Actuators B,2001.81:107-114.
    154. M. Meyerhoff, Y.M. Fraticelli, J.A. Greenberg, et al., Polymer-membrane electrode-based potentiometric sensing of ammonia and carbon dioxide in physiological fluids. Clinical Chemistry,1982.28(9):1973-1978.
    155. Y. Wang, H. Xu, J.M. Zhang, et al., Electrochemical sensors for clinic analysis. Sensors,2008.8:2043-2081.
    156. J.H. Shin, J.S. Lee, S.H. Choi, et al., A planar pCO2 sensor with enhanced electrochemical properties. Analytical Chemistry,2000.72(18):4468-4473.
    157.郑志霞,张丹,冯勇建,碳酸根和碳酸氢根测定方法和自动测定仪.现代仪器,2004.4:44-46.
    158.郁慧福,碳酸盐测定方法现状及方法比较.海洋地质动态,2007.23(1):35-39.
    159.俞凌云,卢艳青,安胜波,碳酸氢根和碳酸根检测方法的研究进展.西部皮革,2010.32(19):48-52.
    160. W. Nernst, K. Loeb, Methode zur Bestimmung von Dielektrizitatskonstanten(介电常数的测定方法).Zeitschrift fur Physikalische Chemie,1888.2:948.
    161. M.Z. Cremer, Uber die Ursachen der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten(”论组织的电动势的成因和多相电解质链理论的研究成果”).Zeitschrift fur Biologie,1906. 47:562.
    162. Scholz, F., From the Leiden jar to the discovery of the glass electrode by Max Cremer. Journal of Solid State Electrochemistry,2011.15:5-14.
    163. G. Eisenman, The glass electrode. Interscience Reprint, Interscience:New York, 1965.
    164. G. Eisenman, D.O. Rudin, J.U. Casby, Glass electrode for measuring sodium ion. Science,1957.126(3278):831-834.
    165. G. Eisenman, Similarities and differences between liquid and solid ion exchangers and their usefulness as ion specific electrodes. Analytical Chemistry,1968.40(2): 310-320.
    166. G. Eisenman, Cation selective glass electrodes and their mode of operation. Biophysical Journal,1962.2(2):259-323.
    167. E. Pungor, E. Hollos-Rokosinyi, The use of membrane electrodes in the analysis of ionic concentrations. Acta Chimica Academiae Scientiarum Hungaricae,1961.27: 63-68.
    168. M.S. Frant, J.W. Ross, Electrode for sensing fluoride ion activity in solution. Science,1966.154(3756):1553-1555.
    169. J.W. Ross, Calcium-selective electrode with liquid ion exchanger. Science,1967. 156(3780):1378-1379.
    170. L.A.R. Pioda, V. Stankova, W. Simon, Highly selective potassium ion responsive liquid-membrane electrode. Analytical Letters,1969.2(12):665-674.
    171. G.J. Moody, R.B. Oke, J.D.R. Thomas, A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst,1970.95(1136):910-918.
    172. G.J. Moody, J.D.R. Thomas, Development and publication of work with selective ion-selective electrodes. Talanta,1972.19:623-639.
    173. R.P. Buck, Ion selective electrodes, potentiometry, and potentiometric titrations. Analytical Chemistry,1974.46(5):28-51.
    174. J. Koryta, Electrochemical sensors based on biological principles. Electrochimica Acta,1986.31(5):515-520.
    175. J. Koryta, Theory and applications of ion-selective electrodes. Part 8. Analytica Chimica Acta,1990.233:1-30.
    176. J. Koryta, Ion-selective electrodes. Ann. Rev. Mater. Sci.,1986.16:13-27.
    177. J. Koryta, Theory and applications of ion-selective electrodes:Part 4. Analytica Chimica Acta,1982.139:1-51.
    178. J. Koryta, Theory and applications of ion-selective electrodes:part 2.1977.
    179. J. Koryta, Theory and applications of ion-selective electrodes:Part 1. Analytica Chimica Acta,1972.
    180. G.J. Moody, J.D.R. thomas, Selective ion-sensitive electrodes, Merrow.1971.
    181. J. Ruzicka, The seventies-golden age for ion selective electrodes. Journal of Chemical Education,1997.74(2):167-170.
    182. D. Ammann, Ion-selective microelectrodes:Principles, design and application. 1987.
    183. W.M. Wise, N.Y. Corning, Bicarbonate ion sensitive electrode (P) U.S.:222023, 1973.
    184. H.B. Herman, G.A. Rechnitz, Carbonate ion-selective membrane electrode. Science, 1974.184(4141):1074-1075.
    185. H.B. Herman, G.A. Rechnitz, Preparation and properties of a carbonate ion-selective membrane electrode. Analytica Chimica Acta,1975.76(1):155-164.
    186. G.A. Rechnitz, G.J. Nogle, M.R. Bellinger, et al., Determination of total carbon dioxide in serum and plasma using a carbonate ion-selective membrane electrode. Clinica Chimica Acta,1977.76(3):295-307.
    187. J.A. Greenberg, M.E. Meyerhoff, Response properties, applications and limitations of carbonate-selective polymer membrane electrodes. Analytica Chimica Acta,1982. 141:57-64.
    188. W. Scott, E. Chapoteau, A. Kumar, Ion-selective membrane electrode for rapid automated determinations of total carbon dioxide. Clinical Chemistry,1986.32(1): 137-141.
    189. E. Wang, Development of bicarbonate- and carbonate- selective flow-through electrodes and their applications in blood serum. Eidgenossischen Technischen Hochule:Zurich,1989. Chapter 4-6.
    190. C. Behringer, B. Lehmann, J.-P. Haug, et al., Anion selectivities of trifluoroacetophenone derivatives as neutral ionophores in solvent-polymeric membranes. Analytica Chimica Acta,1990.233:41-47.
    191. K.S. Lee, J.H. Shin, S.H. Han, et al., Asymmetric carbonate ion-selective cellulose acetate membrane electrodes with reduced salicylate interference. Analytical Chemistry,1993.65(21):3151-3155.
    192. M. Chesler, J.C.T. Chen, R.P. Kraig, Determination of extracellular bicarbonate and carbon dioxide concentrations in brain slices using carbonate and pH-selective microelectrodes. Journal of Neuroscience Methods,1994.53(2):129-136.
    193. M. Maj-Zurawska, T. Sokalski, J. Ostaszewska, et al., Carbonate ion selective electrodes with trifluoroacetophenone derivatives in potentiometric clinical analyser. Talanta,1997.44(9):1641-1647.
    194. J. Bobacka, M. Maj-Zurawska, A. Lewenstam, Carbonate ion-selective electrode with reduced interference from salicylate. Biosensors and Bioelectronics,2003. 18(2-3):245-253.
    195. S. Makarychev-Mikhailov, Carbonate sensors based on 4-hexyltrifluoroacetophenone modified by acceptor substituents in phenyl ring. Electroanalysis,2003.15(15-16):1291-1296.
    196. M.E. Meyerhoff, E. Pretsch, D.H. Welti, et al., Role of trifluoroacetophenone solvents and quaternary ammonium salts in carbonate-selective liquid membrane electrodes. Analytical Chemistry,1987.59(1):144-150.
    197. J.H. Shin, J.S. Lee, H.J. Lee, et al., Trifluoroacetophenone derivative-based carbonate ion-selective electrodes:effect of diluent pH on the anion selectivity. Journal of Electroanalytical Chemistry,1999.468(1):76-84.
    198. B. Muller, K. Buis, R. Stierli, et al., High spatial resolution measurements in lake sediments with PVC based liquid membrane ion-selective electrodes. Limnology and Oceanography,1998.43(7):1728-1733.
    199. H.-J. Pyun, J. Chu, Y.M. Jun, et al., Synthesis and evaluation of the deoxycholic acid derivatives with two 4-trifluoroacetylbenzoyl groups as a carbonate ionophore. Bulletin of the Korean Chemical Society,1999.20(1):112-116.
    200. H.-J. Pyun, J. Chu, W. Yoon, et al., synthesis and evaluation of the cholic acid derivatives with multi-trifluoroacetylbenzoyl(TFAB) groups as carbonate ionophores. Bulletin of the Korean Chemical Society,1999.20(2):179-186.
    201. H. Hirata, K. Higashiyama, Ion-selective chalcogenide electrodes for a number of cations. Talanta,1972.19(4):391-398.
    202. H. Hirata, K. Dato, Copper(I) sulphide-impregnated silicone rubber membranes as selective electrodes for copper(II) ions. Talanta,1970.17(9):883-887.
    203. Machado, Conductive epoxy-based ion-selective electrodes. Analyst,1994.119: 2263-2274.
    204. R.W. Cattrall, K.-T. Fong, Serum calcium and potassium determination by the split membrane ion-selective electrode technique. Talanta,1978.25(9):541-543.
    205. M. Maj-Zurawska, A. Hulanicki, Effect of the platinum surface on the potential of nitrate-selective electrodes without internal solution. Analytica Chimica Acta,1982. 136:395-398.
    206. R.W. Cattrall, S. Tribuzio, H. Freiser, Potassium ion responsive coated wire electrode based on valinomycin. Analytical Chemistry,1974.46(14):2223-2224.
    207. U. Osesch, Thesis:ETH, Zurich.1979.
    208. S. Srianujata, W.R. White, T. Higuchi, et al., Direct potentiometric and titrimetric determination of methadone in urine with plastic electrodes selectiive for hydrophobic cations. Analytical Chemistry,1978.50(2):232-236.
    209. K. Ding, W.E. Seyfried, Z. Zhang, et al., The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth and Planetary Science Letters,2005.237(1-2):167-174.
    210. K. Ding, W.E. Seyfried Jr., Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400℃ and 40 megapascals. Science,1996.272(5268):1634-1636.
    211. P. Shuk, K.V. Ramanufachary, New metal-oxide-type pH sensors. Solid State Ionics,1996.86-88(2):1115-1120.
    212. R. Koncki, M. Mascini, Screen-printed ruthenium dioxide electrodes for pH measurements. Analytica Chimica Acta,1997.351:143-149.
    213. K. Pasztor, A. Sekiguchi, N. Shimo, et al., Iridium oxide based microelectrochemical transistors for pH sensing. Sensors and Actuators B,1993.12: 225-230.
    214. Q.W. Li, G.A. Luo, Y.Q. Shu, Response of nano-sized cobalt oxide electrodes as pH sensors. Analytical Chimica Acta,2000.409:137-142.
    215. H. Noburoshi, S. Katsuhisa, No-doped TiO2 semiconductor pH sensor for use in high-temperature aqueous solution. Journal of the Electrochemical Society,1990. 137(8):2517-2523.
    216. J.E. Baur, T.W. Spaine, Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium (III) oxide. Journal of Electroanalytical Chemistry, 1998.443:208-216.
    217. K.G. Krerder, M.J. Tarlor, J.P. Cline, Sputtered thin-flim pH electrodes of platinum, palladium, ruthenium, and iridium oxide. Sensors and Actuators B,1995.28:167-172.
    218. K. Kinoshita, M.J. Madou, Electrochemical measurements on Pt, Ir, and Ti oxides as pH probes Journal of the Electrochemical Society,1984.131(5):1089-1094.
    219. S. Ardizzone, A. Carugati, S. Trasatti, Properties of thermally prepared iridium dioxide electrodes Journal of Electroanalytical Chemistry,1981.126:287-289.
    220. L.D. Burke, J.K. Muleahy, D.P. Whelan, et al., Preparation of an oxidized iridium electrode and the variation of its potential with pH. Journal of Electroanalytical Chemistry,1984.163:117-128.
    221. B. Bestaoui, E. Prouzet, P. Deniard, et al., Structural and analytical characterization of an iridium oxide thin layer. Thin Solid Films,1993.235:35-42.
    222. M. Wang, S. Yao, M. Madou, A long-term stable iridium oxide pH electrode. Sensors and Actuators B:Chemical,2002.81(2-3):313-315.
    223. S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized Iridium oxide. Journal of the Electrochemical Society,2001.148(4):29-36.
    224.叶瑛,陈鹰,杨灿军,等,适用于深海热液环境的全固态电化学传感器的研究进展.自然科学进展,2004.14(2):141-144.
    225.叶瑛,邬黛黛,黄霞,等,固态pH探测电极的制备及其性能表征.传感技术学报,2003.16(487-490).
    226. Y. Ye, X. Huang, C.J. Yang, et al., Resolution for in situ pH sensing on seafloor: Ir/IrO2 Electrode with nafion shielding membrane. Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference,2006:304-306.
    227. D.A. Butterfield, R. Jonasson, G. J. Massoth, et al., Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philosophical Transactions:Mathematical, Physical and Engineering Sciences,1997.355:369-386.
    228.陈东初,付朝阳,郑家桑,等,铱金属氧化物pH电极的表面修饰研究.稀有金属材 料与工程,2007.36(4):636-639.
    229.陈东初,郑家燊,付朝阳,铱氧化物电极表面膜成分分析与H+响应机理研究.机械工程材料,2006.30(1):23-25.
    230.陈东初,郑家燊,付朝阳,Ir/IrOx金属氧化物电极的H+响应行为研究.稀有金属材料与工程,2004.33(8):832-834.
    231.王庆璋,郭润生,魏琼,等,海水中银-卤化银固溶体参比电极.海洋与湖沼,1991.22(4):347-352.
    232.苗燕,深海用全固态参比电极的研究.重庆:重庆大学,2003.
    233.张清,李萍,白真权,Ag/AgCl高温参比电极的制备.应用科技,2005.32(6):62-63.
    234.傅献彩,物理化学.248.
    235. http://libcxy.blog.hexun.com/11865752 d.html.
    236.简易化学手册.北京师范大学化学系无机化学教研室,1980(1):177.
    237. A. Gieseke, D. de Beer, Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. Molecular Microbial Ecology Manual, Second Edition 8.02,2004. In A. D. L. Akkermans and D. van Elsas [eds.]:1581-1612.
    238. P. Zhao, W.-J. Cai, pH polymeric membrane microelectrodes based on neutral carriers and their application in aquatic environments. Analytica Chimica Acta,1999. 395(3):285-291.
    239. P. Chao, D. Ammann, U. Oesch, et al., Extra- and intracellular hydrogen ion-selective microelectrode based on neutral carriers with extended pH response range in acid media. Pflugers Archiv European Journal of Physiology,1988.411(2):216-219.
    240. W.-J. Cai, Y. Wang, The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha River, Georgia. Limnology and Oceanography,1998.43(4):657-668.
    241. E. Lewis, D.W.R. Wallace, Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.1998.
    242. C. Mehrbach, C.H. Culberson, J.E. Hawley, et al., Measurement of the apparent dissociation constants of carbonic acid in seawater at atmosphere pressure. Limnology and Oceanography,1973.18(6):897-907.
    243. T. Blaz, J. Migdalski, A. Lewenstam, Junction-less reference electrode for potentiometric measurements obtained by buffering pH in a conducting polymer matrix. Analyst,2005.130(5):637-643.
    244.张正斌,官海东,刘莲生,等,海洋碳循环过程中的海水微表层泵.中国科学B:化学,2005.35(6):459-465.
    245.张正斌,蔡卫君,刘莲生,等,pH微电极法原位直接测定海水微表层的厚度.中国科学B:化学,2003.33(3):201-210.
    246. B. Muller, R. Stierli, In situ determination of sulfide profiles in sediment porewaters with a miniaturized Ag/Ag2S electrode. Analytica Chimica Acta,1999.401(1-2): 257-264.
    247. B. Muller, M. Marki, C. Dinkel, et al., In situ measurements in lake sediments using ion-selective electrodes with a profiling lander system. In:Environmental Electrochemistry,2002.126-143.
    248. D. Archer, S. emerson, C. Reimer, Dissolution of calcite in deep-sea sediments:pH and O2 microelectrode results. Geochimica et Cosmochimica Acta,1989.53:2831-2845.
    249. E. Viollier, C. Rabouille, S.E. Apitz, et al., Benthic biogeochemistry:state of the art technologies and guidelines for the future of in situ survey. Journal of Experimental Marine Biology and Ecology,2003.285-286(2759):5-31.
    250. W.-J. Cai, C.E. Reimers, T. Shaw, Microelectrode studies of organic carbon degradation and calcite dissolution at a California Continental rise site. Geochimica et Cosmochimica Acta,1995.59(3):497-511.
    251.赵峰,钱新明,汪尔康,等,离子导电聚合物电解质的研究.化学进展,2002.14(5):374-383.
    252.李永舫,导电聚合物.化学进展,2002.14(3):207-211.
    253.陈婉,梁成浩,谢阳,本征导电聚合物开发的最新进展.电化学,2001.7(4):396-402.
    254.李永舫,导电聚合物的电化学性质.复旦学报(自然科学版),2004.43(4):468-481.
    255.薛怀国,沈之荃,张一烽,等,导电聚合物传感器的研究进展.化学通报,2001(7):402-406.
    256. C. Vedrine, S. Fabiano, C. Tran-Minh, Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta, 2003.59(3):535-544.
    257. S. Fabiano, C. Tran-Minh, B. Piro, et al., Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor. Materials Science and Engineering:C,2002.21(1-2):61-67.
    258. A. Eftekhari, Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode. Synthetic Metals,2004. 145(2-3):211-216.
    259. H. Xue, Z. Shen, C. Li, Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film. Biosensors and Bioelectronics,2005.20(11):2330-2334.
    260. J. Wang, M. Musameh, Carbon-nanotubes doped polypyrrole glucose biosensor. Analytica Chimica Acta,2005.539(1-2):209-213.
    261. H. Olivia, B.V. Sarada, K. Honda, et al., Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes. Electrochimica Acta, 2004.49(13):2069-2076.
    262. A. Rajesh, S.S. Pandey, W. Takashima, et al., Simultaneous co-immobilization of enzyme and a redox mediator in polypyrrole film for the fabrication of a amperometric phenol biosensor. Current Applied Physics,2005.5(2):184-188.
    263. X. Pan, J. Kan, L. Yuan, Polyaniline glucose oxidase biosensor prepared with template process. Sensors and Actuators B:Chemical,2004.102:325-330.
    264. S. Cosnier, Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics,1999.14:443-456.
    265. C. Deng, M. Li, Q. Xie, et al., Construction as well as EQCM and SECM characterizations of a novel Nafion/glucose oxidase-glutaraldehyde/poly(thionine) /Au enzyme electrode for glucose sensing. Sensors and Actuators B:Chemical,2007. 122(1):148-157.
    266. D.D. Borole, U.R. Kapadi, P.P. Mahulikar, et al., Glucose oxidase electrodes of polyaniline, poly(o-anisidine) and their co-polymer as a biosensor:A comparative study. Journal of Materials Science,2007.42(13):4947-4953.
    267. M. Tsujimoto, T. Yabutani, A. Sano, et al., Characterization of a glucose sensor prepared by electropolymerization of pyrroles containing a tris-bipyridine osmium complex. Analytical Sciences,2007.23(1):59-63.
    268.徐惠,基于厚膜技术的血液生物化学传感器的研究.浙江大学控制科学与工程学,2010.
    269. K. Itaya, H.C. Chang, I. Uchida, Anion-exchanged clay (hydrotalcite-like compounds) modified electrodes. Inorganic Chemistry,1987.26(4):624-626.
    270. C. Mousty, Biosensing applications of clay-modified electrodes:a review. Analytical and Bioanalytical Chemistry,2010.396(1):315-325.
    271. S. Therias, C. Mousty, Electrodes modified with synthetic anionic clays. Applied Clay Science,1995.10(1-2):147-162.
    272. B. Keita, N. Dellero, L. Nadjo, Chemlnform Abstract:Oxometalate-clay-modified electrodes:Example of metatungstate incorporated in stearyltrimethylammonium montmorillonite layers. Chemlnform,1991.22(27):DOI:10.1002/chin.199127021.
    273. C. Mousty, S. Therias, C. Forano, et al., Anion exchanging clay modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions. Journal of Electroanalytical Chemistry,1994.271:69-81.
    274. E. Narita, P.D. Kaviratna, T.J. Pinnavaia, Direct synthesis of a polyoxometallate-pillared layered double hydroxide by coprecipitation. Journal of the Chemical Society, Chemical Communications,1993(1):60-62.
    275. A. Vaccari, M. Gazzano, Hydrotalcite-type anionic clays as precursors of high-surface-area Ni/Mg/Al mixed oxides, in Studies in Surface Science and Catalysis, J.M.B.D.P.A.J. G. Poncelet and P. Grange, Editors.1995, Elsevier.893-902.
    276. M.A. Ulibarri, F.M. Labajos, V. Rives, et al., Comparative study of the synthesis and properties of vanadate-exchanged layered double hydroxides. Inorganic Chemistry,1994.33:2592-2599.
    277. E.D. Dimotakis, T.J. Pinnavaia, New route to layered double hydroxides intercalated by organic anions:Precursors to polyoxometalate-pillared derivatives. Inorganic Chemistry,1990.29(13):2393-2394.
    278. B. Ballarin, M. Gazzano, R. Seeber, et al., Electrodes coated by hydrotalcite-like clays. Effect of the metals and the intercalated anions on ion accumulation and retention capability. Journal of Electroanalytical Chemistry,1998.445(27-37).
    279. B. Ballarin, M. Morigi, E. Scavetta, et al., Hydrotalcite-like compounds as ionophores for the development of anion potentiometric sensors. Journal of Electroanalytical Chemistry,2000.492(1):7-14.
    280. M. Darder, M. Colilla, E. Ruiz-Hitzky, Chitosan-clay nanocomposites:application as electrochemical sensors. Applied Clay Science,2005.28(1-4):199-208.
    281. M. Morigi, E. Scavetta, M. Berrettoni, et al., Sulfate-selective electrodes based on hydrotalcites. Analytica Chimica Acta,2001.439(2):265-272.
    282. E. Scavetta, B. Ballarin, M. Berrettoni, et al., Electrochemical sensors based on electrodes modified with synthetic hydrotalcites. Electrochimica Acta,2006.51(11): 2129-2134.
    283. E. Scavetta, M. Berrettoni, M. Giorgetti, et al., Electrochemical characterisation of Ni/Al-X hydrotalcites and their electrocatalytic behaviour. Electrochimica Acta, 2002.47(15):2451-2461.
    284. K. Itaya, A.J. Bard, Clay-modified electrodes.5. Preparation and characterization of pillared clay-modified electrodes and membranes. Journal of Physical Chemistry, 1985.89(25):5565-5568.
    285. P. Benitoa, I. Guineaa, F.M. Labajosa, et al., Microwave-hydrothermally aged Zn, Al hydrotalcite-like compounds:influence of the composition and the irradiation conditions. Microporous and Mesoporous Materials,2008.110(2-3):292-302.
    286. F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays:Preparation, properties and applications. Catalysis Today,1991.11(2):173-301.
    287. F. Kooli, C. Depege, A. Ennaqadi, et al., Rehydration of Zn-Al layered double hydroxides. Clays and Clay Minerals,1997.45(1):92-98.
    288. S.Miyata, Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals,1983.31(4):305-311.
    289. S. Narayanan, K. Krishna, Hydrotalcite-supported palladium catalysts Part I: Preparation, characterization of hydrotalcites and palladium on uncalcined hydrotalcites for CO chemisorption and phenol hydrogenation Applied Catalysis A: General,1998.174(1-2):221-229.
    290. S. Paredes, G. Fetter, P. Bosch, et al., Sol-gel synthesis of hydrotalcite — like compounds. Journal of Materials Science,2006.41(11):3377-3382.
    291. M.M. Rao, B.B. Reddy, M. Jayalakshmi, et al., Hydrothermal synthesis of Mg-Al hydrotalcites by urea hydrolysis. Materials Research Bulletin,2005.40(2):347-359.
    292. W.T. Reichle, Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics,1986.22(1):135-141.
    293. T. Sato, H. Fujita, T. Endo, et al., Synthesis of hydrotalcite-like compounds and their physico-chemical properties. Reactivity of Solids,1988.5(2-3):219-228.
    294.李丽芳,候万国,刘春霞,等,Zn-Al类水滑石的合成及表征.精细化工,2004.21(3):260-264.
    295. M.S. Yarger, E.M.P. Steinmiller, K.-S. Choi, Electrochemical synthesis of Zn-Al layered double hydroxide (LDH) films. Inorganic Chemistry,2008.47:5859-5865.
    296.钟秉霖,氧化铱五氧化二钽电位式二氧化碳感测器抗干扰之研究.台湾国立交通大学电子物理研究所硕士论文,2005.
    297.许昆明,张丽平,适用于测量沉积物pH的金属氧化物微电极.厦门大学学报(自然科学版),2009.48(4):570-575.
    298. J. Letouzey, M. Kimura, The Okinawa Trough:genesis of a back-arc basin developing along a continental margin. Tectonophysics,1986.125(1-3):209-230.
    299.刘长华,曾志刚,龟山岛附近海底热液自然硫烟囱体的硫同位素研究.海洋与湖沼,2007.38(2):118-123.
    300. J. Letouzey, M. Kimura, Okinawa Trough genesis:structure and evolution of a back arc basin developed in a continent. Marine and Petroleum Geology,1985.2:111-130.
    301.曾志刚,付永涛,陈丽蓉,冲绳海槽岩浆性质的变化特点:斜方辉石提供的信息.海洋与湖沼.37(1):84-89.
    302. R. Shinjo, S.L. Chung, Y. Kato,et al., Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research,1999.104(B5):10591-10608.
    303. T. Gamo, K. Okamura, J.L. Charlou, et al., Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology,1997.25(2): 139-142.
    304. J.C. Sibuet, B. Deffontaines, S.K. Hsu, et al., Okinawa Trough backarc basin:early tectonic and magmatic evolution. Jouranl of Geophysical Research,1998.103(B12): 30245-30267.
    305. L.S. Teng, Extensional collapse of the northern Taiwan mountain belt. Geology, 1996.24(10):949-952.
    306. Y.H. Yeh, C.H. Lin, S.W. Roecker, A study of upper crustal structures beneath northeastern Taiwan:Possible evidence of the weatern extension of Okinawa trough. Geological Society of China. Proceedings,1989.2:139-156.
    307.刘长华,曾志刚,殷学博,等,台湾岛东北部龟山岛附近海域自然硫烟囱体的基本特征研究.台湾海峡,2006.25(3):309-317.
    308. H.F. Lee, T.F. Yang, T.F. Lan, et al., Fumarolic gas composition of the Tatun Volcano Group, Northern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 2005.16(4):843-864.
    309. Y.G. Chen, W.S. Wu, Z.H. Chen, et al., A date for volcanic-eruption inferred from a siltstone xenolith. Quaternary Sci. Rev.,2001.20(5-9):869-873.
    310. C.S. Lee, G.G. Shor Jr, L.D. Bibee, et al., Okinawa Trough:origin of a back-arc basin. Marine Geology,1980.35(1-3):219-241.
    311. Tarasov, V.G., A.V.Gebruk, A.N. Mironov, et al., Deep-sea and shallow-water hydrothermal vent communities:two different phenomena. Chemical Geology,2005. 224:5-39.
    312.刘长华,殷学博,关于现代浅海型海底热液活动的研究进展.地球科学进展,2006.21(9):918-924.
    313. Chen, C.T.A., et al., Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol Sinica,2005.24(1):125-133.
    314.郭富雯,龟山岛海底热液活动初步调查.台湾:国立中山大学海洋地质及化学研究所,2002.
    315. Chen, C.T.A., Z.G. Zeng, F.W. Kuo, et al., Tide-Influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology,2005.224(1-3):69-81.
    316.潘依雯,叶瑛,韩沉花,用于深海极端环境下的pH电极制备方法改进.海洋学报,2010.32(2):73-79.
    317. D. Dobcnik, I. Gros, M. Kolar, A silver/silver sulphides selective electrode prepared by means of chemical treatment of silver wire. Acta Chimica Slovenica,1998.45(3): 209-216.
    318.叶瑛,黄霞,韩沉花,等,海底热液扩散流溶解硫化物的原位观测:电极的制备与性能标定.传感技术学报,2008.21(1):5-8.
    319. L.J. Gillespie, Reduction potentials of bacterial cultures and of waterlogged soils. Soil Science,1920.9:199-216.
    320.杨微,秦华伟,基于MSP 430的深海低功耗数据采集系统.机电工程,2009.26(5):16-19.
    321. K. Ding, W.E. Seyfried Jr., In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures. Chemical Review,2007.107:601-622.
    322. J.H. Filloux, Deep-sea tide observations from the northeastern Pacific. Deep Sea Research Oceanographic Abstracts,1971.2:275-284.
    323. M.K. Tivey, A.M. Bradley, T.M. Joyce, et al., Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth and Planetary Science Letters,2002.202(3-4):693-707.
    324. G.D. Egbert, S.Y. Erofeeva, Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric Oceanic Technology,2002.19(2):183-204.
    325. G.D. Egbert, S.Y. Erofeeva, R.D. Ray, Assimilation of altimetry data for nonlinear shallow-water tides:quarter -diurnal tides of the Northwest European Shelf. Continental Shelf Research,2010.30(6):668-679.
    326. S.R. Massel, Wavelet analysis for processing of ocean surface wave records. Ocean Engineering,2001.28(8):957-987.
    327. A. Panizzo, G. Bellotti, P. De Girplamo, Application of wavelet transform analysis to landslide generated waves. Coast Engineering,2002.44(4):321-338.
    328. J.P. Leduc, Spatio-temporal wavelet transforms for digital signal analysis. Signal Processing,1997.60(1):23-41.
    329.叶瑛,陈志飞,黄霞,等,东太平洋海隆热液活动区原位观测数据的小波分析和热液指标的周期性变化.海洋学报,2008.30(3):165-169.
    330. N.E. Huang, Z. Shen, S.R. Long, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The Royal Society of London. Proceedings Series A:Mathematical, Physical and Engineering Sciences,1998.454(1971):903-995.
    331. N.E. Huang, S.R. Long, Z. Shen, The mechanism for frequency downshift in nonlinear wave evolution. Advances in Applied Mechanics,1996.32:59-117.
    332. N.E. Huang, Z.H. Wu, A review on Hilbert-Huang transform:Method and its applications to geophysical studies. Reviews of Geophysics,2008.46:RG2006, doi:10.1029/2007RG000228.
    333. Wu, Z.H., N.E. Huang, S.R. Long, et al., On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America,2007.104(38):14889-14894.
    334. N.E. Huang, Z.H. Wu, J.E. Pinzon, et al., Reductions of noise and uncertainty in annual global surface temperature anomaly data. Advances in Adaptive Data Analysis,2009.1(3):447-460.
    335. Z.H. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method. The Royal Society of London. Proceedings Series A:Mathematical, Physical and Engineering Sciences,2004.460(2046):1597-1611.
    336. M.L.C. Wu, S. Schubert, N.E. Huang, The development of the South Asian summer monsoon and the intraseasonal oscillation. Journal of Climate,1999.12(7):2054-2075.
    337. C.F. Yoder, J.G. Williams, M.E. Parke, Tidal variations of Earth rotation. Journal of Geophysical Research,1981.86(b2):881-891.
    338. L.H. Kantha, J.S. Stewart, S.D. Desai, Long-period lunar fortnightly and monthly ocean tides. Journal of Geophysical Research,1998.103(c6):12639-12647.
    339. M.D. Lilley, R.A. Feely, J.H. Trefry, Chemical and biochemical transformations in hydrothernal plumes. In:Humphris S E, Zierenberg R H, Mullineaux L S, et al, eds. Seafloor Hydrothermal Systems:Physical, chemical, biological and gological interactions. American Geophysical Union,1995. Geophysical Monograph 91:369-391.
    340. D.C. Kadko, N.D. Rosenberg, R.W. Lupton, et al., Chemical reaction rates and intrainment within the Endeavour Ridge hydrothermal plume. Earth Planetary Science Letter,1990.99:315-335.
    341.朱佳,胡建宇,张文舟,等,台湾海峡及其邻近海域潮汐数值计算.台湾海峡,2007.26(2):166-176.
    342. G.A. Bradshaw, T.A. Spies, Characterizing canopy gap structure in forests using wavelet analysis. Journal of Ecology,1992.80(2):205-215.
    343. F.A. Al-Horani, S.M. Al-Moghrabi, D. de Beer, Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. Journal of Experimental Marine Biology and Ecology, 2003.288:1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700