用户名: 密码: 验证码:
非淀粉多糖酶制剂对鸡、猪生长的影响及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高小麦、大麦、糙米等谷物饲料的营养价值,探讨非淀粉多糖酶制剂作用机制,本文研究了非淀粉多糖酶制剂添加于大麦、小麦、糙米日粮对鸡猪生长的影响及其作用机制。
    1.小麦、大麦及糙米基础日粮添加非淀粉多糖酶制剂对雏鸡、肉仔鸡、仔猪生长的影响
    本研究共进行八次饲养试验,共用雏鸡、肉仔鸡872羽,断奶仔猪48头。试验1结果表明,大麦日粮添加酶制剂显著提高了雏鸡增重和饲料转化率,较大麦日粮组,添加0.15%浙江酶-1组和0.15%赤峰酶组增重分别提高8.98%(P< 0.05)和10.96%(P< 0.01); 料重比分别降低6.7%(P< 0.05)和9.3%(P< 0.01)。试验2结果表明,糙米日粮添加酶制剂,本次试验未发现显著效应,和糙米日粮组相比,雏鸡增重、料重比和采食量均无显著差异(P > 0.05); 和玉米组相比,糙米组增重和饲料转化率虽有下降,但差异不显著(P > 0.05),加酶组也不显著。试验3结果表明,小麦日粮添加酶制剂有改善效果,和小麦组相比,添加0.015%浙江酶-1雏鸡增重提高7.5%(P < 0.05),料重比下降5.3%(P > 0.05); 而添加0.15%赤峰酶增重提高,料重比下降,但均未达到显著(P > 0.05)。试验4结果表明,和小麦日粮组相比,添加0.1%、0.2%和0.5%浙江酶-2各组雏鸡增重分别提高15.7%(P < 0.01)、9.3%(P < 0.05)和14.5%(P < 0.01),料重比分别降低10.8%(P > 0.05)、8.3%(P > 0.05)和6.3%(P > 0.05); 添加0.1%、0.2%和0.5%芬兰酶各组雏鸡增重分别提高9.7%(P < 0.05)、6.8%(P > 0.05)和6.2%(P > 0.05),料重比分别降低13.3%(P < 0.05)、1.3%(P > 0.05)和4.2%(P > 0.05)。和玉米日粮组相比,小麦日粮组增重极显著降低(P < 0.01),料重比显著升高(P < 0.05); 添加酶各组和玉米组相比,增重无明显差异,但0.2%芬兰酶组料重比显著高于玉米组(P < 0.05),其他各加酶组和玉米组无显著差异。试验5和试验6结果表明,小麦日粮添加0.1%酶制剂或0.05%寡果糖均显著提高雏鸡的增重和饲料转化率(P < 0.05),但日粮联合添加酶制剂和寡果糖组与单一添加酶制剂组或寡果糖组相比无显著差异(P > 0.05)。试验7结果表明,小麦基础日粮添加酶制剂后肉仔鸡增重显著提高,7-21日龄时,0.05%、0.1%、0.5%浙江酶-3和0.05%、0.1%丹麦酶各组分别比对照组提高13.4%-22.0%( P < 0.01)和9.7%-12.3%( P < 0.05); 21-49日龄时,分别提高3.98%-5.2%( P < 0.05)和6.22%( P < 0.05)(0.1%丹麦酶组略低于对照组); 7-49日龄时,
The effects of non-starch polysaccharides enzyme preparations supplemented to barley, wheat or brown rice based diets on performances in chicken & pig and the mechanisms involved were studied in the present thesis in order to increase nutritional value of cereal such as wheat, barley, brown rice and so on.
    Ⅰ. The effect of non-starch polysaccharides enzyme preparations supplemented to barley, wheat or brown rice based diets on performances in chicks, broiler chickens and weaning pigs
    The thesis included eight feeding trials, in which 872 chickens and 48 weaning pigs were used. The result of experiment 1 showed that enzyme supplementation increased body weight gains and feed conversion rate of chicks. Compared with the control, group fed with 0.15% Zhejiang enzyme-1 and that fed with 0.15% Chifeng enzyme increased body weight gain 8.98%(P< 0.05)and 10.96%(P< 0.01),reduced feed-gain ratio 6.7%(P< 0.05)and 9.3%(P< 0.01), respectively. The result of experiment 2 showed that body weight gain, feed-gain ratio and feed intake of chicks had no significantly difference between groups with enzyme and group without enzyme (P>0.05). Same result obtained between group fed with corn based diet and that fed with brown rice based diet. The result of experment 3 showed that enzyme supplementation increased body weight gains and feed conversion rate of chicks. Compared with the control, group fed with 0.15% Zhejiang enzyme-1 increased body weight gain 7.5%(P〈 0.05〉,reduced feed-gain ratio 5.3%(P > 0.05),group fed with 0.15% Chifeng enzyme increased body weight gain, reduced feed-gain ratio ,but difference was not significant(P>0.05). The result of experment 4 showed that compared with group fed with wheat based diet, group fed with 0.1%, 0.2%, 0.5% Zhejiang enzyme-2 and that fed with Finnfeeds enzyme increased body weight gain 15.7%(P < 0.01),9.3%(P < 0.05),14.5%(P < 0.01), 9.7%(P < 0.05),6.8%(P > 0.05),6.2%(P > 0.05), reduced feed-gain ratio 10.8%(P > 0.05),8.3%(P > 0.05),6.3%(P > 0.05), 13.3%(P < 0.05),1.3%(P > 0.05),4.2%(P > 0.05) respectively. Compared with group fed with corn based diet, the performance of group with wheat based diet decreased (P<0.05).
    There was no significant difference in the performance between groups with enzyme and group with corn based diet except that feed-gain ratio of group with 0.2% Finnfeeds enzyme was significantly higher than that of with corn based diet. The result of experiment 5 and 6 showed that wheat based diet supplemented with 0.1% enzyme or 0.05% FOS significantly increased body weight gains and feed conversion ratio (P<0.05), but no significant difference of the combined treatment compared with enzyme or FOS treatment individually (P>0.05). The result of experment 7 showed that 7-21d, body weight gains of groups with 0.05%, 0.1%,0.1%,0.5% Zhejiang-3 enzyme and groups with 0.05%, 0.1% Denmark enzyme were 13.4%-22.0% (P < 0.01) and 9.7%-12.3% (P < 0.05) higher than that of group fed with wheat based diet, feed gain ratio were 6.9%-21.4% (P < 0.01) and 8.7%-14.4% (P < 0.05) lower. 21-49d, Body weight gains of groups with Zhejiang enzyme-3 and groups with Denmark enzyme were 3.98%-5.2%( P < 0.05) and 6.22%( P < 0.05)higher than that of group fed with wheat based diet, feed gain ratio were 1.48%-5.17%(P < 0.05)and 1.48%( P > 0.05) lower. 7-49d, Body weight gains of groups with Zhejiang enzyme-3 and groups with Denmark enzyme were 6.7%-9.1%( P < 0.01) and 2.2%-6.5%( P < 0.05)higher than that of group fed with wheat based diet, feed gain ratio were 2.9%-9.9%( P < 0.01) and 1.6%-2.9%( P > 0.05) lower. Enzymes had no effect on carcass composition in broiler chickens (P>0.05). The result of experment 8 showed that group fed with corn based diets increased piglet average daily gain 4%(P > 0.05)compared with group fed with wheat based diets, group fed with wheat based diets supplemented with 0.017% enzyme preparations increased average daily gain 7.6%(P < 0.05)compared with group fed with wheat based diets, but enzyme preparations had no effect on feed-gain ratio. In conclusion, non-starch polysaccharides enzyme preparations supplementation can improve performances in chicks, broiler chickens and piglet fed barley or wheat based diet and the feed value of wheat supplemented enzyme is close to or beyond that of corn. No effects of enzyme added to brown rice based diet on performance in chicks are observed. FOS supplementation can improve performances in chicks fed wheat based diet, but no additive effects of combined enzyme and FOS treatment are observed. Ⅱ. The effect of non-starch polysaccharides enzyme preparations supplemented to wheat based diets on the digestion, metabolism, endocrine, immune function and gut microflora in chickens or piglets and the site of enzyme preparations action in gastrointestinal tract of broiler chickens
    The results showed that apparent digestibility of dry matter, crude protein and fat was significantly improved by enzyme supplementation in chicks fed wheat-based diet (P<0.05). The addition of enzyme to wheat-based diet reduced the relative weights of the duodenum, jejunum, colon, pancreas (P<0.05) in 21-day-old broiler chickens, however resulted in less dramatic change in 49-day-old broiler chickens, also the relative weights of digestive organs appeared a decreasing tendency in chicks. Enzyme preparations reduced digesta viscosities in the proventriculus and jejunum of 21-day-old broiler chickens (P<0.05), in colon of 49-day-old broiler chickens (P<0.05) , also reduced in small intestine of chicks. Enzyme preparations increased digesta pH value in crop, duodenum, jejunum of 21-day-old broiler chickens (P<0.05),but reduced digesta pH value in ceca of 49-day-old broiler chickens (P<0.05). Enzyme preparations reduced the amylase activity of pancreas at 21d (P<0.05), increased at 49d (P<0.05). A significant difference of the xylanase activity of different sections of the gastrointestinal tract of broiler chickens (P<0.05). Enzyme preparations increased digesta glucose concentration in ileum at 21d (P<0.05), in duodenum at 49d (P<0.05). According to above results, It is suggested that jejunum or ileum is the main site of action of the enzyme preparation, however more significant results in jejunum, so suggest that the main site of action of the enzyme preparation is jejunum. In conclusion, non-starch polysaccharides enzyme preparations supplementation can improve performances in chicks and broiler chickens fed wheat based diet by influencing digestion and absorption. Moreover, the main site of action of the enzyme preparation is jejunum. Enzyme supplementation to wheat based diets increased the content of blood T4 (P<0.05), IGF-I (P<0.05), insulin (P<0.05), T3 (P>0.05), decreased uric acid (P<0.05), had no effect on glucose in chicks. FOS supplementation to wheat based diets increased the content of blood T3 (P<0.05), insulin (P<0.05), T4 (P>0.05), decreased uric acid (P<0.05), had no effect on glucose in chicks. Enzyme and FOS combination had no significant difference compared with enzyme or FOS treatment in blood parameters, except that uric acid contents were lower than that of FOS treatment (P<0.05). Enzyme increased the content of blood T3 (P<0.05), insulin (P<0.05), reduced T4 (P<0.05), uric acid (P<0.05) in 49-day-old broiler chickens, meanwhile increased IGF-I contents (P<0.05) in 21-day-old broiler chickens, also had no effect on glucose contents. Enzyme supplementation to wheat based diets increased the content of blood urea nitrogen, T4 (P < 0.05), glucose and T3 levels appeared a tendency towards increasing, however insulin levels towards slight decreasing in piglets.
    In conclusion, enzyme preparation supplementation can improve performances in chickens and piglets fed wheat based diet by influencing metabolic hormone levels. Both enzyme and FOS supplementation to wheat based diets significantly increased relative weight of immune organs (P<0.05), T lymphocytes blastogenic responses to PHA (P<0.05), natural killer cell activity (P<0.05) and serum antibody titres to newcastle disease virus (P<0.05). Enzyme and FOS combination had no significant difference compared with enzyme or FOS treatment in immune parameters. No significant effects of enzyme, FOS and combined treatment on bacterial counts of Lactobacillus and E.coli. in the ceca of chicks and broiler chickens were found. Enzyme supplementation to wheat based diets increased the blood IL-2 contents (P < 0.05) in piglets. In conclusion, enzyme preparation supplementation can improve performances in chickens and piglets fed wheat based diet by influencing immune function.
引文
1 联合国粮农组织(FAO). 粮农组织生产年鉴,1998
    2 徐子伟,邓波. 大麦对猪、鸡的优化饲用模式探讨. 见:刘建新主编. 饲料营养研究进展. 成都:亚洲中医药杂志社,1998,92-100
    3 Friesen O D, Guenter W, Marquardt R R, Rotter B A. The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibility of wheat, barley, oats and rye for the young broiler chick. Poultry Sci., 1992,38:1710-1721
    4 Marquardt R R, Boros D, Guenter W, Crow G. The nutritive value of barley, rye, wheat and corn for young chicks as affected by use of a Trichoderma reeven enzyme preparation. Animal Feed Sci. Tech., 1994,45:363-378
    5 刘永刚,Baidoo S K. 酶制剂用于猪饲料. 见:韩正康,Marquardt 主编. 家禽及猪营养中的酶制剂,饲料酶制剂国际学术研讨会论文集,南京,1996:116-127
    6 Longstaff M and Mcnab J M. Influence of site and variety on starch,hemicellulose and cellulose composition of wheat and their digestibilities by adult cockerels. Bri.Poultry Sci., 1986,27:435-449
    7 Annison G, et al. Nutritive activity of soluble rice bran arabinoxylans in broiler diets. Bri. Poultry Sci., 1995,36:479-488
    8 Classen H L, Campbell G L, Grootwassink J W D. Improved feeding value of saskatchewen – grown barley for broiler chickens with dietary enzyme supplementation. Can. J. Anim. Sci., 1988,68:1253-1259
    9 韩正康.家禽日粮添加酶制剂影响生理机能及改善生产性能的研究. 见:韩正康,Marquardt 主编. 家禽及猪营养中的酶制剂,饲料酶制剂国际学术研讨会论文集,南京,1996:31-42
    10 杨曙明. 寡糖在动物营养研究中的进展. 动物营养学报,1999,11(1):1-9
    11 王亚军,吴天星,戴贤君. 果寡糖及其在饲料工业中的应用. 饲料工业,1999,10:21-23
    12 Choct, M and G Annison. Anti-nutritive activity of wheat pentosans in broiler diets. Bri. Poult. Sci. 1990,30: 811~821
    13 Choct, M. Non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International, 1997,6: 13~19
    14 明根·朝格图,汪儆. 非淀粉多糖及其对家禽的抗营养作用. 动物营养学报,1996,8(2):1~13
    15 Bengtsson, S, P Aman, H Graham, C W Newman, and R K Newman. Chemical studies on mixed link beta-glucans in hulless barley cultivars giving different hypocholesterolemic responses in chickens. J. Sci. Food Agric., 1990,52:435~445
    16 Fincher G B, Stone B A.In “Advances in Cereal Science and Technology”, Ed: Pomeranz Y. (AACC, Minnesota), 1986,8:207
    17 Shibuya N, Nakane R. Phytochem., 1984,23:1425
    18 Rogel, et al. The digestion of wheat starch in broiler chickens. Aust. J. Agric. Res., 1987,38:639
    19 Annison G, M Choct. Plant polysaccharides—their physiochemical properties and nutritional roles in monogastric animals. Proceedings of Alltech’s Tenth Annual Symposium, 1994,51~66
    20 Newman C W. The United States market for feed enzymes: What opportunities exist? Proceedings of Alltech’s Tenth Annual Symposium, 1994, 99~115
    21 Xue Q, R K Newman, C W Newman, and C F McGuire. Waxy gene effect on β-glucan, dietary fiber content and viscosity of barleys. Cereal Res. Comm., 1991,19:399~404
    22 Bacic A, and B A Stone. Isolation and ultrastructure of aleurone cell walls from wheat and barley. Aust. J. Plant Physiol., 1990,8:453~474
    23 Henry R J. A comparison of the non-starch carbohydrates in cereal grains. J. Sci. Food Agric. , 1985,36:1243~1253
    24 Bengtsson S, and P Aman. Isolation and chemical characterization of water soluble arabinozylan in rye grain. Carbohydr. Poly. , 1990,12:267~271
    25 Englyst H N. Classification and measurement of plant polysaccharides. Anim. Feed Sci. Tech., 1989,23:27-42
    26 Annison G. Relationship between the levels of soluble non-starch polysaccharides and the apparent metabolizable energy of wheats assayed in broiler chickens. J. of Agri. And Food Chemistry, 1991,29:1252~1256
    27 Annison G, M Choct. Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World’s Poultry Science J., 1991,47:233~242
    28 Graham H, M Bedford, M Choct. High gut viscosity can reduce poultry performance. Feedstuffs, 1993,65:6
    29 White W B. An instrument suitable for viscosity determination of chick intestinal fluids. Poultry Science, 1981,60:1017~1021
    30 Hesselman K and P Aman. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low and high viscosity. Anim. Feed Sci. Technol. 1986,15:83
    31 Edwards C A. Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? Euro. J. Clin. Nutr. , 1988,42:306
    32 Linji Wang et al. Barleyβ-glucan alter intestinal viscosity and reduce plasma cholesterol concentrations in chicks. J. Nutr., 1992,122:2292~2297
    33 Choct M. Relationship between soluble arabinoxylan and nutritive value of wheat for broiler chickens. Proceedings of the 13th Western Nutrition Conference, 1992,45
    34 Choct M and G Annison. Anti-nutritive effect of wheat pentosans in broiler chickens: Role of viscosity and gut microflora. Bri.Poult.Sci. 1992, 33:831~834
    35 Johnson and Gee. Effect of gel forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut, 1981,22:398
    36 Brown R C et al. The effect of pectin on the structure and function of rat small intestine. Br. J.Nutr. 1979,42:357
    37 Ide T et al. Bile acid congugation and hepatic taurine concentration in rats fed on pectin. Br. J. Nutr. 1989,62:539
    38 Low A G. Secretory response of the pig gut to non-starch polysaccharides. Anim. Feed Sci. Technol., 1989,23:55
    39 Morgan L M et al. The effect of guar gum on carbohydrate, fat and protein stimulated gut hormone secretion: modification of postprandial gastric inhibitory polypeptide and gastric responses. Br. J. Nutr., 1985,53:467
    40 Southon S et al. Differences in intestinal protein synthesis and cellular proliferation in well-nourished rats consuming conventional laboratory diets. Br. J. Nutr., 1985,53:87
    41 Parsons C M. Influence of caecetomy and source of dietary fiber or atarch on excretion of endogenious amino acids by laying hens. Br. J. Nutr., 1984,51:541
    42 Veldman A. Xylanase in broiler diets with differences in characteristics and content of wheat. Brit. Poult. Sci., 1994,35:557~560
    43 Nvnes C S et al. Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig. Br. J. Nutr., 1992,68(3):693~700
    44 Clessen H L et al. Studies on the use of hulless barley in chick diets: Deleterious effects and methods of alleviation. Can. J. Anim. Sci., 1985,65:275
    45 Imoto S and S Namioka. VFA production in the pig large intestine. J. Anim. Sci.,1978,47(2):467~478
    46 NRC Nutrient Requirements of Beef Cattle (6th revised Edition) National Academica Press. Washington D. C. 1989
    47 Jorgen H, X Q Zhao, K E Bach Knudsen, B Eggum. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Br. J. Nutr., 1996,75:379~395
    48 居乃琥. 21 世纪酶工程的新动向. 工业微生物,2001,31(1):37~45
    49 侯炳炎. 饲料用酶制剂. 饲料工业,1994,6:22
    50 赵德英,茌亚青,盛福全等. 饲用微生物酶的生产和应用. 中国饲料,1999,8:13~16
    51 刘亚力,刘宁. 饲用酶制剂的生产技术及其应用. 动物营养学报,2000,12(4):17~22
    52 郑国展. 利用瘤胃微生物酶类增进畜牧业的生产能力. 动物营养学报,1999,11(增刊):61~64
    53 Ward P P. Using biotechnology to improve enzyme yields: from DNA to the market place. Enzymes in animal nutrition. Proceedings of 1st Symposium, 1993,11~21
    54 Forsberg C W, Cheng K J, Krell J, Phillips J P. Establishment of remen microbial gene pools and their manipulation to benefit fibre digestion by domestic animals. In Proceedings VII Word Conference on Animal Production, Vol 1, Edmonton, Albrta, Canada, 1993,281~316
    55 Campbell G L, Bedford M R.Enzyme applications for monogastric feeds: A review. Can. J. Anim. Sci., 1992,72:449~466
    56 韩正康. 大麦日粮添加酶制剂影响家禽营养生理及改善生产性能的研究. 畜牧与兽医,2000,32(1):1~4
    57 Rickes E L, Ham E A et al. The isolation and biological properties of beta-glucanase from B. Subtilis. Arch. Biochem. Biophys. 1962,96:371~375
    58 Hesselman K, Elwinger K, Nilsson M et al. The effect of β-glucanase on mentation, stage of ripenese and storage treatment of barley in diets fed to broiler chickens.Poul. Sci. 1981,60:2664~2671
    59 Pettersson D H, Graham H and Aman P. The productive value of whole and dehulled oats in broiler chicken diets and influence of beta-glucanase supplementation. Nutr.Rep. Int. 1987,36:743~750
    60 Pettersson D H, Aman P.Enzyme supplementation of a poultry diet containing rye and wheat.Br.J,Nutr.1989,62:139~149
    61 Michael P, Bedford M R. Feed enzymes for corn-soybean broiler diets. World Poultry, 1997,13(9):87~93
    62 Nelson T S, Ferrara L W and Storer N L. Phytate phosphorus content of feed ingredients derived from plants. Poul. Sci. 1968,47:1372
    63 Simons P C M,Versteegh H A J,Jongbloed A W et al. Improvement of phosphorus availability by microbial phytase in broiler and pigs. Brit. J.Nutr. 1990, 64:525~540
    64 高峰,江芸,周光宏,韩正康. 猪禽饲料中应用植酸酶研究进展. 畜牧与兽医,1999,31(6):40~41
    65 Hogberg H, Shurson G Horrocks S et al. Starter studies effect of adding fat and supplemental digestive enzymes to the diet and weaning management on pig performance. Michigan State Univ. Agric. Exp. Station Res. Report, 1983, 31~34
    66 Inborr J, Ogle R B. Effect of enzyme treatment of piglet feeds on performance and post weaning diarrhoea. Swedish J. Agric. Res. 1988,18:129~133
    67 Inborr J, Schmitz M, Ahrens F. Effect of adding fibre and starch degrading enzymes to a barley/wheat based diet on performance and nutrient digestibility in different segments of the small intestine of early weaned pigs. Anim. Feed Sci. Tech. 1993,44:113~127
    68 张国立. 饲用酶制剂的应用及发展趋势. 中国饲料,1996,19:6~8
    69 阎玉馥,谢玉强,陈万福. 酶在畜禽体内的作用机制. 辽宁畜牧兽医,1997,3:36~37
    70 韩正康,刘燕强,喻涛. 大麦基础日粮添加粗酶制剂提高雏鸡生长、消化以及血液甲状腺素、胰岛素和生长激素水平. 中国学术期刊文摘,1995,1(4):47~48
    71 高峰,周光宏,韩正康. 非淀粉多糖酶制剂促进家禽生长及其神经内分泌机理研究. 饲料研究, 2001, 5:13-15
    72 Choct M. 酶制剂在动物营养中的应用:潜在效益. 见:韩正康,Marquardt 主编. 家禽及猪营养中的酶制剂,饲料酶制剂国际学术研讨会论文集,1996,43~49
    73 王清吉,陈伟华,韩正康. 大麦饲粮添加酶制剂对雏鸡增重、甲状腺激素水平及免疫力的影响. 畜牧与兽医,1997,29(6):243~245
    74 Vinardell M P. Growth of the alimentary tract with aging in chickens. Acta.Physi.Hungarca, 1992,79(4):365~368
    75 Sell J et al. Developmental patterns of gastrointestinal tract of young turkeys. Poult.Sci. 1991,70:1200~1205
    76 Obst B S. Ontogenesis of intestinal nutrient transport in domestic chickens and its relation to growth. Auk. 1992,109(3):451~464
    77 Ashild K et al. Influence of age on lipase, amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult. Sci. 1989,68:1561~1568
    78 Kulka R G et al. Patterns of growth and amylase activity in the developing chick pancreas. Biochem. Biophys. Acta. 1964,91:506~514
    79 Yael Noy, David Sklan. Digestion and absorption in the young chick. Poult. Sci. 1995,74:366~373
    80 Green G M. Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenteronology. 1980,79:695~702
    81 Polin D,Hussein T H. The effect of bile acid on lipid and nitrogen retention, carcass composition and dietary metabolizable energy in very young chicks. Poult. Sci. 1982,61:1697~1707
    82 Siddon R C. Intestinal disaccharidases activities in the chick. Biochem.J. 1969,112:51~59
    83 Matsushita S. Development of sucrase in the chick small intestine. J, Exp. Zool. 1985,233:377~383
    84 Sell J L et al. Intestinal disaccharidases of young turkeys: Temporal development and influence of diet composition. Poul. Sci. 1988,68:265~277
    85 程伶(译). 家畜肠道细菌与生产性能的关系(上).国外畜牧科技,1995,22(2):13~16
    86 Xu R J et al. Growth and morphological changes in the stomach of newborn pigs during the first three days after birth. J.Devel. Physi. 1992,17:7
    87 Chen S C et al. Effects of protein sources on the development of digestive enzymes in weaning pigs. Taiwan Sugar. 1992,39:18
    88 Lindemann M D et al. Effect of age ,weaning and diet on digestive enzyme levels in the piglet. J. Anim. Sci. 1986,62:1298
    89 Tavid L et al. The early postnatal development of prorein digestion in pigs. II. Small intestinal enzymes. In: Proceedings of the 6th international symposium on digestive physiology in pig. Eds:Souffrant W B and Hagemeister H. EEAP publication ,No 80.Rostock,Germany,1994,181
    90 Mosenthin R. Physiology of small and large intestine of swine. Proceedings of pre-conference symposia. The 8th WCAP pub. Suwon, Korea. 1998,60~74
    91 Cera K R et al. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 1988, 66:574
    92 Kelly D et al. Effect of lactation on the dacline of brush border lactase activity in neonatal pigs. Gut. 1991,32:386
    93 Hampson D J.Alteration in piglet small intestinal structure at weaning. Res Vet Sci. 1986,40(1):32~40
    94 Dunsford et al. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early weaned pig. J. Anim. Sci. 1989,67(7):1855~1863
    95 Cranwell P D. Development of the neonatal gut and enzyme systems. In: The neonatal pig development and survival. Ed. Varley M A. CAB International. UK, 1995,99~154
    96 Newport M J, Howarth G L. Contribution of gastric lipolysis to the digestion of fat in the neonatal pig. In: Proceedings of the 3rdp international seminar on digestive physiology in the pig. Beretining Statnes Hysdybrugsfors. No 580. Coenhagen, 1985,143~145
    97 Jensen M S et al. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 1997,75:437
    98 蒋宗勇. 仔猪早期断奶综合症的研究进展. 见:动物营养研究进展. 北京:中国农业科技出版社,1994,101~115
    99 Owsley W F et al. Effect of age and diet on the development of the pancreas and the synthesis and secretion of pancreatic enzymes in the young pig. J. Anim. Sci. 1986,63:497~504
    100 Kidder D E, Manners M J. The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. Br, J. Nutr. 1980, 43: 141
    101 Miller B G et al. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agric. Camb. 1986, 107:579
    102 Maxwell F J, Stewart C S. The microbiology of the gut and the role of probiotics. In: The neonatal pig development and survival. Ed. Varley M A. CAB International. UK, 1995,155
    103 Barnes E M. Anaerobic bacteria of the normal intestinal microflora of animals. In: Anaerobic bacteria in habitats other than man. Ed. Barnes E M ,Mead G C. Blackwell Scientific Publications, Oxford, UK, 1986,225~238
    104 Smith H W. Observations on the flora of the elementary tract of animals and factors affecting its composition. J. Pathol Bact. 1965,89:95~122
    105 Saiyers A A. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol. 1984,38:293~313
    106 Robinson I M, Allison M J, Bucklin J A. Characterization of cecal bacteria of normal pigs. Appl. Environ. Microbioal. 1981,41: 950~955
    107 程学慧,彭健. 仔猪免疫保护机制及早期断奶对仔猪免疫机能的影响. 国外畜牧科技,2001,28(2):9~12
    108 阴天榜,刘兴友等著. 家禽免疫学. 北京:中国农业科技出版社,1999,13~194
    109 周吕主编. 胃肠生理学. 北京:科学出版社,1991,220~229
    110 张宏福,李长忠,马永喜. 仔猪消化功能的发育及营养对策. 见:刘建新主编. 饲料营养研究进展. 成都:亚洲中医药杂志社,1998,24~37
    111 卢德勋. 猪的营养调控技术评述. 内蒙古畜牧科学,1997(增刊),39~46
    112 邹仕庚,王恬,郑春田等. 胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究. 动物营养学报,2001,13(1):19~24
    113 高峰,周光宏,韩正康,杨殿有. 大麦、小麦基础日粮添加粗酶制剂后雏鸡生产性能和消化机能的变化. 中国饲料,1998,15:7~8
    114 周根来,高峰. 饲料酸化剂的作用机制与应用. 畜禽业,2000,2:36~38
    115 石现瑞,高峰. 抗生素添加剂的负面效应及其替代品的研究. 饲料博览,2000,3:24~26
    116 高峰,周光宏,韩正康. 大豆异黄酮对雏公鸡生产性能和机体免疫的影响. 中国家禽,2000,22(10):8~9
    117 陈国胜(译). 抗氧化性维生素在动物免疫与健康中的作用. 国外畜牧科技,1997,24(2):17~20
    118 张日俊(译).微量元素在免疫系统中的重要作用. 国外畜牧科技,1997,24(6):8~12
    119 Wray C D, Boyd R D et al. Metabolic effects of porcine somatotropin (pST) in growing swine. J. Anim. Sci., 1987,65(suppl):166
    120 Buonomo F C, Baile C A. The neurophysiological regulation of growth hormone secretion. Domestic Anim. Endocrinology, 1990,7(4):435-450
    121 Patel Y C. Growth hormones stimulates hypothalamic somatostatin. Life Sci., 1979,24:1589-1594
    122 Scanes C G, Younken R V. Somatotropic axis and growth in broilers. Archiv Fur Gelflugel-kunde, 1995,9-12
    123 Herremans M J, Buyse J R et al. Growth hormone response to TRH in male broiler chickens selected for body weight gain or feed conversion and reared at either a moderate or high ambient temperature. Reproduetion, Nutrition Developmint, 1992,32:135
    124 Koerker D J et al. Somatostatin-hypothalamic inhibtion of endocrine pancrease. Science, 1974,184:428
    125 林玲.生长抑素耗竭剂-半胱胺促进动物生长的研究.南京农业大学博士论文,1989
    126 徐文忠,杜念兴,李光地等.促进动物生长的新型基因工程疫苗研究.中国科学(B 辑),1993,23(12):1272-1278
    127 Dunshea F R, Harris D M et al. Effect of porcine somatotropin (pST) on glucose metabolism and lipid synthesis in growing pig: an vivo approach. J. Anim. Sci., 1992,67(suppl):534
    128 Tomas F M, Campbell R G et al. Growth hormone increase whole body protein turnover in growing pigs. J. Anim. Sci., 1992,70:3138-3148
    129 Bichell D P, Klkuchl K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol. Endocrinol., 1992,6(11):1899-1908
    130 Decuypere E, Buyse J, Robimi G, Zeman M, Comparative study of endocrinological parameters in the genetic lines of broiler: An overview. Archiv Fur Geflugel-kunde.,1995,6-8
    131 Bidanel J P, Bomneasu M et al. Effects of exogenous porcine somatotropin (pST) administration on growth performance, carcass traits, and pork meat quality of Meishan, Pietrain and crossbred gilts. J. Anim. Sci., 1991,69:351-352
    132 Tavakkol A, Simmen F A, Simmen R C M. Porcine insulin-like growth factor-I (pIGF-I): Complementary deoxyribonucleic acid colning and uterine expression of messenger ribonucleic acid encoding evolutionarily conserved IGF-I peptides. Mol. Endocrinol., 1988,2:674
    133 Etberton T K. The role of insulin-like growth factors (IGF) and IGF-binding proteins in growth and metabolism. In: Growth regulation in farm animals. Ed. Pearson Am, Dutson T R. Elsevier Applied Science, London & New York. 1991,343-372
    134 Rechler M, Nissley S P. Insulin-like growth factors. In: Peptide growth factors and their receptors I. Ed. Sporn M B, Roberts A B, Hanson L A. Springer-Verlag, New York. 1991,263
    135 Read L C, Lemmey A B, Howarth G S et al. The gastrointestinal tract is one of the most responsive target tissue for IGF-I and its potent analogs. In: Modern concept of insulin-like growth factors. Elsevier Science Publisher Co. Inc, 1991,225-234
    136 Luo Qiujiang. IGF-I production by primary cultured hepatocytes from rats and sheep. A thesis presented for the degree of Doctor Degree, Dept. of Biochemistry, University of Aberdeen,1992
    137 Skotlner A, Clark R G et al. Recombinant human insulin-like growth factor: Testing the somatomedin hypothesis in hypophysectomized rats. J. Endoctonology, 1987,112:123-127
    138 Prager D, Yamasaki H, Weber M M, Melmed S. Role of the insulin-like growth factors in regulating neuroendocrine function. Neurobiology of Aging, 1989,15(4):569-572
    139 Cogburn L A, Mao N C, Agarwal S. Interaction between somatotropic and thyrotropic axies in regulation of growth and development of broiled chickens, Archiv Fur Geflugel-hunde, 1995,18-20
    140 Furlanetto R W, Underwood L E, Van Wyk J J, Minatotes F. Somatomedins and Growth . Academic Press London, 1995,123-124
    141 Harvey S. Benzodiazepine antagonism of thyrotrophin-releasing hormone receptors: Biphasic actions on growth hormone secretion in domestic fowl. J. Endocrinology, 1993,137:35-42
    142 Tixier B M, Decupere E, Huybrechts L et al. Effects of dietary T3 on growth patameters and hormone levels in normal and sex-linked dwarf chickens. Domestic. Anim. Endocrin., 1990,7:573
    143 Oppenheimer J H, Surks M I. Biochemical basis of thyroid hormone action. In: Biochemical actions of hormones (vol III). Ed. Litwack. Acaedmic Press, New York, 1975,119-159
    144 田开惠.产科内分泌.人民卫生出版社,1981,46-90,149-193
    145 Snochowski M et al. Androgen and glucocorticoid receptors in porcine skeletal muscle. J. Animal. Science, 1981,53:80-88
    146 Lobley G E, Connell A et al. Muscle protein synthesis in response to testosterone administration in wether lambs. Br. J. Nutr., 1990,64(3):691-704
    147 Spencer G S G. Hormonal systems regulating growth a review. J. Animal Sci., 1985,12:31-36
    148 Mayer M,Rosen F.Interaction of anabolic steroids with glucocorticoid receptor sites in rat muscle cytosol. Am. J. Physio., 1975,229:1381
    149 Lannigan D A, Notides A C. Estrogen regulation of transcription. In: Molecular endocrinology and steroid hormone action. Ed. Sato G H, Stevens J L. Alan R Liss Inc. New York, 1990, 187-197
    150 张家驹编译.临床内分泌生理学.中国医药科技出版社,1990,349-371
    151 阎国来,张崇德.胎儿内分泌学.人民卫生出版社,1994,46-90,149-193
    152 Girbau M, Gomez J A, Lesniak M A et al. Insulin and insulin-like growth factors I both stimulate metabolism, growth and differentiation in the postneurela chick embryo. Endocrinology, 1987,121:1477-1482
    153 Girbau M, Gomez J A, Lesniak M A et al. Insulin retard chicken embryo growth but not muscle differentiation in vivo. Biophys. Res. Commun., 1988,153:142-148
    154 Baxter R C, Bryson J M, Turtle J R. Somatogenic receptors of rat liver: regulation by insulin. Endocrinology, 1980,107:1176
    155 Daughaday W H, Phillips L S, Mueller M C. The effect of insulin and growth hormone on the release of somatomedin by the isolated rat liver. Endocrinology, 1976,98:1214-1219
    156 克里格 D T,休斯 J C.神经内分泌学.人民卫生出版社,1986,69
    157 Blanks M S, Roberts D L. Antagonist of gonadotropin-releasing hormone blocks naloxone-induced elevations in serum luteining hormone. Neuroendocrinology, 1982,35:309
    158 Bardin C W et al. Identification and possible function of pro-opiomelanocortin-derived peptides in the testtis. Ann N. Y. Acad. Sci., 1984,438:346
    159 郑亦辉.动物激素及其应用.江苏科学技术出版社,1996,377-386
    160 Bates P C, Loughna P T, Pell J M et al. Interactions between growth hormone and nutrition in hypophysectomized rats: body composition and production of insulin-like growth factor-I. J. Endocrin., 1993,139:117-126
    161 Campion D R, McCusker R H, Buonomo F C,Jones W K. Effect of fasting neonatal piglets on blood hormone and metabolite profiles and on skeletal muscle metabolism. J. Anim. Sci., 1986,63:1418-1427
    162 Cieslak S R, Hazelwood R L. The role of the splenic pancreatic lobe in regulatin metabolic mormalcy following 99% panereatectomy in chickens. Gen. Comp. Endocrinol., 1986,61:476-489
    163 Falconer J, Harvey S, Forbes J M, Scanes C G. Changes in somatomedin-like activity and growth hormone concentrations in the plasma of the domestic fowl (Gallus domesticus). Aust. J. Exp. Biol. Med. Sci., 1981,59:629-638
    164 Morishita D, Sasaki K, Wakita M, Hoshino S. Effect of fasting on serum insulin-like growth factor-I (IGF-I) levels and IGF-I-binding activity in cockerels. J. Endocrinol., 1993,139:363-370
    165 Rosebrough J, McMurtry J, Proudman J, Steele N. Comparison between constant-protein, calorie-restricted and protein-restricted, calorie-restricted diets on growth, in vitro lipogenesis and plasma growth hormone, thyroxine, triiodothyronine and somatomedin-C (Sm-C) of young chickens. Comp. Biochem. Physiol.A., 1989,93:337-343
    166 徐银学.环境因素对太湖猪和绍兴鸭生长轴主要激素及其基因表达的影响.南京农业大学博士论文,1999
    167 Maiter D, Fliesen T, Underwood L E et al. Dietary protein restriction decreases insulin-like growth factor-I independent of insulin and liver growth hormone binding. Endocin., 1989,124:2604-2611
    168 Lauterio T J, Scanes C G. Hormonal responses to protein restriction in two strains of chickens with different growth characteristics. J. Nutr., 1987,117:758-763
    169 Buyse J, Decuypere E, Berghman C et al. Effect of dietary protein content on episodic growth hormone secretion and heat production of male broiler chickens. Br. Poult. Sci., 1992,33:1101-1109
    170 Sturkie P D. (Ed). Avian Physiology. Springer-Verlag New York Berlin Heidelberg Tokyo,1986,289-500
    171 Sue B M, Reeves R D, Lindbeck F E et al. Influence of selected amino acid deficiencies on somatomedin, growth and glycosaminoglycan metabolism in weanling rats. J. Nutr., 1985,115:782-787
    172 Cree T C, Schalch D S. Protein utilization in growth: effect of lysine deficiency on serum growth hormone, somatomedins, insulin, total thyroxine (T4) and triiodothyronine, free T4 index and total corticosterone. Endocrinology, 1985,117:667-673
    173 Hsami M, Aoki J, Sonohara H et al. Effect of tryptophan supplement on egg production and serum hormone concentrations in the laying hen. Japanese Poult. Sci., 1992,29:127-136
    174 Mertz W. 主编 , 朱莲珍主译 . 人和动物的微量元素营养 . 青岛出版社 ,1994,403-460,490-511
    175 万志宏.锌影响基因表达的机制.国外医学卫生学分册,1997,24(3):143-146
    176 刘晓亮,许丽艳,刘松岩等.硒与甲状腺激素代谢关系的研究.营养学报,1995,17:75-77
    177 高峰,江芸,周光宏.家禽热应激与营养缓解作用研究进展.甘肃畜牧兽医,1999,29(2):34-36
    178 吴连福.家禽营养对防御体系的影响.国外畜牧科技,1999,26(3):4-7
    179 Olson D P, Bull R C. Antibody responses in protein-energy restricted beef cows and their cold stressed progeny. Con. J. Vet. Res., 1986,50:410-417
    180 郭芳彬.畜禽的营养与免疫.饲料博览,1994,1:19-21
    181 Friedman A et al. Poultry Sci., 1995,74:1463-1469
    182 范少光,丁桂凤.神经内分泌与免疫系统之间相互作用的介导物质:共用的生物学语言.生理科学进展,1995,26(2):175-183
    183 Weigent D A, Blalock J E. Associations between the neuroendocrine and innune systems. J. Leukoc. Biol., 1995,57:137-150
    184 Khansari D N, Murgo A J,Faith R E. Effect of stress on the immune system. Immunol. Today, 1990,11:170-175
    185 Blalock J E. The syntax of immune-neuroendocrine communication. Immunol. Today, 1994,15:504-511
    186 Plata-Salaman C R. Immunoregulatirs in the nervous system. Neurosci. Biobehav. Rev., 1991,15:185-215
    187 Black P H. Immune system-central nervous system of immune system mediators on the brain. Antimicrobial Agents & Chemothetapy, 1994,38:7-12
    188 Miller G L. Use of dinitrosolicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959,31:426-437
    189 荣俊等.加酶饲料中淀粉酶总活力的测定—碘淀粉比色法.饲料工业,1994,3:40-41
    190 Jensen L S, Fry R E, Allred J B, et al. Improvement in the nutritional value of barley for chicks by enzyme supplementation. Poult. Sci., 1957,36:919-921
    191 Rickes E L, Han E A, Morcatell E A, et al. The isolation and biological properties of β-glucanase from B. Subtilis. Archives of Biochem. And Biophysics, 1962,69:371-375
    192 Herstad O, McNab J M. The effects of heat treatment and enzyme supplementation on the nutritive values of barley for broiler chicks. Br. Poult. Sci., 1975,16:1-8
    193 Hesselman K, Elwinger K, Nilsson M, et al. The effect of β-glucanase supplementation, stage of ripeness and storage treatment of barley in diets fed to broiler chicks. Poult. Sci., 1981,60:2664-2671
    194 Rotter B A, Neskar M, Guenter W, et al. Effect of enzyme supplementation on the nutritive value of hulless barley in chicken diets. Anim. Feed Sci.Technol., 1989,24:233
    195 刘强.我国麦类饲料中非淀粉多糖抗营养作用机理的研究.中国农业科学院博士学位论文,1998
    196 郑祥建.家禽强化饲料—大麦基础日粮添加粗酶制剂若干问题的研究.南京农业大学硕士论文,1995
    197 刘燕强.粗酶制剂强化大麦日粮影响鸡生产性能及其机理的研究.南京农业大学博士论文,1996
    198 White W B, Bird H R, Sunde M L, et al. The viscosity interaction of barley beta – glucan with trichoderma rivide cellulase in the chick intestine. Poult. Sci., 1981,60:1043-1048
    199 White W B, Bird H R, Sunde M L, et al. Viscosity of β-glucan as a factor in the enzymatic improvement of barley for chicks. Poult. Sci., 1983,62:853-862
    200 Inborr J, and Graham H. Effect of enzyme supplementation of wheat-based diets on performance of broiler chickens. Proc. Aust. Poult. Sci. Sym., 1991,50-55
    201 Annison G. Relationship between the levels of soluble non-starch polysaccharides and the apparent metabolizable energy of wheat assayed in broiler chickens. J. Agric. Food Chem., 1991,39:1252-1256
    202 Annison G. Commercial enzyme supplementation of wheat based diets raises ileal glycanase activities and improves apparent metabolizable energy, starch and pentosan digestibilities in broiler chickens. Anim. Feed Sci. Technol., 1992,38:105-121
    203 Veldman A,Vahl H. Xylanase in broiler diets with differences in characteristics and content of wheat. Br. Poult. Sci., 1994,35:537~550
    204 Brufan J, Nogareda C, Peroz A,et al. Effects of Trichoderma Viride enzymes in pelleted broiler diets on barley. Anim. Feed Sci. and Tech., 1991,34:193~202
    205 Rotter B A,Friesen O R,Guenter W,et al. Influence of enzyme supplementation on the bioavailable energy of barley. Poultry Science,1990,69:1174~1181
    206 Newman K. Mannan oligosaccharides:natural polymers with with significant impact on the gastrointestinal microflora and the immune system. In: Biotechnology in the feed industry. Proc.Alltech’s 10th Ann.Symp. Nottingham University press, 1994,167~175
    207 Ohta A et al. Cailum and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J.Nutrition, 1995,125(9):2417~2424
    208 Delzenne N et al. Effect of fermentable fructooligosaccharides on mineral,nitrogen and digestive balance in the rat. Life Sciences, 1995,57(17):1579~1587
    209 Marquardt R R. 酶制剂用于改进谷物对家禽的营养价值—粘性水溶性非淀粉多糖在鸡生产性能中的作用. 见:韩正康,Marquardt 主编. 家禽及猪营养中的酶制剂,饲料酶制剂国际学术研讨会论文集,南京,1996:7-21
    210 Choct M, Hughes R J, Wang J et al. Feed enzymes eliminate the anti-nutritive effect of non-starch polysaccharides and modify fermentation in broilers. Proceedings of Australian poultry sciences Symposium, 1995,121-125
    211 Petersen S T, Wiseman J, Bedford M R. Effects of age and diet on the viscosity of intestinal contents in broiler chicks. Bri. Poultry Sci., 1999,40:364-370
    212 吴晋强主编. 动物营养学(第二版). 合肥:安徽科学技术出版社,1999,152-153
    213 杨胜主编.饲料分析及饲料质量检测技术.北京:北京农业大学出版社,1993,19-23
    214 Antoniou T C, Marquardt R R, Cansfield E. The utilization of rye by growing chicks as influenced by autoclave, treatment, water extraction and water soaking. Poultry Science, 1982,61:91-102
    215 Antoniou T C, Marquardt R R, Cansfield E. Isolation, partial characterization, and anti-nutritional activity of a factor (pentosans) in rye grain. Journal of Agriculture and Food Chemistry, 1981,29:1240-1904
    216 Kelsay J L, Behall K M, Prather E S. Effect of fiber form fruits and vegetables on metabolic responses of human subjects. 1. Bowel transit time, number of defections, fecal weight, urinary excretions of energy, nitrogen, fat. American Journal of Clinical Nutrition, 1978,31:1149-1153
    217 Van der Klis J D, Van Voorst A. The effect of carboxy methyl cellulose (a soluble polysaccharide) on the rate of maker excretion from the gastrointestinal tract of broilers. Poultry Science, 1993,72:503-512
    218 Wagner D D, Thomas O P. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poultry Sci., 1978,57:971-975
    219 Choct M, Hughes R J, Wang J, et al. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. British Poultry Science, 1996,37:609-621
    220 Ikegami S, Suchihashi F T, Harda H, et al. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rat. J. Nutr., 1990,120:353-360
    221 Fengler A I, Marquarde R R. Water-soluble pentosans from rye: Ⅱ. Effects on rate of dialysis and on the retention of nutrients by the chick. Cereal Chem., 1988,65:298-302
    222 喻涛.大麦日粮添加粗酶制剂对鸡生长、消化和甲状腺激素水平的影响.南京农业大学硕士论文,1995
    223 高宁国.大麦基础日粮添加粗酶制剂对肉鸭生长性能和消化、代谢机能的影响及其年龄性变化.南京农业大学硕士论文,1996
    224 艾晓杰.日粮添加粗酶制剂对鹅生长、消化代谢的影响及其机理研究.南京农业大学博士论文,1996
    225 Hume M F, Kubena L F, Beier R C, et al. Fermentation of [14C] lactose in broiler chicks by cecal anaerobes. Poult. Sci., 1992,71:1464-1470
    226 Ricke S C, Van der Har P J, Fahey Jr G C, and Berger L L. Influence of dietary fibers on performance and fermentation characteristics of gut contents from growing chicks. Poult. Sci., 1982,61:1335-1343
    227 Jouany J P. Manipulation of microbial activity in the rumen. Arch. Nutr., 1994,46:133-153
    228 Choct M, Hughes R J, and Bedford M R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. British Poultry Science, 1999,40:419-422
    229 Danicke S, Vahjen W, Simon O, and Jeroch H. Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed, and on nutrient digestibility. Poultry Science, 1999,78:1292-1299
    230 Shires A, Thompson J R, Turner B V, et al. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poultry Science, 1987,66:289-298
    231 Decuypere E, Scanes C G. Vareation in the release of thyroxine, triodothyronine and growth hormone in response to thyrototrophin releasing hormone during development of the domestic fowl. Acta. Endocrinol., 1983,102:220-223
    232 Scanes W H,et al. Hormones and growth in poultry. Poul.Sci., 1984,63:2062~2074
    233 刘海生,向土寿 .甲状腺素对动物生长发育的影响. 江西农业大学学报,1998,20(5):12~15
    234 Etherfon T. The role of insulin receptor interaction in regulation of nutrient utilization by skeletal muscle and adipose tissue: A review. J. Anim. Sci., 1982,54(1):58~66
    235 Armstrong, D.G. et al. Insulin-like-growth factor-Ⅰbinding proteins in serum from the domestic fowl.J.Endocrin.,1989,120:373-378
    236 Mahoney C P, Alster F A, Carew Jr L B. Growth, thyroid function and serum macromineral levels in magnesium deficient chicks. Poultry Science, 1992,71:1669~1679
    237 James Croom Jr W 等.张源淑(译).肠道葡萄糖吸收的调节作用.国外畜牧科技,2001,28(2):26-28
    238 Vtt P and Cioccia A M. Hepatic purine enzymes and uric acid excretion as indictors of protein quality in chicks fed graded L-lysine diets. J. Sci. Food Agri., 1993,62(4):369-374
    239 Bailey J S, et al. Effect of fructooligosaccharide on salmonella colonization of the chicken intestine.Poultry Sci., 1991,70:2433-2440
    240 毛清黎,王星飞,韩雅珊.外源多糖水解酶提高红碎茶品质的生化机制研究.食品科学,2001,22(3):13-16
    241 周中凯,杨春枝.小麦麸皮酶法制备低聚糖的研究.粮食与饲料工业,1999,1:45-47
    242 李祥瑞等. 以 MTT 比色法检测鸡脾淋巴细胞转化效果. 畜牧与兽医, 1996,28(1):3~5
    243 陈丙莺等. 简易自然杀伤试验—LDH 释放改良法. 上海免疫学杂志, 1989,9(4):218~219
    244 李健强,李六金. 兽医微生物学实验. 陕西科学技术出版社,1999,114~118
    245 Rogosa M, Mitchell J A, Wiseman R F. A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J. Bact., 1951, 62:132-133
    246 薛恒平,王水玉编. 微生物学. 南京农业大学(内部教材),1986,116
    247 李影林主编. 培养基手册. 吉林科学技术出版社,1991,154-155
    248 Cotter P F. Modulation of the immune response: Current perceptions and future prospects with an example from poultry. In: Biotechnology in the feed industry. Proc. Alltech’s 13th Ann. Symp. Nottinghan University Press, UK, 1997,195~203
    249 Savage T F and Zakrzewska. E I. The performance of male turkeys fed a starter diet containing a mannan-oligosaccharide from day old to eight weeks of age. In: Biotechnology in the feed industry. Proc. Alltech’s 12th Ann. Symp. Nottingham University press, 1996,47~54
    250 Yoshida T,R Kruger and Inglis V. Augmentation of non-specific protection in African catfish, Clarias gariepinus (Burch), by the long-term oral administration of immunostimulants. J. Fish Dis., 1995,18:195~198
    251 Spring P and Privulescu M. Mannan-oligosaccharide: its logical role as a natural feed additive for piglets. In: Biotechnology in the feed industry. Proc. Alltech’s 14th Ann. Symp. Nottingham University press, 1998, 553~561
    252 O’carra R. Boosting immune response in dogs: a role for dietary mannan sugars. In: Biotechnology in the feed industry. Proc. Alltech’s 14th Ann. Symp. Nottingham University press, 1998,563~572
    253 Stewart G G. Non-traditional uses of yeast and its products: the past fifteen years. In: Biotechnology in the feed industry. Proc. Alltech’s 11th Ann. Symp. Nottingham University press, 1995,105~115
    254 孟庆翔.动物胃肠道微生物及其与胃肠道的互作.第二期全国动物营养学高级研修班讲义,杭州,1997,28-74
    255 Conway P L. 猪胃肠道微生物的功能及其调节. 见:W. B. 萨弗兰特, H. 哈格迈斯特主编. 第六届猪消化生理国际学术会议论文集 [C]. 成都:四川科学技术出版社,1997,233-242
    256 徐学明,金征宇.低聚糖在饲料工业中的应用.粮食与饲料工业,1998,1:24-26
    257 Tanaka R, Takayama H, et al. Effects of administration of TOS and Bifidobacterrium breve 4006 on human fecal flora. Bifidobacteria Microflora, 1983,2:17-24
    258 Hidaka H, Eida T, et al. Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora, 1986,5:37-50
    259 Mathew A G, Robbins C M, et al. Influence of galactosyl lactose on energy and protein digestibility enteric microflora, and performance of weaning pigs. J. Animal Sci., 1997,75(4):1009-1016
    260 Farnworth E K, Modler H W, et al. Feeding Jerusalem artichoke flour rich in Fructooligosaccharides to weaning pigs. Canadian J. Anim. Sci., 1992,72:977-980
    261 Gabert V M. The effect of oligosaccharides and Lactitolon the ileal digestibility of amino acids, monosaccharides and bacterial populations in the small intestine of weaning pigs. Canadian J. Anim. Sci., 1994,31:99-107
    262 Funderburke D W, Seerley R W. The effect of postweaning stressors on pig weight change, blood, lever and digestive tract characteristics. J Anim Sci, 1990, 68 (1) :155-162
    263 Inborr J, Borg J B, Bach K E, et al. 大麦为基础的仔猪日粮添加酶对胃肠道环境和消化率的影响. 见:W. B. 萨弗兰特, H. 哈格迈斯特主编. 第六届猪消化生理国际学术会议论文集. 成都:四川科学技术出版社,1997,352-355
    264 Partridge G, Wyatt G. More flexibility with new generation of enzymes. World Poultry, 1995,11(4):17-21
    265 Thacker P A, Campbell G L, Grootwassink J W D. The effect of β-glucanase supplementation on the performance of pigs fed hull-less barley. Nutrition Reports International, 1988,38:91-98
    266 Suga Y, Kawai M, Noguchi S, Shimara G, Samjima H. Application of cellulolytic and plant tissue macerating enzyme of Irpex lacteus Fr. As feed additive enzyme. Agricultural Biology and Chemistry, 1978,42:347-350
    267 Brown J A, Cline T R. Urea excretion in pigs: an indicator of protein quality and amino acid requirements. J. Nutr., 1974,104:542
    268 Coma J, Zimmernan D R, Carrion D. Lysine requirement of the lactating sow determined by using plasma urea nitrogen as a rapid response criterion. J. Anim. Sci., 1996,74:1056-1062
    269 Li S, Sauer W C, Huang S X, Mosenthin R. 以大麦为基础的日粮添加纤维素酶对早期断奶仔猪能量、β-葡聚糖、粗蛋白质和氨基酸消化率的影响. 见:W. B. 萨弗兰特, H. 哈格迈斯特主编. 第六届猪消化生理国际学术会议论文集. 成都:四川科学技术出版社,1997,358-360
    270 刘燕强,韩正康. 粗酶制剂添加于大麦日粮中对鸡生长和血液生化值的影响. 动物营养学报,1999,11(2):30-37
    271 Pesti G M, Leclercg B, Changeau A M, et al. Comparative responses of genetically lean and fat chickens to lysine, arginine and non-essential amino acid supply, II plasma amino acid responses. Br. Poult. Sci., 1994,35:697-707
    272 许梓荣,王振来,王敏奇. 高麸饲粮中添加复合酶制剂对仔猪血液中几种激素水平的影响. 中国养猪学报,1999,6:36-39
    273 高峰,周光宏,韩正康. 小麦基础日粮添加酶制剂对肉仔鸡生产性能和血液某些指标的影响. 南京农业大学学报,2000,23(4):71-75
    274 王岗,卢德勋,程茂基. 肽吸收的研究进展. 动物营养学报, 1999,11(supp.):69-75
    275 乐国伟,施用晖,杨凤. 动物寡肽营养研究进展. 见:动物营养研究进展. 北京:中国农业大学出版社,1996,98-111
    276 Power R F, Murphy R. 生物活性肽—氮代谢研究的下一个前沿. 见:Lyons T P, Cole D J A 主编,王若军主译. 养猪科学新概念. 北京:中国农业大学出版社,2000,28-41
    277 陈杰,陈伟华. 阿片类物质与畜禽生理功能. 全国动物生理生化第六次学术会议论文摘要汇编(呼和浩特),1999,1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700