用户名: 密码: 验证码:
高压直流转换器及其应用的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高高压直流转换器及LED (Light-emitting Diode)驱动芯片的性能为目标,对建模与稳定性分析技术、斜坡补偿技术、抖频技术、精度相关技术及低功耗设计技术等关键技术进行研究与创新,并通过三款芯片的设计,对相关关键技术进行实现,芯片的仿真与测试结果验证了这些关键技术的作用。
     由于直流转换器工作于开关模式,其小信号稳定性分析必须建立在线性化建模的基础上。本文采用模块化建模方式,将系统进行模块划分后,逐个对应建模,以代替传统建模方法中抽象繁复的函数演算。文中结合具体设计,对系统进行模块化建模后,分析环路稳定性,并合理补偿,还提出了频域计算和时域验证相结合的方式,对建模后的系统进行稳定性分析和验证。
     斜坡补偿技术用于解决电流模式直流转换器中存在的次谐波振荡问题。本文分析了次谐波振荡的产生机理和常用解决办法,结合PWM(脉冲宽度调制,Pulse Width Modulation)/PSM(跨周期调制模式,Pulse Skipping Modulation)双模式控制的降压式高压直流转换器芯片的研究与设计,提出了一种补偿斜率跟随占空比和电感电流下降斜率的自适应式斜坡补偿方法。测试结果表明,整个工作范围内系统都能稳定工作。
     直流转换器及其应用在开关频率上的能量尖峰经常会超过系统定义的EMI(电磁干扰,Electromagnetic Interference)限值而对电路产生不良影响,但在开关频率周边却有很大裕量。抖频技术能将EMI能量分散至一小段频率范围内,从而减小峰值,改善EMI性能。文中提出了一种新型的抖频电路实现方法,采用数字控制方式,通过电路结构的改进,有效抑制了开关切换噪声。测试结果验证了该抖频电路的功能。
     直流转换器输出电压的精度及纹波与系统精度相关。本文分析了影响精度的主要因素,并对相关技术进行研究。在高精度的升压式LED高压驱动芯片的研究与设计中,对基准电流产生电路进行了创新,采用PMOS管构成共源共栅电流镜电路的交叉结构,使上层管子工作在线性区,其等效导通电阻协同偏置用的电阻,调整输出电流的温度系数。其仿真得到的典型温漂值在-40~120℃范围内只有23.8ppm/℃。
     转换效率是直流转换器的一项重要指标。本文分析了效率相关因素,对低功耗技术进行了研究和创新。在PWM/PSM双模式控制的降压式高压直流转换器芯片的研究与设计中,根据系统效率的影响因素,结合不同控制模式的特点,从系统构架的角度提出了一种能在整个工作范围内保证效率最优化的自动切换的双模式控制方案。其实现方法为:在PWM环路中加入了一个最小占空比模块,能根据输入输出情况找出合理的模式切换点,实现PWM和PSM的双模式控制,控制逻辑简单,且切换平滑。测试结果表明,系统轻载下的效率由于PSM控制而明显提高,使系统在整个工作范围内都能保证高效率。在输出为5V时,最高效率达93.5%。在高可靠、高效率的降压式LED高压驱动芯片中,设计的输出驱动电压达7.5V,可有效降低片外开关管的导通损耗,同时采用了低静态电流、低反馈电压等低功耗技术。测试得到芯片的最高转换效率达到了95.3%。
     另外,本文还对一些电路结构做了创新和改进。如摒弃外围器件而借助集成的时钟分频器和电流限制电路来实现软启动、用逻辑控制的PMOS管代替二极管实现的启动带电路、实现故障保护且能自动恢复的打嗝保护电路等。
The key techniques of the high DC-DC converter and LED driver were studied in this thesis for improving the functions and performances, including methodology of modeling and stability analysis, slope compensation, frequency jitter, correlation techniques of precision and low power consumption techniques. Three chips were designed to implement the proposed relevant techniques. The simulation and test results have verified the role of these techniques.
     Due to the switching mode, the small signal stability analysis of DC-DC converter should be based on modeling. In present work, the system is modeled after the module partitioning, instead of abstract function calculations used in the traditional modeling method. The loop stability was analyzed and compensated after modeling. The time domain response was proposed to verify the system stability, cooperating with frequency domain analysis.
     Slope compensation is used to solve the harmonic oscillation of current mode controlled DC-DC converter. The principle of the harmonic oscillation was studied. In the design of high voltage DC-DC buck converter with PWM/PSM dual mode control, a novel and simple method of slope compensation was proposed, which can follow the duty cycle and the down slope of the inductor current. The test results show that, the system was stable over the whole working range of input and output voltages.
     DC-DC converter and its applications have peak energy of EMI in switching frequency, which often exceeds the system EMI limits, but has great margin in other frequency. Frequency jitter can disperse the EMI energy in a small range of the frequency to decrease the EMI peak value and improve the EMI performance. A novel frequency jitter with digital control is proposed. The switching noise was restrained effectively for the novel structure. The simulation and test results were presented to verify the proposed frequency jitter useful to improve the EMI performance.
     The accuracy and ripple of output voltage is depending on the precision of the DC-DC converter. Based on the analysis of the major factors, which affect the precision, the correlation techniques are studied. A novel current reference circuit was proposed in the subject of high voltage BOOST LED driver with high precision, using a current mirror with cross structure of PMOS cascode, and the upper layer of PMOS were operating in the linear region. Its equivalent resistance adjusts the temperature coefficient together with the resistance of bias. The simulation result of temperature drift was only23.8ppm/℃over the range of-40~120℃.
     The efficiency is important to DC-DC converter. Based on the analyzing related factors of system efficiency, low power consumption techniques are studied and improved. In the subject of high voltage DC-DC buck converter with PWM/PSM dual mode control, based on the system efficiency analysis and different control modes, automatic switching of dual mode control scheme is proposed to optimize the system efficiency of the whole working range. A module of minimum duty cycle was added into the PWM control loop to realize the PWM/PSM dual mode control. According to the input and output situation, the reasonable switching point can be found automaticly. The control logic was simple, and switched smooth. The module of minimum duty cycle was the key of the dual mode control scheme. The test results show that, the system efficiency under light load was improved obviously due to PSM control, and the system in the whole operating range was high efficiency. For5V output, the highest efficiency was93.5%. In the subject high voltage step-down LED driver with high reliability and high efficiency, the output voltage was design to be7.5V, which can reduce conduction loss of the off-chip switch effectively. Moreover, low quiescent current, low voltage feedback techniques, and techniciques similarly, are adopted. Testing results showed that the highest efficiency was95.3%.
     Besides, more innovations in circuit were made in this paper. Such as, the soft start circuit is realized with integrated clock, frequency divider and current limiting circuit instead of the peripheral device; the boostup circuit is realized with a logic controlled PMOS instead of the diode to realize; and hiccup protection circuit is designed to realize protection and automatic restoration when the malfunction occurs.
引文
[1]赛迪顾问.2011.中国电源管理芯片市场现状与趋势.[2012-06-12].电源网http://tech.dianyuan.com/article-O-13177.html.
    [2]赛迪.2011.2010-2011年中国电源管理芯片市场研究年度报告.[2012-06-12].中国市场情报中心http://www.ccidreport.com/report/content/1/201102/268678.html.
    [3]亦光.电源IC发展趋势综述.电子测试,2007,12:4-6.
    [4]Ka Chun Kwok, Philip K. T. Mok. Pole-Zero Tracking Frequency Compensation For Low Dropout Regulator. IEEE J. International Symposium on Circuits and Systems, Scottsdale, A rizona, USA,2002,4:735-738.
    [5]G. A. Rincon-Mora, P. A. Allen. A low-voltage, low quiescent-current, low drop-out regulator. IEEE J. Solid-State Circuits,1998,33(1):36-44.
    [6]Hoi Lee, Philip K. T. Mok. Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—HI:EXPRESS BRIEFS,2005,52(9):563-567.
    [7]Yonggui Hu, Zhengfan Zhang, and Kaicheng Li. Investigation into High Performance High current Ultra Low Dropout Regulator, IEEE International Conference on Nano/Micro Engineered and Molecular Systems,2006, pp.222-226.
    [8]A. J. Stratakos, S. R. Sanders, and R. W. Brodersen. A low-voltage CMOS DC-DC converter for a portable battery-operated system, Proceeding of IEEE Power Electronics Specialists Conference,1994, pp.619-626.
    [9]D. Ma, W.-H. Ki, C. Y. Tsui, and P. K. T. Mok. Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode, IEEE Journal of Solid-State Circuits,2003,38(1):89-100.
    [10]R.B. Ridley. A New Continuous-Time Model For Current-Mode Control, IEEE Transaction on Power Electron,1991,8(2):271-280.
    [11]M.K. Kazimierczuk. Transfer Function of Current Modulator in PWM Converters with Current-Mode Control, IEEE Transaction on Circuits System I:Fund. Theory Applications, 2000,47(9):1407-1412.
    [12]G. Garcera, M. Pascual, and E. Figueres. Robust average current mode control of DC-DC PWM converters based on a three controller scheme, Proceeding of IEEE ISIE'99,1999, pp. 596-600.
    [13]G. Garcera, E. Figueres, M. Pascual and J. M. Benavent. Analysis and design of a robust average current mode control loop for parallel buck DC-DC converters to reduce line and load disturbance, IEEE Proceeding of Electric Power Applications,2004,151(4):414-424.
    [14]V. Vorperian. "Simplified analysis of PWM converters using the PWM switch, Part I: Continuous conduction mode, Part II:Discontinuous conduction mode", IEEE Transaction on Aerospace Electronics System,1990, AES-26:490-505.
    [15]C.F. Lee, and P.K.T. Mok. A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique, IEEE Journal of Solid-State Circuits,2004,39(1):3-14.
    [16]Yongseok Choi, Naehyuck Chang, and Taewhan Kim, DC-DC Converter-Aware Power Management for Low-Power Embedded Systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2007,26(8):1367-1381.
    [17]R.Erickson and D. Maksimovic. Fundamentals of Power Electronics. Norwell, MA: Kluwer,2001, pp.334-340
    [18]R.Middlebrook. Modeling current-programmed buck and boost regulators, IEEE Transactions on Power Electronics,1989,4:36-52.
    [19]R.Ridley. A new continuous-time model for current mode control, IEEE Transactions on Power Electronics,1991,6:271-280.
    [20]Lei Hua, Shiguo Luo. Design Considerations for Small Signal Modeling of DC-DC Converters Using Inductor DCR Current Sensing Under Time Constants Mismatch Conditions, Power Electronics Specialists Conference,2007. pp.2182-2188.
    [21]Teuvo Suntio. Analysis and Modeling of Peak-Current-Mode-Controlled Buck Converter in DICM, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2001,48(1):127-135.
    [22]何亚宁.峰值电流模式控制的非理想Buck变换器的建模,电子器件,2009,32(2):467-475.
    [23]曹文思,杨育霞.PWM DC-DC开关变换器建模、仿真分析研究,微计算机信息CONTROL & AUTOMATION,2007,23(32):291-293.
    [24]Ye Qiang, Lai Xinquan, Li Yanming, et al. A Piecewise Linear Slope Compensation Circuit for DC2DC Converters, JOURNAL OF SEMICONDUCTORS,2008,29(2):281-287.
    [25]Lu Jiaying, Wu Xiaobo. A Novel Piecewise Linear Slope Compensation Circuit in Peak Current Mode Control, IEEE Conference on Electron Devices and Solid-State Circuits,2007, Dec.2007, pp.929-932.
    [26]Li Yanming, Lai Xinquan, Chen Fuji, et al. An Adaptive Slope Compensation Circuit for Buck DC-DC Converter,7th International Conference on ASIC,2007, Oct.2007, pp.608-611.
    [27]Samanta, S., Patra, P., Mukhopadhyay, S., Patra, A., et al. Optimal Slope Compensation for step load in peak current controlled dc-dc Buck Converter,13th Power Electronics and Motion Control Conference,2008, Sept.2008, pp.485-489.
    [28]Kuisma M. Variable Frequency Switching in Power Supply EMI-control:An Overview. IEEE AES Systems Magazine,2003:18-19.
    [29]Gonzalez D, Balcells J, Santolaria A, et al. Conducted EMI Reduction in Power Converters by Means of Periodic Switching Frequency Modulation. IEEE Transactions on Power Electronics,2007,22(6):2271-2281
    [30]Le Y, Mittra R. Electromagnetic Interference Mitigation by Using a Spread-Spectrum Approach. IEEE Transactions on Electromagnetic Compatibility,2002,44(2):380-385.
    [31]Rahkala M, Suntio T, Kalliomaki K. Effects of Switching Frequency Modulation on EMI Performance of a Converter Using Spread Spectrum Approach. Applied Power Electronics Conference and Exposition,2002.2002,1:93-99.
    [32]李昌,杜国同.一种具有频率抖动功能RC振荡器的设计.电子科技,2009,22(6):45-48.
    [33]DONG Ling-ling, YE Yi-die, HE Le-nian. A Novel PWM Controller IC For LED Driver With Frequency Spread. Power and Energy Engineering Conference (APPEEC),2010, pp.1-4.
    [34]Lee Jang-Woo, Kim Hong-Jung, Yoo C. Spread Spectrum Clock Generation for Reduced Electro-Magnetic Interference in Consumer Electronics Devices. IEEE Transactions on Consumer Electronics,2010,56(2):844-847.
    [35]高耿辉,李铎,王利.一种模拟抖频电路及应用该电路的开关电源: 中国,201010551060.4.2011-05-18.
    [36]Wheatley III Charles E, Chino, et al. Digital frequency synthesizer with random jittering for reducing discrete spectral spurs:US,4410954.1983-10-18.
    [37]Balakrishnan B, Djenguerian A, Lund L, et al. Frequency jittering control for varying the switching frequency of a power supply:US,6249876.2001-06-19.
    [38]杨光,照明级白光LED的性能.光源与照明,2007,1(3):4-6,24.
    [39]刘志伟,一种应用于高压工艺集成电路中电源钳位结构法,中国,201110037055.6,2011-08-31.
    [40]陈华伦罗啸熊等,高压工艺中器件隔离的方法,中国,200810044079.2,2010-06-23.
    [41]胡剑,高压工艺中静电放电保护二极管的制作方法,中国,200910196126,2010-03-17.
    [42]肖国庆,李茂登,高压ESD保护电路,中国,200910055051.3,2011-01-26.
    [43]S. Kapat, S. Banerjee, A. Patra, Modeling and analysis of DC-DC converters under Pulse Skipping Modulation, TENCON 2008, Nov.2008, pp.1-6.
    [44]Luo Ping, Li Zhaoji, Xiong Fugui, Chen Guangju, Average mode of PSM switching converter and analysis of its characteristics, Transactions of China Electrotechnical society (China),2005,20(3):19-23.
    [45]Ping Luo, Zhaoji Li, Bo Zhang, Analysis of PSM mode in switching converter and its improved mode,2005 International Conference on communications, circuits and systems 2005 proceedings. May.2005,2:1385-1389.
    [46]Zhang Xu, D. Maksimovic, Digital PWM/PFM controller with input voltage feed-forward for synchronous buck converters, Applied Power Electronics Conference and Exposition, APEC 2008 23th Annual IEEE,2008, pp.523-528.
    [47]刘帘曦,杨银堂,朱樟明.PWM/PFM双模调制的高效率,固体电子学研究与进展,2006,27(2):209-213.
    [48]WANG Jing, GONG Wen-chao, HE Le-nian, Design and Implementation of High-Efficiency and Low-Power DC-DC converter with PWM/PFM Modes,7th International Conference ASIC,2007. Oct.2007, pp.596-599.
    [49]彭奠李晓寒何华平,驱动白光发光二极管技术综述.光源与照明,2010,3(9):10-12.
    [50]Shibata, K., Cong-Kha Pham, A Compact Adaptive Slope Compensation Circuit for current-mode DC-DC converter, Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),2010, pp.1651-1654.
    [51]Sugimoto, Y., A MOS Current-mode Buck DC-DC Converter with a 240-kHz loop bandwidth and unaltered frequency characteristics using a quadratic and input-voltage-dependent compensation slope, Proceedings of ESSCIRC,2009, Sept.2009, pp. 460-463.
    [52]Feng Tian, Kasemsan, S., Batarseh, I.. An Adaptive Slope Compensation for the Single-Stage Inverter with Peak Current-Mode Control, IEEE Transactions on Power Electronics,2011,26(10):2857-2862.
    [53]Cheng-Chung Yang, Chen-Yu Wang, Tai-Haur Kuo, Current-Mode Converters with Adjustable-Slope Compensating Ramp, IEEE Asia Pacific Conference on Circuits and Systems, 2006, Dec.2006, pp.654-657.
    [54]Wooju Jeong, Jungeui Park, Jungsoo Choi, et al. LED Driver IC with an Adaptive Slope Compensation Technique,2010 International Conference on Green Circuits and Systems (ICGCS), June 2010, pp.709-712.
    [55]Stankovic. A.M., Verghese, G.C. and Perreauk, D.I., Analysis and synthesis of random modulation schemes for power converters,24th Annual IEEE Power Electronics Specialists Conference, PFSC 93 Record,1993, pp.1068-1074.
    [56]Mihalic. F. and Milanovic, M. EMI reduction in randomized boost rectifier, Proceedings of the IEEE International Symposium on Industrial Electronics.1999,2(99):457-462.
    [57]Stone, D.A. Chambers, B. and Howe, D., Random carrier frequency modulation of PWM waveforms to ease EMC problems in switched made power supplies, Proceedings of 1995 International Conference on Power Electronics and Drive Systems,1995,1:16-21.
    [58]Paramesh, J. and von Jouanne, A.. Use of sigma-delta modulation to control EMI from switch-mode power supplies, IEEE Transactions on Industrial Electronics.2001,48(1):111-117.
    [59]Deane.1. and Hamill. D., Improvement of Power Supply EMC by Chaos, Electronics Letters,1996,32(12):1045.
    [60]Spady, D., Ivanov, V.. A CMOS bandgap voltage reference with absolute value and temperature drift trims, IEEE International Symposium on Circuits and Systems,2005. May 2005,4:3853-3856.
    [61]Sen-Wen Hsiao, Yen-Chih Huang, David Liang, et.al. A 1.5-V 10-ppm/℃ 2nd-Order Curvature-Compensated CMOS Bandgap Reference with Trimming,2006 IEEE International Symposium on Circuits and Systems,2006. May 2006, pp.565-568.
    [62]Martinez Brito, J.P., Bampi, S., Klimach, H.. A 4-Bits Trimmed CMOS Bandgap Reference with an Improved Matching Modeling Design, IEEE International Symposium on Circuits and Systems,2007. May 2007, pp.1911-1914.
    [63]Ekekwe, N., Etienne-Cummings, R.. A 5-bits Precision CMOS Bandgap Reference with On-Chip Bi-directional Resistance Trimming,51st Midwest Symposium on Circuits and Systems,2008. Aug.2008, pp.257-260.
    [64]Spilka, R., Hirth, M., Hilber, G., Ostermann, T.. On-Chip Digitally Trimmable Voltage Reference, Norchip,2007, Nov.2007, pp.1-4.
    [65]Guang Ge, Cheng Zhang, Hoogzaad, G, Makinwa, K.A.A.. A Single-Trim CMOS Bandgap Reference with a 3o Inaccuracy of ±0.15% from -40℃ to 125℃, IEEE Journal of Solid-State Circuits,2011,46(11):2693-2701.
    [66]Piero Malcovati, Franco Maloberti, Carlo Fiocchi, and Marcello Pruzzi. Curvature-Compensated BiCMOS Bandgap with 1-V Supply Voltage, IEEE JOURNAL OF SOLID-STATE CIRCUITS,2001,36(7):1076-1081.
    [67]Xinpeng Xing, Zhihua Wang, Dongmei Li. A Low Voltage High Precision CMOS Bandgap Reference, Norchip,2007, Nov.2007, pp.1-4.
    [68]Chuan Zhang, Shuzhuan He, Ying Zhu, Mingluti Gao. A high CMOS bandgap reference with second-order curvature-compensation,7th International Conference on ASIC,2007. Oct. 2007, pp.553-556.
    [69]A.H.Atrash, A.Aude. A Bandgap Reference Circuit Utilizing Switching to Reduce Offsets and a Novel Technique for Leakage Current Compensation, The 2nd Annual IEEE Northeast Workshop on Circuits and Systems,2004, June 2004, pp.297-300.
    [70]Yuntao Liu, Xiaowei Liu, Liang Yin. A CMOS Band-gap Voltage Reference With Low Offset,9th International Conference on Solid-State and Integrated-Circuit Technology,2008. Oct.2008,1785-1788.
    [71]Luo Fang-Jie, Deng Hong-Hui, Gao Ming-Lun. A design of CMOS bandgap reference with low thermal drift and low offset, IEEE Asia Pacific Conference on Circuits and Systems,2008, Nov.30 2008-Dec.3 2008, pp.538-541.
    [72]S.Ruzza, E.Dallago,V Genchi, S.Morini. An offset compensation technique for bandgap voltage reference in CMOS technology, IEEE International Symposium onCircuits and Systems,2008. May 2008, pp.2226-2229.
    [73]Ka Nang Leung, Philip K. T. Mok, Chi Yat Leung. A 2-V 23-uA 5.3-ppm/℃ Curvature-Compensated CMOS Bandgap Voltage Reference, IEEE Jounal of Solid-state Circuits,2003,38(3):561-564.
    [74]Chi Yat Leung, Ka Nang Leung, Mok, P.K.T.. Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference, Proceedings of the 2004 International Symposium on Circuits and Systems,2004. May 2004, Vol.1, pp.49-52.
    [75]Giuseppe De Vita, Giuseppe Iannaccone. A Sub-1-V,10 ppm/℃, Nanopower Voltage Reference Generator, IEEE Jounal of Solid-state Circuits,2007,42(7):1536-1542.
    [76]K.Ueno, T.Hirose, T.Asai, Y.Amemiya. A 0.3-μW,7 ppm/℃ CMOS Voltage Reference Circuit for On-Chip Process Monitoring in Analog Circuits,34th European Solid-State Circuits Conference,2008, Sept.2008, pp.398-401.
    [77]Ken Ueno, Tetsuya Hirose, Tetsuya Asai, Yoshihito Amemiya. A 300 nW,15 ppm/℃,20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs, IEEE Jounal of Solid-state Circuits,2009,44(7):2047-2054.
    [78]Yongjia Li, Xiaojuan Xia, Weifeng Sun, Shengli Lu. A 760mV CMOS Voltage Reference with Mobility and Subthreshold Slope Compensation, IEEE 8th International Conference on ASIC,2009. Oct.2009, pp.1145-1148.
    [79]I.M. Filanovsky, Brenda Bai, Brian Moore. A CMOS Voltage Reference Using Compensation of Mobility and Threshold Voltage Temperature Effects,52nd IEEE International Midwest Symposium on Circuits and Systems,2009, Aug.2009, pp.29-32.
    [80]V Suresh Babu, Haseena P S, M R Baiju. A Floating Gate MOSFET Based Current Reference with Subtraction Technique,2010 IEEE Computer Society Annual Symposium on VLSI, July 2010, pp.206-209.
    [81]Yuji Osaki, Tetsuya Hirose, Nobutaka Kuroki, Masahiro Numa. Nano-Ampere CMOS Current Reference with Little Temperature Dependence Using Small Offset Voltage,2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Aug.2010, pp.668-671.
    [82]Wei-Bin Yang, Zheng-Yi Huang, Ching-Tsan Cheng, Yu-Lung Lo. Temperature Insensitive Current Reference for the 6.27 MHz Oscillator,2011 13th International Symposium on Integrated Circuits, Dec.2011, pp.559-562.
    [83]Qadeer Ahmad Khan, Sanjay Kumar Wadhwa, Kulbhushan Misri. A Low Voltage Switched-Capacitor Current Reference Circuit with low dependence on Process, Voltage and Temperature,16th International Conference on VLSI Design,2003. Jan.2003, pp.504-506.
    [84]Byung-Do Yang, Young-Kyu Shin, Jee-Sue Lee, Yong-Kyu Lee, Keun-Chul Ryu. An Accurate Current Reference using Temperature and Process Compensation Current Mirror, IEEE Asian Solid-State Circuits Conference 2009, Nov.2009, pp.241-244.
    [85]Hosung Chun, Torsten Lehmann. CMOS Current Reference Generator Using Integrated Resistors,2010 International Conference On Electronics and Information Engineering, Aug. 2010,1:290-294.
    [86]R. Lenk. Application Bulletin AB-20 Optimum Current-Sensing Techniques in CPU Converters, Fairchild Semiconductor Application Notes,1999.
    [87]E. Dallago, M. Passoni, G. Sassone. Lossless Current Sensing in Low Voltage High Current DC/DC Modular Supplies, IEEE Transactions on Industrial Electronics,2000,47: 1249-1252.
    [88]P. Midya, M Greuel and P. Krein. Sensorless Current Mode Control-An Observer Technique for DC-DC Conveners, IEEE Trans. Power Electronics,2001,16:522-526.
    [89]A. S. Sedra. G. W. Roberts, F. Gohh. The current conveyor:history, progress and new results,IEE Proceedings G Circuits, Devices and Systems,1990,137(2):78-87.
    [90]D. Grant and R. Pearce, Dynamic Performance of Current-Sensing Power MOSFETs, Electron. Letters,1988:1129-1131.
    [91]D.A Grant and R. Williams, Current Sensing MOSFETs for Protection and Control, IEE Colloquium on Measurement Techniques for Power Electronics,1992,8:1-5.
    [92]Zhang Zhiying, Wu Xiaobo, Yan Xiaolang. A high gain low offset amplifier with rail-to-rail inputs,2005 IEEE Conference on Electron Devices and Solid-State Circuits, Dec.2005, pp.445-448.
    [93]HeungJun Jeon, Yong-Bin Kim. A CMOS low-power low-offset and high-speed fully dynamic latched comparator,2010 IEEE International SOC Conference (SOCC), Sept.2010, pp.285-288.
    [94]Iglesias-Rojas J., Gomez-Castaneda F., Moreno-Cadenas J.. A very low offset voltage operational amplifier using field programmable floating-gate technology,2010 20th International Conference on Electronics, Communications and Computer, Feb.2010, pp.9-14.
    [95]Zhineng Zhu, R.Tumati, S.Collins, R.Smith, D.E.Kotecki. A Low-noise Low-offset Op Amp in 0.35μm CMOS Process,13th IEEE International Conference on Electronics, Circuits and Systems,2006. Dec.2006, pp.624-627.
    [96]P.J.Holzmann, R.J.Wiegerink, S.L.J.Gierkink, R.F.Wassenaar, P.Stroet. A low-offset low-voltage CMOS op amp with rail-to-rail input and output ranges,1996 IEEE International Symposium on Circuits and Systems,1996. May 1996,1:179-182.
    [97]X.L. Zhang, P.K. Chan. An Untrimmed CMOS Amplifier with High CMRR and Low Offset for Sensor Applications, IEEE Asia Pactific Conference on Circuit abd Systems 2008, Nov.40-Dec.3 2008, pp.802-805.
    [98]D.Dzahini, H.Ghazlane. Auto-zero stabilized CMOS amplifiers for very low voltage or current offset,2003 IEEE Nuclear Science Symposium Conference Record, Oct.2003,1:6-10.
    [99]Y.Jung, S.Lee, J.Chae, G.C.Temes, Low-power and low-offset comparator using latch load, Electronics Letters,2011,47(3):167-168.
    [100]R.Merlino, G.Scandurra, C.Ciofi. A Very Low Offset Preamplifier for Voltage Measurements in the Range, IEEE Transactions on Instrumentation and Measurement,2010, 59(1):188-194.
    [101]M.Miyahara, A.Matsuzawa. A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique, IEEE Asian Solid-State Circuits Conference 2009, Nov.2009, pp.233-236.
    [102]章从福.IBM、特许半导体、英飞凌和三星联合宣布45纳米低功耗硅电路.半导体信息,2007,01:32-35.
    [103]A.Govindaraj, S.M.Lukic, A.Emadi. A novel scheme for optimal paralleling of batteries and ultracapacitors. IEEE Energy Conversion Congress and Exposition,2009. Sept.2009, pp.1410-1416.
    [104]P.Delatte, V.Dessard, A.Saib. High temperature electronics for high power density DC-DC Converters and Motor Drives,2010 6th International Conference on Integrated Power Electronics Systems, March,2010, pp.1-6.
    [105]朱丽芳,何乐年,叶益迭.PWM/PSM双模式高压异步整流BUCK电路.浙江大学学报工学版.2011,1(45):185-190.
    [106]Huang-Jen Chiu, Yu-Kang Lo, Jun-Ting Chen, et al. A High-Efficiency Dimmable LED Driver for Low-Power Lighting Applications. IEEE Transactions on Power Electronics.2010, 57(2):735-743.
    [107]Chi-Hao Wu, Chern-Lin Chen. High-Efficiency Current-Regulated Charge Pump for a White LED Driver. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—Ⅱ:EXPRESS BRIEFS,2009,56(10):763-767.
    [108]张卫平.开关变换器的建模与控制.中国电力出版社,2008,p14.
    [109]C.Yoo, J.Park. CMOS current reference with supply and temperature compensation. Electronics Letters,2007,43(25):1422-1424.
    [110]G.Serrano, P.Hasler. A Precision Low-TC Wide-Range CMOS Current Reference. IEEE Journal of Solid-State Circuits,2008,43(2):558-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700