用户名: 密码: 验证码:
柔性夹钳拉形过程及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉伸成形(简称拉形)是蒙皮类零件的重要成形方法,具有模具制造简单和回弹量小等优点。蒙皮件是构成飞机气动外形的主要零件,具有种类多、数量少、结构复杂、外形尺寸大等特点。随着大型三维曲面拉伸件被广泛应用于航空航天、高速铁路、船舶、现代建筑以及其它行业,急需一种新的拉形工艺来改善拉形质量、提高材料利用率和降低生产成本。因此,开展新型拉伸成形设备及工艺研究具有重要意义。
     柔性夹钳拉形是一种新型的拉形工艺,其基本原理是用柔性的离散夹钳代替刚性的整体夹钳对板料进行拉形,该工艺具有柔性好、贴模容易、材料利用率高、成形范围大和成形质量好等优点。本文利用有限元软件建立了柔性夹钳拉形有限元模型,对柔性夹钳拉形工艺进行数值模拟,研究了柔性夹钳拉形机的改进参数,柔性夹钳前后拉形回弹和起皱等问题,探讨了多点模具在柔性夹钳前后拉形中的应用,并进行了相关实验验证。
     本文的主要研究内容和结论如下:
     1.柔性夹钳拉形原理和特点
     分析了传统的横向拉形机和纵向拉形机的结构特点,指出了其适用范围。提出了柔性夹钳拉形方法,阐述了柔性夹钳拉形变形协调方法和柔性夹钳拉形原理,介绍了柔性夹钳拉形机的结构特点。在课题组开发的柔性夹钳拉形机上对不规则形状工件进行了柔性夹钳拉形实验,采用三维光学扫描仪对实验件进行了精度测量,介绍了柔性夹钳拉形工艺的应用。
     2.柔性夹钳拉形有限元模型的建立
     对板材拉形过程进行了力学分析,介绍了板材拉形过程的应力和应变的理论计算公式。阐述了板料塑性成形数值模拟的有限元方程及相关问题。建立了柔性夹钳拉形有限元模型,对环形件和鞍形件在相同条件下进行了柔性夹钳拉形实验和数值模拟,结果表明:实验结果与模拟结果吻合较好,验证了柔性夹钳拉形有限元模型的正确性。
     3.柔性夹钳拉形工艺的数值模拟
     基于柔性夹钳拉形时夹钳的运动特点,采用了力加载和位移加载两种加载方式对柔性夹钳拉形进行数值模拟,并对力加载和位移加载进行了对比分析。以球形件和鞍形件为例对柔性夹钳拉形和刚性夹钳拉形进行了数值模拟对比,结果表明:与刚性夹钳拉形相比,柔性夹钳拉形可以大幅减小夹持边缘的应力大小,避免应力集中现象,并且能使成形区的应变分布更加均匀,厚度减薄量更小,所需的最小过渡区长度更短。以鞍形件、球形件和M形件为例研究了夹持力大小、夹料块形状、夹钳数量、加载幅值曲线、润滑条件和过渡区长度等工艺参数对柔性夹钳拉形的影响。结果表明:在保证工件完全贴模和夹钳不脱落的情况下,较小的夹持力可以使成形件的应力分布更均匀,降低成形件拉裂的风险;夹料块形状不同时,随着夹持面积的减小,成形件的应力和等效应变也减小,但是减小的幅度很小;在拉伸成形M形等复杂曲面件时,夹钳数量越多,成形件贴模效果越好;加载幅值曲线幂次越高,摩擦系数越小或过渡区长度越长,成形件的应变和厚度分布越均匀,成形质量越好。
     4.柔性夹钳拉形机结构改进及其参数的数值模拟
     对柔性夹钳拉形机结构进行了改进,并给出了结构示意图。以球形件为例探讨了柔性夹钳前后拉形时垂直缸距夹钳钳口的距离、前拉力大小和夹料块圆角半径对成形结果的影响。结果表明:垂直缸距夹钳钳口距离越小、前拉力越大或夹料块圆角半径越大,球形件的最大应力、拉伸应变和厚度减薄量越小,且成形区的应力、拉伸应变和厚度分布更均匀,成形效果越好。对球形件在后拉和前后拉两种方式下进行了数值模拟,结果说明,球形件前后拉需要的最小贴模力小于后拉需要的最小贴模力,前后拉时有效成形区的拉伸应变和厚度减薄率远小于后拉时有效成形区的拉伸应变和厚度减薄率。
     5.柔性夹钳前后拉形回弹和起皱的数值模拟
     对拉形后回弹现象进行了力学分析,采用显式和隐式算法相结合的方法计算回弹。研究了材质、润滑条件、预拉率和板材厚度对球形件回弹的影响,结果表明:板材的弹性模量和屈服强度越大、润滑条件越好、预拉率越大或板材越厚,成形件的卸载回弹量越小;四种条件下,柔性夹钳前后拉的回弹量均最小,柔性夹钳后拉的回弹量均居中,刚性夹钳拉形的回弹量均最大。基于板材在不易贴模区域的无约束自由成形的特点,给出了起皱缺陷的判定方法。对柔性夹钳前后拉形时鞍形件的起皱过程进行了数值模拟,分析了不同区域是否起皱的原因。研究了材质、润滑条件、预拉率和板材厚度对鞍形件起皱的影响,结果表明:板材的弹性模量和屈服强度越大、润滑条件越差、预拉率越大或板材越厚,成形件的皱曲量越小;四种条件下,柔性夹钳前后拉的皱曲量均最小,柔性夹钳后拉的回弹量均居中,刚性夹钳拉形的皱曲量均最大。通过数值模拟得出了三种拉形方式下不同板厚时鞍形件无起皱极限图。
     6.多点模具在柔性夹钳前后拉形中的应用及数值模拟
     采用课题组开发柔性夹钳前后拉形装置配合多点模具进行柔性夹钳拉形实验,结果表明:工件在过渡区很短的情况下实现了完全贴模,夹钳在拉形过程中随模具形状发生了自协调转动,相邻夹钳间隙区域的板材实现了自由流动。介绍了多点模具成形时特有的成形缺陷——压痕,阐述了两种主要的压痕分布形式。以球形件和鞍形件为例对柔性夹钳前后拉形时的压痕分布进行了数值模拟,结果表明厚向应变可以用来描述压痕。分析了过渡区长度、板材厚度、曲率半径和材质对压痕的影响,结果表明:过渡区越长、板材越厚、曲率半径越大或板材的屈服应力越大,压痕越轻微;通过板料与多点模之间放置弹性垫来抑制压痕。探讨了多点模具与目标工件的关系、冲头坐标的计算方法、多点模具调形软件和回弹补偿方法等问题,对柔性夹钳前后拉形进行回弹补偿数值模拟,并对回弹补偿方法进行实验验证。结果表明:通过两次补偿后,球形件和鞍形件的成形误差都显著减小,实验结果验证了多点模具回弹补偿方法的可行性。
Stretch forming is an important forming method of aircraft skin, which has simple dieand small springback value. The skin parts are the main parts for structuring aerodynamicconfiguration, it has many kinds, small number, complex structure and large dimension.With the wide use of large-scale three-dimensional sheet metal in the fields of aeronauticsand astronautics, high-speed train, ships, modern architectures as well as other industries, iturgent needs a new kind of stretching process to ameliorate stretching quality, improvematerial utilization and reduce production costs. Therefore, it is important to carry outstudy of new type of stretch forming equipment and technology.
     Flexible clamp stretch forming is a new kind of stretch forming technology, the basicprinciple is the rigid overall clamp is replaced by flexible discrete clamp, the technique hasgood flexibility, high material utilization, large forming range and good forming quality, inaddition, it also makes the sheet metal attach the die easily. In this paper, the finite elementmodel of flexible clamp stretch forming was set up, and the numerical simulation offlexible clamp stretch forming process were performed. The modified parameters offlexible clamp stretch forming machine were studied, the springback and wrinkle offlexible clamp front and back stretch forming were investigated. Then, the application ofmulti-point die used in flexible clamp front and back stretch forming were discussed, andthe related experiment were verified.
     The main contents and conclusions of this paper are as follows:
     1. Principle and characters of flexible clamp stretch forming
     The structural features of the traditional horizontal stretch forming machine andvertical stretch forming machine were analyzed, and their applied scope were pointed out.The deform conformity method and principle of flexible clamp stretch forming wereelaborated, and the characteristics of flexible clamp stretch forming machine was described.Then, flexible clamp stretch forming experiment of irregular shaped part was carried out, the forming precision of experimental part was measured by using three-dimensionaloptical scanner, and the application of flexible clamp stretch forming technology wasintroduced.
     2. Establishment of finite element model of flexible clamp stretch forming
     Mechanics analysis of stretch forming was done, and the theoretical calculation of thestress and strain are introduced. The finite element equation of numerical simulation forsheet plastic forming and related issues were elaborated. Then finite element model offlexible clamp stretch forming was set up. Flexible clamp stretch forming experiments andnumerical simulations for toroidal and saddle-shaped parts were done under the sameconditions, the results show that the experimental results are consistent with the simulatedresults, which verified the correctness of the finite element model.
     3. Numerical simulation of flexible clamp stretch forming process
     The loading methods of force loading and displacement loading were adopted forflexible clamp stretch forming based on the moving characteristics of clamp, and thecomparative analysis for two kinds of loading methods was done by numerical simulation.The contrast between rigid clamp stretch forming and flexible clamp stretch forming forspherical and saddle-shaped parts were carried out, the results show that the flexible clampstretch forming mode can decrease the stress in the edge of clamp jaws greatly and avoidthe stress concentration phenomenon, enable the strain distribution of the forming zonemore uniform, reduce the thinning ratio and shorten the minimum transitional length. Theeffects of the magnitude of clamping force, the shape of clamping block, the number ofclamp, the loading curve, the lubrication conditions and the transitional length on theforming quality of parts were investigated through the flexible clamp stretch forming forspherical part, saddle-shaped part and M-shaped part. The results show that a smallerclamping force can make the formed part has a more uniform stress in the case of theformed part completely attach to the stretching die and not to clamp shedding, which alsoreduce the risk of crack. With the decreasing of clamping area, the stress and equivalentstrain of formed part decrease slightly when the shape of clamping block is different. Abetter fitting quality of complex surfaces such as the M-shaped part can be got when thenumber of clamp is larger. The higher the power of loading curve, the smaller the frictioncoefficient, or the longer the transitional length is, the more uniform stretching strain andthickness, or the better the forming quality will be.
     4. Structural modification and parameter simulation of flexible clamp stretchforming machine
     The structural modification of flexible clamp stretch forming machine was conducted, and the structural diagram was given. Taking the spherical part as the objective part, theeffects of the location of vertical cylinder, the magnitude of vertical force due to thevertical cylinder and the fillet radii of clamping block on the forming quality wereinvestigated. The results show that the smaller the distance between the vertical cylinderand the edge of clamp jaws or the larger the vertical force due to the vertical cylinder or thelarger the fillet radius of the clamping block is, the smaller the maximum stress, strain andthickness thinning ratio will be, and more uniform stress, strain and thickness of formingzone will be. The numerical simulations of flexible clamp back stretch forming andflexible clamp front and back stretch forming were compared, and the results show that theminimum forming force, the stretching strain and thickness thinning ratio of spherical partformed by flexible clamp front and back stretch forming is less than that formed byflexible clamp back stretch forming.
     5. Numerical simulation of springback and wrinkle for flexible clamp front andback stretch forming
     The mechanics analysis of springback was done, and the combination of implicit andexplicit method was determined to compute springback. The influences of material,lubrication conditions, pre-stretched ratio and thickness on the springback value ofspherical part were studied. The results show that the larger the elastic modulus and yieldstrength, the better the lubrication conditions, the larger the pre-stretched ratio or thethicker the thickness is, the smaller the springback value will be. In the above fourinfluence conditions, the springback value of flexible clamp front and back stretch formingis minimum, that of flexible clamp back stretch forming is middle, and that of rigid clampstretch forming is maximum. The judge method of wrinkling defect based on the formingcharacteristics of sheet metal in the unconstrained region was determined. Numericalsimulation of wrinkling process for saddle-shaped part formed by flexible clamp front andback stretch forming was carried out, and the reason of wrinkle in different areas ofsaddle-shaped part was analyzed. The effects of material, lubrication conditions,pre-stretched ratio and thickness on the wrinkle of saddle-shaped part were studied. Theresults show that the larger the elastic modulus and yield strength, the worse the lubricationconditions, the larger the pre-stretched ratio or the thicker the thickness is, the smaller thewrinkling value will be. In the above four influence conditions, the wrinkling value offlexible clamp front and back stretch forming is minimum, that of flexible clamp backstretch forming is middle, and that of rigid clamp stretch forming is maximum. Thenon-wrinkle critical graph of saddle-shaped parts with different thickness was obtainedunder the three kinds of stretching methods.
     6. Application and numerical simulation of multi-point die in flexible clamp frontand back stretch forming
     The flexible clamp front and back stretch forming machine was developed andexperiments were conducted by using multi-point die. The results show that the workpiecesfit the die completely in the case of transitional length is very short, the clamps changewith the shape of stretching die, and the sheet metal in the gap regions of adjacent clampsachieves free flowing. Indentation is the unique forming defect of multi-point forming, andtwo kind distributed forms of indentation are elaborated. The numerical simulations ofindentation for spherical and saddle-shaped parts formed by flexible clamp back and downstretch forming show that indentation can be described by thickness strain. The effects oftransitional length, thickness, curvature radius and material on the indentation of sphericaland saddle-shaped parts were studied. The results show that the longer the transitionallength, the thicker the thickness, the larger the curvature radius or the larger the yieldstrength is, the more gentle the indentation will be. Then, the elastic cushion was used forsuppressing indentation. The relationship between the multi-point die and target workpiece,the calculating scheme of punch coordinate, the multi-point CAD/CAM software andspringback compensation method were investigated. Numerical simulation of springbackcompensation and related forming experiment were done. The results show that theforming error reduced significantly through two-times compensation, and the formingexperiment verified the feasibility of the springback compensation method.
引文
[1]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [2]李春峰.板材成形新技术及发展趋势[J].机械工人,2005,(7):4-9.
    [3]常荣福.飞机钣金零件制造技术[M].北京:国防工业出版社,1992.
    [4]汪骥.水火弯板自动化加工工艺的关键技术研究[D].大连:大连理工大学博士学位论文,2006.
    [5]刘玉君.水火弯板热弹塑性机理及模拟方法的研究[D].大连:大连理工大学博士学位论文,1997.
    [6] M. Ishiyama, Y. Tango, Y. Nakamura. Studies of plate bending for practical use by computeraided line heating system(in Japanese)[J]. Journal of Society of Naval Architects of Japan,1998,183(6):335-342.
    [7] M. Ishiyama, Y. Tango. Advanced line-heating process for hull-steel assembly [J]. Journal ofShip Production,2000,16(2):121-132.
    [8] Y. Tomita, N. Osawa, K. Hashimoto, et al. Study on heat transfer phenomena between thecombustion flow field and the heating plate during line heating process(in Japanese)[J]. Journalof Society of Naval Architects of Japan,2001,190(11):579-587.
    [9] J. Sawamura, Y. Tomita, N. Osawa, et al. Study on combustion analysis in the impinging jetflame during line heating process(in Japanese)[J]. Journal of Society of Naval Architects ofJapan,2001,190(11):589-597.
    [10] J. Sawamura, Y. Tomita, N. Osawa, et al. Study on combustion model and turbulent model forthermal flow analysis of impinging jet flame during line heating process(in Japanese)[J].Journal of Society of Naval Architects of Japan,2002,192(11):531-543.
    [11] T. Terasaki, K. Yamaguchi, T. Nomoto, et al. Study on transverse shrinkage and angulardistortion generated by line heating(in Japanese)[J]. Journal of Society of Naval Architects ofJapan,2003,193(6):65-74.
    [12] T. Terasaki, M. Mizukami, M. Nakatani, et al. Effect of line heating factors generated by triangleheating (in Japanese)[J]. Journal of Society of Naval Architects of Japan,2003,193(6):75-83.
    [13] J. G. Shin, J. H. Lee, S. K. Park. A Numerical thermoplastic analysis of line heating process forsaddle-type shells with the application of an artificial neural network[J]. Journal of ShipProduction,1999,15(1):10-20.
    [14] J. G. Shin, C. H. Ryu, J. H. Nam. A comprehensive line-heating algorithm for automaticformation of curved shell plates[J]. Journal of Ship Production,2004,20(2):69-78.
    [15]刘玉君,赵洪福,王桂荣.水火弯板影响成型因素的实验定性分析[J].大连理工大学学报,1994,34(1):45-49.
    [16]刘玉君,纪卓尚,戴寅生.水火弯板成形参数回归分析[J].中国造船,1994,2(1):65-73.
    [17]刘玉君,纪卓尚,邓燕萍.船体帆型外板水火成型工艺参数预报系统[J].中国造船,2000,9(3):80-83.
    [18]汪建华,戚新海,徐磊.水火弯板的简化计算—水火弯板研究(一)[J].造船技术,1996,(10):22-24.
    [19]汪建华,徐磊.水火弯板的假想载荷模型—水火弯板研究(二)[J].造船技术,1996,(11):24-26.
    [20]汪建华.水火弯板的热弹塑性数值模拟—水火弯板研究(三)[J].造船技术,1996,(12):13-15.
    [21]董大栓,柳存根,谭家华.水火弯板计算中高斯分布热源模型各参数的实验确定[J].上海交通大学学报,2001,10(10):1459-1463.
    [22]董大栓,柳存根,谭家华.水火弯板温度场规律的分析[J].造船技术,2002,(4):16-19.
    [23]董大栓,柳存根,谭家华.水火弯板变形的描述方法[J].中国造船,2003,3(1):84-88.
    [24]李纬民.金属板材激光弯曲成形规律的研究.中国激光,1998,25(9):859-864.
    [25] Y. Namba. Laser forming in space[C]. Proceeding of the International Conference on Lasers’85,Osaka, Japan,1986:403-407.
    [26] M. Geiger, F. Vollertsen. The mechanism of laser forming[C]. CIRP Annuals,1993,42(1):301-304.
    [27] M. Geiger, F. Vollertsen, R. Kals. Fundamentals on the manufacturing of sheet metalmicroparts[C]. CIRP Annals,1996,45(1):277-282.
    [28] T. Hennige. S. Holzer, F. Vollertsen, M. Geiger. On the working accuracy of laser bending[J].Journal of materials processing technology,1997,71(3):422-432
    [29] H. Frackiewicz, W. Kalita. Laser forming of sheet [P]. German:0317830A2,1988.
    [30] S. P. Edwardson. A study into the2D and3D laser forming of metallic components[D]. TheUniversity of Liverpool, Liverpool, UK,2004.
    [31] K. Scully. Laser line heating [J]. Ship production,1987,3(4):237-246.
    [32] F. Vollertsen, M. Geiger, W. M. Li. FDM and FEM simulation of laser forming: a comparativestudy[C]. Advanced technology of plasticity,1993:1793-1798.
    [33] N. Alberti, L. Fratini, F. Micari, M. Cantello, G. Savant. Computer aided engineering of laserassisted bending processes[C]. Proceedings of LANE’97,1997,2:375-382.
    [34] Y. C. Hsiao, H. Shimizu, L. Firth, W. Maher, K. Masabuchi. Finite element modeling of laserforming [C]. Proceedings of the international congress on applications of lasers andelectro-optics(ICALE097),1997, A:31-40.
    [35] W. Li, Y. L. Yao. Effects of strain rate in laser forming [C]. Proceedings of ICALEO’99,1998, F:107-116.
    [36]李纬民.板料成形新工艺—激光弯曲[J].锻压技术,1993(6):18-22.
    [37]季忠.板材激光弯曲成形及其数值模拟[D].西安:西北工业大学博士学位论文,1997.
    [38]王秀凤, Janos Takacs, Gyorgy Krallics.薄板激光弯曲机理的研究[J].锻压技术,2001(4):29-33.
    [39]刘顺洪,周龙早,王令红,林武.金属板材三维激光弯曲成形的研究[J].航空制造技术,2001(4):42-44.
    [40]石经纬,李俐群,陈彦宾,王威.不同激光热源模式下薄板弯曲特性数值模拟[J].中国激光,2007,34(9):1303-1307.
    [41]段园培,薛克敏,朱晓勇,喻佳.多道次板料激光弯曲成形热力耦合有限元分析[J].应用激光,2006,26(6):409-413.
    [42]李国祥.喷丸成形[M].北京:国防工业出版社,1982.
    [43]曾元松,黄遐,李志强.先进喷丸成形技术及其应用与发展[J].塑性工程学报,2006,13(3):23-29.
    [44] S Ramati, G. Levasseur, S. Kennerknecht. Single piece wing skin utilization via advanced peenforming technology[C]. Proceedings of the7th international conference on shot peening(ICSP-7), Warsaw, Poland,2000:207-213.
    [45] F. Wustefeld, W. Linnemann, S. Kittel. Towards peen forming process automation[C].Proceedings of the8th international conference on shot peening (ICSP-8),Garmisch-Partenkirchen, Germany,2002:44-52.
    [46] A. Friese, J. Lohmar, F. WuStefeld. Current applications of advanced peen formingimplementation[C]. Proceedings of the8th international conference on shot peening (ICSP-8),Garmisch-Partenkirchen, Germany,2002:53-62.
    [47] R. Kopp, J. Schulze. Optimising the double-sided simultaneous shot peen forming[C].Proceedings of the8th international conference on shot peening (ICSP-8),Garmisch-Partenkirchen, Germany,2002:227-233.
    [48] H. Soyama, D. Odhiambo, K. Saito. Cavitation shotless peening for improvement of fatiguestrength of carbonized steel[C]. Proceedings of the8th international conference on shot peening(ICSP-8), Garmisch-Partenkirchen, Germany,2002:435-440.
    [49] L. Hackel, F. Harris. Contour forming of metals by laser peening [P]. USA, WO01/05549A2.6,2002.
    [50]康小明,马泽恩,何涛,孔永明.机翼整体壁板喷丸成形CAD/CAM/CAE系统.航空制造工程,1997(6):35-36.
    [51]胡凯征,吴建军,王涛,敖志强.基于温度场的喷丸成形数值模拟机参数优化.中国机械工程,2007,18(3):292-295.
    [52]张永康,张兴权,周建忠,等.LY12CZ铝合金激光喷丸变形[J].中国激光,2006,33(10):1417-1421.
    [53]杜建钧,周建忠,张兴权,倪敏熊.金属板料的机械喷丸成形与激光喷丸成形技术[J].电加工与模具,2006(1):4-8.
    [54]闫林林.超声喷丸技术及其应用[J].制造技术与机床,2010(6):29-31.
    [55]李国祥.机翼整体壁板的预应力喷丸成形[J].航空制造工程,1998(2):16-18.
    [56]松原茂夫.數值制禦逐次成形法[J].塑性と加工,1994,35(11):1258-1263.
    [57]莫健华,刘杰,黄树槐.汽车大型覆盖件的数字化成形技术[J].塑性工程学报,2001,8(2):14-16.
    [58] H. Iseki, O. Kumon. Forming limit of incremental sheet metal stretch forming using sphericalroller [J]. Journal of the Japan society for technology of plasticity,1994,406(35):1336-1341.
    [59] H. Iseki, T. Shinioura, K. Sato. Practical development of press-molding machine with smallpunching tool[C]. Advanced technology of plasticity-Proceedings of5th internationalconference on technology of plasticity,1996,2:935-938.
    [60] M. S. Shim, J. J. Park. The formability of aluminum sheet in incremental forming[J]. Journal ofMaterials Processing Technology,2001,113:654-658.
    [61] Y. H. Kim, J. J. Park. Effect of process parameters on formability in incremental forming ofsheet metal[J]. Journal of Materials Processing Technology,2002,130:42-46.
    [62] J. Jeswiet, E. Hagan. Incremental single point forming with a tool post[J]. Canadian Institute ofMining, Metallurgy and Petroleum,2001:103-108.
    [63] J. Jeswiet, E. Hagan. Rapid prototyping of a headlight with sheet metal[J]. Canadian Institute ofMining, Metallurgy and Petroleum,2001:109-114.
    [64]戴昆,苑世剑,王仲仁,方漪.轴对称件多道次数控点成形过程的理论分析[J].塑性工程学报,1998(2):26-32.
    [65] K. Dai, Z. R. Wang, Y. Fang. CNC incremental sheet forming of an axially symmetric specimenand the locus of optimization[J]. Journal of Materials Processing Technology,2000,102(1):164-167.
    [66]方漪,戴昆,王仲仁.板材数控增量成形过程的研究[J].塑性工程学报,1999(3):49-55.
    [67]毛锋,莫健华,黄树槐.金属板材数控无模成形机及其应用程序开发[J].锻压机械,2002(2):38-41.
    [68]毛峰.金属板材数控渐进成形关键技术研究[D].武汉:华中科技大学博士学位论文,2005.
    [69]李磊,周晚林,Hussaing.金属板料单点渐进成形极限的数值模拟预测[J].机械工程学报,2010,46(18):102-107.
    [70]邓玉山,曹鋆汇,李明哲.单点渐进成形装置研制[J].锻压装备与制造技术,2011(02):44-46.
    [71]世古成道,熊本盛秀等.三条プレスの开发[J].三菱重工技报,1976,13(6):64-72.
    [72] M. Z. Li, Z. Y. Cai, Z. Sui, Q. G. Yan. Multi-point forming technology for sheet metal[J].Journal of Materials Processing Technology,2002,129:333-338.
    [73]中岛尚正.针金束を用いた金型电极の研究[J].日本机械学会志,1969,72(603):32-40.
    [74]北野广雄等.钢板曲げ加工用萬能調整式プレス機械の研究[D].日本:京都大学,1961.
    [75]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自動化に关する研究(第一报:基础の研究)[C].日本造船学会论文集,1972(132):481-501.
    [76]西冈富仁雄等.ユニバサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第二报:实用化研究)[C].日本造船学会论文集,1973(133):291-305.
    [77] Yasuhiro Iwasaki, Hiroshi Shifa, Yoshiharu Taura. Forming of the three-dimensional surfacewith a triple-row-press[J]. Advanced technology of plasticity,1984:483-488.
    [78]井关日出男等.由柔性工具进行局部成形的方法[C].日本第42回塑性加工联合讲演会论文集,1991:265-266.
    [79]井关日出男,加腾和典等.通过柔性工具进行逐次成形的方法[C].平成4年度塑性加工春季讲演会论文集,1992:527-530.
    [80] D. E. Hardt, B. Chen. Control of a sequential brake forming process[J]. Control Manuf ProcessRob. Syst,1983:246-253.
    [81] D. E. Hardt, R. D. Webb. Closed-loop control of three-dimensional sheet forming[C].11thConference on Production Research and Technology,1984:381-387.
    [82] D. E. Hardt, M. C. Boyce, K. B. Ousterhout. A CAD-driven flexible forming system forthree-dimensional sheet metal parts [C]. International Congress and Exposition,1993,69-76.
    [83] D. F. Walczyk, D. E. Hardt. Design and analysis of reconfigurable discrete dies for sheet metalforming [J]. Journal of Manufacturing System,1998,17(6):436-454.
    [84]李明哲,中村敬一等.多点成形にぉける不良现象の产生びその抑制(板材多点成形法の研究第3报),第43回塑性加工连合讲演会论文集,1992:425-428.
    [85]中村敬一,李明哲等.ねじれ形状の多点成形に关する实验的探讨(板材多点成形法の研究第4报)[C].第43回塑性加工连合讲演会论文集,1992:429-432.
    [86]中村敬一,李明哲等.油压式多点プレス实验装置の制作(板材多点成形法の研究第二报)[C].平成4年度塑性加工春季讲演会论文集,1992:523-526.
    [87] M. Z. Li, Y. H. Liu, S. Z. Su, G. Q. Li.Multi-Point Forming: A Flexible Manufacturing Methodfor a3-D Surface Sheet[J]. Journal of Materials Processing Technology,1999,87:277-280.
    [88] M. Z. Li, C. G. Liu, Q. M. Chen. Research on Multi-Point Forming of Three-Dimensional SheetMetal Parts[C].6th International Conference on Technology of Plasticity, Nuremberg, Germany,1999,1:189-194.
    [89] Z. Y. Cai, M. Z. Li. Optimum path forming technique for sheet metal and its realization inmulti-point forming[J]. Journal of Materials Processing Technology,2001,110:136-141.
    [90] Z. Y. Cai, M. Z. Li. Multi-point forming of three-dimension the sheet metal and the control ofthe forming process[J]. International Journal of Pressure Vessels and Piping2002,79:289-296.
    [91]汪华,周贤宾.飞机蒙皮多点成形用复合柔性垫层的结构参数优化[J].航空学报,2007,28(6):1482-1486.
    [92]罗红宇,李东升,曾元松,邹方,白雪飘.蒙皮拉形可重构柔性模具模面生成系统开发及应用研究[J].塑性工程学报,2006,13(6):61-65.
    [93]白雪飘,曾元松,吴为,李志强.典型双曲率零件柔性多点模具蒙皮拉形技术研究[J].塑性工程学报,2007,14(6):105-113.
    [94]张琦.金属板材多点“三明治”成形的数值模拟及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [95]王少辉.多点拉形中局部变形与成形缺陷及其控制方法的数值模拟研究[D].长春:吉林大学大学博士学位论文,2011.
    [96]李寿萱.钣金成形原理与工艺[M].西北工业大学出版社,1985.
    [97] http://www.aeromachinery.com/ACB.htm
    [98] http://www.cyrilbath.com/home.html
    [99] H. W. Swift. Plastic bending under tension[J]. Engineering,1948,166333-359.
    [100] A. Baba and Y. Tozawa. Effect of tensile force in stretch-forming process on the springback[J].Bulletin of JSME,1964,7(28):834-843.
    [101] J. Chakrabarty. A theory of stretch forming over hemispherical punch heads[J]. InternationalJournal of Mechanical Sciences,1970,12(4):315-325.
    [102] B. Kaftanoglu, J. M. Alexander. On quasistatic axisymmetrical stretch forming[J]. InternationalJournal of Mechanical Sciences,1970,12(12):1065-1084.
    [103] M. Ueda, K. Ueno, M. Kobayashi. A study of springback in the stretch bending of channels[J].Journal of Mechanical Working Technology,1981,5(3-4):163-179.
    [104] A. A. El-Domiaty, A. H. Shabaik. Bending of work-handening metals under the influence ofaxial load[J]. Journal of Mechanical Working Technology,1984,10:57-66.
    [105] A. A. El-Domiaty, M.A. Shabara, M.D. Al-Ansary. Determination of stretch-bendability ofsheet-metals[J]. International Journal of Machine Tools and Manufacture,1996,36(5):635-650.
    [106] S. S. Oding and I. A. Alimenko. Stretch-wrap forming of multilayer skins[J]. Soviet Aeronautics(English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika),1986,29119-123.
    [107] K. K. Chen and D. C. Sun. Hydrodynamic lubrication in hemispherical punch stretch forming [J].Journal of Applied Mechanics, Transactions ASME,1986,53440-449.
    [108] R. T. Fox, A. M. Maniatty and D. Lee. Determination of friction coefficient for sheet materialsunder stretch-forming conditions[J]. Metallurgical transactions. A, Physical metallurgy andmaterials science,1989,20A:2179-2182.
    [109] V. V. Eliseev. Caculation of transitions in stretch forming[J]. Soviet Aeronautics,1991,34(2):108-111.
    [110] D. E. Hardt, W. A. Norfleet, V. M. Valentin, A. Parris. In process control of strain in a stretchforming process[J]. Journal of engineering materials and technology,2001,123:496-503.
    [111] B.Taleb Araghi, G.L. Manco, M. Bambach, G. Hirt. Investigation into a new hybrid formingprocess: incremental sheet forming combined with stretch forming[J], CIRPAnnals-Manufacturing Technology,2009,58:225-228
    [112]万敏,周贤宾,李晓星,伍惠.拉形条件对镜面蒙皮成形质量的影响[J].北京航空航天大学学报,1998,24(6):654-657.
    [113]万敏,周贤宾,李晓星,伍惠.镜面蒙皮拉形工艺参数研究[J].航空学报,1999,20(4):326-330.
    [114]伍惠.双曲度镜面蒙皮的成形工艺[J].航空制造技术,2002,(3):55-57.
    [115]张彬,李东升,周贤宾.基于人工神经网络的拉形回弹预测技术研究[J].塑性工程学报,2003,10(2):28-31.
    [116]张彦敏,周贤宾,罗红宇,李小强.双曲度飞机蒙皮拉伸成形轨迹优化与验证[J].中国机械工程,2006,17(19):2053-2056.
    [117]张彦敏,周贤宾.蒙皮拉形加载轨迹优化[J].北京航空航天大学学报,2007,33(2):201-205.
    [118]张彦敏,周贤宾.飞机蒙皮拉伸成形加载轨迹设计及优化[J].北京航空航天大学学报,2007,33(7):826-829.
    [119]韩金全,万敏,袁胜,许旭东.飞机复杂蒙皮拉形模具型面设计方法[J].北京航空航天大学学报,2008,(11):1360-1363.
    [120] D. H. He, X. Q. Li, D. S. Li, W. J. Yang. Process design for multi-stage stretch forming ofaluminium alloy aircraft skin[J], Transactions of Nonferrous Metals Society of China,2010,20(6):1053-1058.
    [121] D. H. He, D. S. Li, X. Q. Li, C. H. Jin. Optimization on springback reduction in cold stretchforming of titanium-alloy aircraft skin[J], Transactions of Nonferrous Metals Society of China,2010,20(6):2350-2357.
    [122] D. E. Hardt, D. C. Gossard. A variable geometry die for sheet metal forming: machine designand control[C]. Proc.Jt.Autom.Control Conf, USA,1980(2):FP7-C:1-5.
    [123] D. E. Hardt, B. A. Olsen, B. T. Allison, K. Pasch. Sheet metal forming with discrete diesurfaces[C]. Proceedings of Ninth American Manufacturing Research Conference,1981:140-144.
    [124] D. E. Hardt, M. C. Boyce, D. F. Walczyk. A flexible forming system for rapid responseproduction of sheet metal parts[C]. Proceedings of IBEC’93, Detroit, Michagan USA,1993:61-69.
    [125] D. E. Hardt,R. D. Webb. Sheet metal die forming using closed loop shape control[J]. Annals ofthe CIRP,1982,31:165-169.
    [126] D. E. Hardt,R. E. Robinson, R. D. Webb. Closed-loop control of die stamped sheet metal parts:Algorithm development and flexible forming machine design[C]. Proceedings of advancedsystems for manufacturing conference, Madison, Wisconsin USA,1985:21-28.
    [127] D. F. Walczyk, J. Lakshmikanthan, D. R. Kirt. Development of a reconfigurable tool for formingaircraft body panels[J]. Journal of Manufacturing System,1998,17(4):287-296.
    [128] J. M. Papazian. Tools of change: reconfigurable forming dies raise the efficiency of small-lotproduction[J]. Mechanical Engineering,2002,124(2):52-55.
    [129] E. L. Anagnostou. Optimized tooling design algorithm for sheet metal forming overreconfigurable compliant tooling[D]. Thesis, State University of New York at Stony Brook.
    [130]周朝晖,蔡中义,李明哲.多点模具的拉形工艺及其数值模拟[J].吉林大学学报(工学版),2005,35(3):287-291.
    [131]陈志红,李明哲,高占民.蒙皮件多点拉形过程中成形缺陷的数值模拟[J].塑性工程学报,2007,14(3):112-116.
    [132]陈志红,付文智,李明哲.蒙皮多点拉形过程中压痕的数值模拟及控制[J].材料科学与工艺,2010,18(6):791-795.
    [133]蔡中义,张海明,李光俊,李明哲.多点拉形数值模拟及模具型面补偿方法[J].吉林大学学报(工学版),2008,38(2):329-333.
    [134] Z. Y. Cai, S. H. Wang, X. D. Xu, M. Z. Li. Numerical simulation of multi-point stretch formingprocess of sheet metal[J]. Journal of Materials Processing Technology,2009,209(1):396-407.
    [135]王少辉,蔡中义,李明哲,李湘吉.冲头尺寸对多点拉形效果影响的数值模拟[J].吉林大学学报(工学版).2009,39(3):619-623.
    [136] S. H. Wang, Z. Y. Cai, M. Z. Li. Numerical investigation of the influence of punch element inmulti-point stretch forming process[J]. The International Journal of Advanced ManufacturingTechnology,2010,49(5-8):475-483.
    [137]王少辉,蔡中义,李明哲.多点拉形中回弹的数值模拟[J].塑性工程学报,2009,16(2):57-61.
    [138]王少辉,蔡中义,李明哲,梁云赋.多点拉形中回弹的影响因素研究[J].塑性工程学报,2009,16(4):7-11.
    [139] C. M. Zhang, W. Z. Fu, X. D. Li, et al. The Study on Suppression of Dimples in DigitalMulti-Point Stretching Process[C]. Advanced Materials Research,2010,972589-2593.
    [140] C. M. Zhang, W. Z. Fu, F. Liu, et al. Numerical Simulation of Forming Force in Lateral BendForming[C]. Advanced Materials Research,2011,1521120-1124.
    [141]白雪飘,曾元松,李志强.单曲率蒙皮零件柔性多点模具拉形过程的数值模拟与优化[J].航空制造技术,2006,11:85-88.
    [142]汪华,周贤宾.多点成形条件下蒙皮拉形的表面缺陷[J].航空制造技术,2006(6):89-92.
    [143]汪华,周贤宾,罗红宇,刘波.复合垫层在多点模蒙皮拉形中的应用[J].塑性工程学报,2007,14(5):43-47.
    [144]安丽娜,李晓星.弹性介质材料模型对回弹影响的数值模拟[J].航天制造技术,2007,2:17-20.
    [145]曹珺雯,李东升,王丽丽,等.可重构柔性模具蒙皮拉形有限元等效模型[J].塑性工程学报,2009,16(3):74-77.
    [146]王丽丽,李东升,曹珺雯,李小强.可重构柔性模具蒙皮包覆拉形仿真系统开发[J].锻压技术,2009,34(2):141-144.
    [147]王丽丽,李东升,李小强,罗红宇.可重构柔性多点模具蒙皮拉形模面补偿算法[J].北京航天航天大学学报,2011,37(8):1011-1015.
    [148] K. Siegert, K. J. Fann, A. Rennet. CNC-controlled segmented stretch forming process [C]. CIRPAnnals-Manufacturing Technology,1996,45(1):273-276.
    [149] K. Siegert, A. Rennet, K. J. Fann. Prediction of the final part properties in sheet metal formingby CNC-controlled stretch forming [J]. Journal of materials processing technology,1997,71(1):141-146.
    [150]吉林大学,板材拉形机[P].中国,发明专利,200910067003.6,2009.
    [151]吉林大学,高柔性多头拉形机[P].中国,发明专利,200910217701.X,2009.
    [152]张昊晗.多辊下压式柔性拉形过程及其数值模拟研究[D].长春:吉林大学博士学位论文,2011.
    [153]李永丰,丛晓霜,何鑫华,等.柔性压辊拉形中回弹的数值模拟[J].塑性工程学报,2010,17(6):46-50.
    [154]茅梦云,何鑫华,李永丰,等.柔性压辊拉形机原理及其数值模拟研究[J].锻压技术,2010,35(5):100-104.
    [155]冯朋晓,李明哲,付文智.高柔性多夹钳拉形机的结构设计[J].锻压装备与制造技术,2010,5:21-24.
    [156] X. Chen, M. Z. Li, W. Z. Fu, P. X. Feng. Research on multi-head stretch forming technology ofsheet metal[C].2010International Conference on Electrical and Control Engineering,2010,720:2952-2955.
    [157] X. Chen, M. Z. Li, H. H. Zhang, H. L. Peng. The effect of discrete grippers on sheet metalflexible-gripper stretch forming[C]. Applied Mechanics and Materials,2012,121-126:488-492.
    [158] H. L. Peng, M. Z. Li, Q. G. Han, P. X. Feng, X. Chen. Numerical investigation of flexibleholding technology for stretch forming process[C]. Applied Mechanics and Materials,2012,121-126:2126-2130.
    [159] H. L. Peng, M. Z. Li, P. X. Feng. Numerical simulation of process parameters in flexible discreteclamp stretch forming[C]. Applied Mechanics and Materials,2012,161:53-57.
    [160]彭赫力,李明哲,付文智,冯朋晓.柔性离散夹钳拉形工艺的数值模拟[J].吉林大学学报(工学版),2012,42(3):660-664.
    [161]彭赫力,刘纯国,李明哲.马鞍面件柔性夹钳多点拉形实验与数值模拟[J].西安交通大学学报,2012,46(5):109-113.
    [162] H. L. Peng, M. Z. Li, Q. G. Han, P. X. Feng, H. H. Zhang. Design of Flexible Multi-gripperStretch Forming Machine by FEM[C]. Advanced Materials Research,2011,328-330:13-17.
    [163]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS).北京:北京航空航天大学出版社,1994.
    [164]钱直睿.多点成形中的几种关键工艺及其数值模拟研究[D].长春:吉林大学博士学位论文,2007.
    [165]侯红亮,余肖放,曾元松.国内航空钣金装备技术现状与发展[J].航空制造技术,2009,1:34-39.
    [166]韩奇钢,付文智,冯朋晓,等.多点成形技术的研究进展及应用现状[J].航空制造技术,2010,24:87-89.
    [167]胡世光,陈鹤峥,李东升,等.板料冷压成形的工程解析(第二版)[M].北京:北京航空航天大学出版社,2009.
    [168]孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985.
    [169]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社,1990.
    [170]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [171] H. Tongru, E. Nakamachi.3-D Dynamic Explicit Finite Element Simulation of Sheet Forming[J].Advanced Technology of Plasticity,1993,3:1828-1833.
    [172]麻桂艳.中厚板多点成形数值模拟[D].长春:吉林大学硕士学位论文,2006.
    [173]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.
    [174]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008.
    [175] D.J. Benson, J.O. Hallquist. A Single Surface Contact Algorithm for the Post-buckling Analysisof Shell Structures[J]. Computer Methods in Applied Mechanics and Engineering,1990,78:141-163.
    [176]张东娟,崔振山,李玉强,等.平面应变板料拉弯成形回弹理论分析[J].工程力学,2007,24(7):66-71.
    [177]龚学鹏.三维曲面板类件的多点滚压成形研究[D].长春:吉林大学博士学位论文,2010.
    [178] H. Ameziane-Hassani, K.W. Neale. On the analysis of sheet metal wrinkling. InternationalJournal of mechanical sciences,1991,33(1):13-30
    [179] K. W. Nealc, P. Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metals.International Journal Numerical Method in Engineering,1990,30(8):1595-1608.
    [180] J. W. Hutchinson. Plastic bucking[J]. Advances in Applied Mechanics,1974,14:67-144.
    [181] K. W. Neale, P. Tugcu. Numerical analysis of wrinkle formation tendencies in sheet metal[J].International Journal for Numerical Methods in Engineer,1990,30:1595-1608.
    [182]张传敏.多点数字化拉形工艺的数值模拟研究[D].长春:吉林大学博士学位论文,2010.
    [183]宋雪松.板材多点成形中压痕的数值模拟及控制[D].长春:吉林大学硕士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700