用户名: 密码: 验证码:
基于数字式声强探头的测试系统研究与误差分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对声强测量理论和现有声强测量系统全面深入分析的基础上,在国内外首次提出基于数字式声强探头的声强测量系统。与传统模拟式探头结构不同,数字式声强探头优化了前端调理电路,并高度集成了基于双核SOC框架的数字电路和闭环校准控制电路。手柄对外直接输出校正后的声强窄带谱、CPB谱和总声强级等;外接功放和扬声器,可组成声强探头自校准系统。该设计方案改变了常规声强测试系统的组成结构,解决了模拟式p-p声强探头存在的诸如接口不通用、易受干扰、并联困难、测试系统成本高等不足。
     全文从硬件设计、声强算法和误差、软件研制、校准方法和精度考核等几个方面对基于数字式声强探头的测量系统做了全面细致的研究,主要内容如下:
     第一章回顾了声强测量技术的发展历史和研究现状,对声强测量系统的分类、特点和发展趋势进行了讨论,指出目前国内外相关产品存在的不足,提出一种基于数字式声强探头的设计方案,明确了本文的工作内容。
     第二章介绍了连续介质的三个基本方程,对声能、声能(流)密度及声强之间的关系进行了分析,讨论了P-U、P-P两种声强测量方法的特点和双传声器时域、互谱声强算法,对瞬时声强、有功声强和无功声强的误差公式进行了推导,并分析了δPI、δPIO、Ld、F2、F3等重要声场指数的特性和物理意义。
     第三章从前置放大、程控增益、高低通滤波、A计权、SOC数字电路、扩展模块等几个方面,对硬件电路的参数计算和实现方法进行了详述,分析讨论了数字式声强探头硬件系统中影响测试精度的各个因素,提出了可获得良好声强探头精度的硬件设计方法。
     第四章深入分析了数字式声强探头算法中产生误差的主要因素,研究了数字式声强探头算法中测量噪声和量化噪声、谱干涉和能量泄露、频率误差和相位补偿等因素对声强计算精度的影响,提出了一种适用于数字式声强探头的分段窄带谱和CPB谱计算方法,并对该算法可能产生的误差进行了研究。
     第五章研究了数字式声强探头校准方法和精度。基于传声器声学模型,分析讨论了均压孔暴露和未暴露声场时,其低频灵敏度对声强探头相位校准精度的影响,建立了驻波声场中面对面式p-p声强探头测量误差模型。分析比较了消声室内垂直法和平行法两种探头相位校准方式,针对数字式声强探头提出了一种现场环境下基于离散扫频的平行法校准方法,计算出现场环境下保证校准精度的条件,可确保研制的数字式声强探头在普通环境下实现高精度的相位校准。
     第六章介绍了Windows平台下数字式声强探头上位机应用软件的开发过程。对应用程序主体框架、不同通讯模式下的运行机制、各种应用功能的控制面板和通讯协议进行了详细讨论。
     第七章在消声室内对数字式声强探头的A计权精度、声压-残余声强指数、声压频响、声强频响和指向性等主要性能指标进行了测试,通过B&K4205标准声功率源和国产2XZ-4A型旋片真空泵在不同声学环境下的对比性试验,检验数字式声强探头的精度。最后介绍了使用数字式声强探头进行噪声源定位的两个工程应用实例,进一步对探头的性能和可靠性进行考核。
     第八章对全文的工作与创新进行了总结,提出可进一步开展的研究工作。
After reviewing and analyzing the sound intensity measurement theory and the existing sound intensity measurement systems thoroughly, in this dissertation a sound intensity measurement system was first proposed based on a digital sound intensity probe. Compared with the traditional analog, the front-end conditioning circuit is optimized and both a digital circuit based on SOC framework and a closed-loop calibration control circuit are highly integrated in the digital sound intensity probe. The proposed measurement system can directly output the corrected narrow band spectrum of sound intensity, the CPB spectrum as well as the total sound intensity level. By connecting external amplifier and speaker, the self calibration system of sound intensity probe can be also constituted. The design of the proposed measurement system based on digital sound intensity probe changes the structure of conventional sound intensity test system and resolves the deficiencies of analog p-p sound intensity probe such as bad general characteristics of interface, poor anti-interference, difficulty in parallel and high cost of test system.
     In order to develop a sound intensity measurement system based on digital sound intensity probe, the problems including hardware design, measurement algorithm and error analysis of sound intensity, software development, calibration method and measurement precision were studied in-depth in this dissertation. The main contents of the dissertation are as follows:
     In chapter one, the development history and the current status of measurement technique of sound intensity were reviewed; the classification, the characteristics and the development trends of measurement systems of sound intensity were discussed. Then the deficiencies of related products were pointed out and the main research contents of this dissertation were determined.
     In chapter two, three basic governing equations for continuum were introduced and the relationships among acoustic energy, acoustic energy density and sound intensity were analyzed. The characteristics of sound intensity measurement methods based on both p-u and p-p were discussed. The time-domain algorithm and the cross-spectral algorithm based on two microphones were also discussed. The error equations of instantaneous sound intensity, active sound intensity and reactive sound intensity were derived. The characteristics and physical meaning of important factors such as δPI,SPI0,Ld,F2and F3were analyzed.
     In chapter three, the parameter calculation and the implementation of hardware circuit were first described detailedly from the points of preamplifier, programmable gain, high and low pass filter, A-weighted pressure, SOC digital circuits and expansion module. Then several factors that influence the measurement accuracy in hardware of digital sound intensity probe were discussed and analyzed. Finally a design method of hardware system of sound intensity probe was proposed to get good measurement accuracy.
     In chapter four, the main factors generating errors in the digital sound intensity probe algorithm were analyzed first. Then the way how the factors of measurement noises, the quantitative noises, the spectral interference, the energy leakage, the frequency error and the phase compensation influence the calculation accuracy of sound intensity in the digital sound intensity probe algorithm was investigated. Finally a calculation algorithm for piecewise narrowband spectrum and CPB spectrum of digital sound intensity probe was proposed and the errors that may be generated in the proposed algorithm were also investigated.
     In chapter five, the calibration method and the accuracy of the digital sound intensity probe were investigated. Based on the acoustic model of microphone, the influence of low-frequency sensitivity to the calibration accuracy of the phase of sound intensity probe were analyzed when the pressure hole was exposed to the sound field and when the pressure hole was not exposed to the sound field, respectively. The measurement error model of sound intensity probe which is p-p and face-to-face was established. Two phase calibration methods of sound intensity probe implemented in anechoic room, vertical method and parallel method, were analyzed and compared. A parallel calibration method was proposed for digital sound intensity probe based on discrete frequency sweeping, which can be used in real engineering environment. By the proposed calibration method, a high phase calibration accuracy of the developed digital sound intensity probe can be achieved in an ordinary environment.
     In chapter six, the development process of PC application software of digital sound intensity probe was introduced on the Windows platform. The main frame of application, the operating mechanism in different communication modes, the control panel of a variety of applications and communication protocols were discussed in detail.
     In chapter seven, the key performance indicators of digital sound intensity probe such as A-weighted accuracy, sound pressure-residual sound intensity index, frequency response of sound pressure, frequency response of sound intensity and directivity were tested. The accuracy of digital sound intensity probe was also examined by experiments that compare the results of a standard sound power source (B&K4205) and a domestic rotary vane vacuum pump (Type2XZ-4A) in different acoustic environments. Finally two engineering application examples in which the noise sources were identified using digital sound intensity probe were described.
     In chapter eight, all the investigations in this dissertation were summarized and the topics that should be studied further in the future were proposed.
引文
[1]F J.Fahy. Sound intensity. London:E&FN Spon,1995
    [2]ISO9614-1,Acoustics-determination of sound power levels of noise sources using sound intensity-part 1:Measurement at discrete points.ISO,1993
    [3]IEC1043,Electroacoustics-instruments for the measurement of sound intensity-measurements with pairs of pressure sensing microphones.IEC/SC/29C/WG20,1993
    [4]ISO 9614-2, Acoustics-determination of sound power levels of noise sources using sound intensity-part 2:Measurement by scanning.ISO,1996
    [5]ISO 9614-3, Acoustics-determination of sound power levels of noise sources using sound intensity-part 3:Precision method for measurement by scanning.ISO,2002
    [6]H.F.Olson. System responsive to the energy flow of sound waves:United States, 1.892.644.Dec 27,1932.
    [7]C.W.Clapp,F.A.Firestone. The acoustic wattermeter-an instrument for measuring sound energy flow. J.Acoust.Sco.Am,1941,13:124-136
    [8]S.Baker. An acoustic intensity meter. J.Acoust.Sco.Am,1955,27:269-273
    [9]R.H.Bolt,A.A.Petrauskas. An acoustic impedance meter for rapid field measurements. J.Acoust.Sco.Am,1943,15(79)
    [10]J.T.Schultz. Acoustic wattmeter. J.Acoust.Sco.Am,1956,28:693-699
    [11]B.G.Zyl,F.V.Anderson. Evaluation of the intensity metnod of sound power termination. J.Acoust.Sco.Am,1974,57:682-686
    [12]B.G.Zyl. Sound intensity meter. Pretoria, Republic of South Afica Council for Scientific and Industrial Research(CSIR) Technical informtion for Industry,1979
    [13]H. P.Lambrich,W. A.Stahel. A sound intensity meter and its application in car acoustics. Inter-Noise'77. Zurich-Russihon:Internatioanl Institute of Noise Control Engineering,1977
    [14]W.Stahel. Development of an instrument for the measurement of sound intensity and its application in car acoustic. External Publications,Interkeller AG, Zurich,Switzerland,1977
    [15]G.Pavic. Measurement of sound intensity. Journal of Sound and Vibration,1977, 51(4):533-545
    [16]A.C.Balant,G.C.Maling,D.M.Jr.Yeager. Measurement of blower and fan noise using sound intensity techniques. Noise Control Engineering Journal,1989.9-10
    [17]F.J.Fahy. Measurement of acoustic intensity using the cross-spectral density of two microphone signals. J.Acoust.Sco.Am,1977.10,62(4):1057-1059
    [18]K.Nishida,T.Tomita. Automatic measurement of spatial acoustic intensity. JSME International Journal,1987.1
    [19]J.C.Rebillat,J.C.Patrat,C.Picard. Sound intensity vector measurement with a two microphone rotative probe. Acustica-Acta Acustica,1997.3-4
    [20]T.D.Rossing. Science of sound.2nd edition,1990.1
    [21]J.Y.Chung. Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch. J.Acoust.Sco.Am,1978.12,64(6):1613-1616
    [22]J.Y.Chung,Pope,J. Cross-spectral method of mesauring acoustic intensity. Warren, Michigan:Research Publication,General Motors Research Laboratory,1977
    [23]J.Y.Chung, J.Pope. Practical measurement of sound intensity two microphone cross spectral method. Inter-noise'78. San Francisco.USA,1978:893-900.
    [24]J.Y.Chung,J.Pope,D.A.Feldmaier. Application of acoustic intensity measurement to engine noise evaluation. SAE Paper 790502,1979:
    [25]Zyl B.G.v. Sound intensity meter. Pretoria,Republic of South Afica Council for Scientific and Industrial Research(CSIR) Technical informtion for Industry,1979
    [26]H.Yano,T.Ohta,T.Yokota,H.Tachibana. Reduction of the influence by background noise in sound insulation determination by sound intensity method.8th International Congress on Acoustics,2004.1
    [27]D.J.Bucheger. A selective two-microphone intensity method for evluation sound rediation from individual of a coherent sound array. Inter-Noise'82.1982:691-697.
    [28]W.Martin.Trethewey. Application of selective two microphone acoustic intensity method for noise identification. Noise Control Engineering Journal,1988,30(1):708-715
    [29]胡章伟,尹坚平.选择声强法用于强背景下噪声源识别.应用声学,1991,10(4):31-36
    [30]陈心昭,刘征宇,陈晓东.选择双传声器声强法及其在双通道FFT分析仪上的实现.计量学报,1994,15(3):193-197
    [31]罗玉涛,俞明,柳文斌等.用选择性声强技术识别车内噪声及其成因.汽车技术,2002,(9):20-22
    [32]罗玉涛,俞明,柳文斌,孙国赋等.用选择性声强技术分析车内噪声产生的原因.机床与液压,2003,(2):122-123
    [33]R.Hickling,A.P.Morgan. Locating sound sources with vector sound-intensity probes. using polynomial continuation,1996.7
    [34]K.Kimura,T.Tsuchiya,Y.Watanabe. Measurement of sound intensity using nonlinear interaction of sound waves. Science and Engineering Review of Doshisha University,1989.8
    [35]K.Kunzel,K.Beckmann. Measurement of the sound intensity by the phase gradient method. MSR (Messen Steuern Regeln),1990.3
    [36]T.H.Hodgson. Investigation of the surface acoustical intensity method for determining the noise sound power of a large ma-chine in situh. Journal of the Acoustical Society of America,1977,61:487-493
    [37]M.C.Mc Gary,M.J.C. Phase shift errors in the theory and practice of surface intensity measurements. journal of Sound and Vibration,1982,82(2):275-288
    [38]N.M.J.C Kaemmer. Sound power determination from surface intensity measurements on a vibrating cylinder. J.Acoust.Soc.Am.,1983,73(3):856-866
    [39]M.J.C. Sound power determination from surface intensity measurements on a vibrating cylinder. J.Acoust.Soc.Am,1982,73(3):856-866
    [40]赵晓丹,郭骅,姜哲.表面声强测试方法的研究.振动工程学报,1991,4(4):74-77
    [41]姜哲,郭骅.应用功率谱测量振动表面声强.噪声与振动控制,1990,(4):4-8
    [42]姜哲,郭骅.自功率谱表面声强测量的误差讨论.噪声与振动控制,1992.06,(3):2-6
    [43]赵晓丹,姜哲.表面声强测量在s1110柴油机上的运用.内燃机学报,1997,15(3):370-374
    [44]Hirao Y.Yamamoto K.,et al. Development of a hand-held sensor probe for detection of sound components radiated from a specific device using surface intensity measurements. Applied Acoustics,2004,(65):719-735
    [45]J.A.M.Ticky,Romano A.J. Instantaneous and time-averaged energy transfer in acoustic fields. J.Acoust.Sco.Am,1987,82:17-30
    [46]T.Loyau,J.C.Pascal. Statistical errors in the estimation of the magnitude and direction of the complex acoustic intensity vector. Journal of the Acoustical Society of America,1995.5
    [47]K.B.Ginn. Sound field description using complex sound intensity. Instrumentation Bruel & Kjaer Aplication,1988
    [48]F.Jacobsen. Active and reactive sound intensity in a reverbrant sound field. Jounal of Sound and Vibration,1990,143(2):231-240
    [49]曾力军.声场分布中的负向声强.声学学报,1990,15(5):364-372
    [50]姜哲,郭骅.声强的有旋性与表面声强.声学学报,1991,16(5):330-337
    [51]姜哲,郭骅.声场中负声强探讨.声学学报,1992,17(2):122-128
    [52]刘仕民.姜文军.复声强技术及其应用.汽车工程,1995,17(5):274-281
    [53]刘仕民,战心和.复式声强及其应用.摩托车技术,1990,(4):9-16
    [54]刘仕民译.声强测量的最新话题.噪声与振动控制,1993,(6):45-49
    [55]战心和.复数声强理论的数学推导.东北师范大学学报自然科学版,1990,(2):35
    [56]葛蕴珊,黎志勤,刘仕民.复数声强与声源识别.吉林工业大学学报,1992,22(4):10-15
    [57]葛蕴珊,黎志勤,辛德杰等.复声强测试技术的开发及其在内燃机噪声控制中的应用 研究.内燃机工程,1993,14(4):3742
    [58]葛蕴珊,黎苏,梁杰等.复式声强在内燃机噪声源识别和声场分析中的应用研究.汽车工程,1993,5(3):137-144
    [59]葛蕴珊,辛德杰,梁杰等.复数声强测量系统开发研究.噪声与振动控制,1993,(4):10-12
    [60]袁兆成,德杰.用复声强法和模态分析方法研究柴油机表面噪声.内燃机学报,1997,15(4):479484
    [61]梁杰,王登峰,高印寒等.复声强分析系统在车内辐射噪声源识别中的应用.农业机械学报,2005,36(11):5-7
    [62]汪鸿振,朱蓓丽.双传声器互功率谱密度法声功率测量.声学技术,1983,(4):1-9
    [63]H. P. Sound power measurements application note 1230.1992
    [64]M.Yeager D. A comparison of intensity and mean square pressure methods for dterminiing sound power using a nine-point mincrophone arry. Noise Control Engineering Journal,1984(5-6),22(3):85-95
    [65]S.Gade.利用声强测量方法确定声功率.噪声与振动控制,1985,(3):23-25
    [66]H.Tachibana,H.Miura,M.Koyasu. Inter-laboratory measurements of sound power levels of three kinds of sound sources. Inter noise 86,1986
    [67]J.Pope. Qualifying intensity measurements for sound power determination. Inter-noise 89, new port beach, ca, USA, pp.1041-1046,1989. Newport Beach, CA, USA: Inter-Noise'89,1989
    [68]刘征宇,陈心昭.利用声场指数确定机床辐射声功能率级测量精度的实验研究.合肥工业大学学报,1994,17(3):1-6
    [69]A.Abdou,R.W.Guy. Directional accuracy of transient sound employing an intensity probe. Applied Acoustics,1997.1
    [70]葛蕴珊,王芝秋,张志华.声强法声功率测量的数值模拟和试验研究.噪声与振动控制,1994,(1):18-20
    [71]R.Hickling, Lee, et al. Investigation of integration accuracy of sound-power measurement using an automated sound-intensity system. Applied Acoustics,1997,50(2):125-140
    [72]J.Dumas. How to measure acoustic intensity correctly. Journal de Physique IV(Colloque),1992.4
    [73]Q.D.A note on statistical errors in acoustic intensity measurements. Journal of Sound and Libration,1983,90(4):585-589
    [74]J.C.Pascal. FFT intensity meters used for sound sources and acoustical eviroment characterization. Inter-Noise 83 [Proc. Inter-Noise 83],1983 Proc. Inter-Noise 83
    [75]F.Jacobsen. A note on the accuracy of phase compensated intensity measurements. Journal of Sound and Vibration,1994.6
    [76]H.Suzuki,M.Anzai,M.Ohashi, K.Yamaguchi. Measurement methods of the pressure-residual intensity index. Journal of the Acoustical Society of Japan (E),1992.7
    [77]F.Jacobsen. Prediction of random errors in sound intensity measurement. ternational Journal of Acoustics and Vibration,2000,12
    [78]G.Hubner. Determination of sound power of source under in-suit conditions using intensity method filed of applica-tion,supression of parasitic noise,reflection effect. Proc.Inter-Noise 83:Inter-Noise 83,1983
    [79]S.Berezina, J.Slabeycius. Low frequency reflection coefficient measurement by the sound intensity probe. Acta Physica Slovaca,1993.10
    [80]S.Gade,K.B.Gimm,M.O.B. Sound power determination in hightly reactive enviroments using sound intensity meaasuremenrts. Inter-Noise 83.Proc. Inter-Noise 83,1983:1047-1050
    [81]J.Roland. What are the limitations of intensity technique in a hemi-diffuse field. Inter-Noise 82.1982:715-718
    [82]F.J.Fahy. International standards for the determination of sound power levels of sources using sound intensity measurement:An exposition. Applied Acoustics,1997,50(2):97-109
    [83]S.Udayshankar. Sound power measurement using the two-microphone sound intensity technique. Auburn University Engi-neering:Mechanica, Engineering: Automotive,Physics:Acoustics,1990
    [84]O.K.Pettersen.H.Olsen On spatial sampling using the scanning intensity technique. Applied Acoustics,1997,50(2):141-153
    [85]ECMA-160. Determination of sound power levels of computer and business equipment using sound intensity:Scanning method in controlled rooms.
    [86]毕传兴,陈剑,周广林等.扫描面几何特征对扫描声强法确定声功率误差的影响.农业机械学报,2005.03,36(3):111-114
    [87]毕传兴,陈剑,周广林等.扫描声强法声源声功率测量通用数学模型.振动工程学报,2004.03,17(1):39-43
    [88]甘长胜,陈心昭,陈剑.扫描声强法确定噪声声源声功率数学模型.声学学报,2000,25(1):66-70
    [89]甘长胜,陈心昭,陈剑.扫描声强法声功率测量的扫描路径误差分析.振动工程学报,2000,13(4):516-522
    [90]周广林,陈心昭.扫描速度对扫描声强法测量声功率精度的影响.仪器仪表学报,2006,27(12):1614-1618
    [91]周广林,陈剑,毕传兴等.矩形测量面扫描测量声强时扫描路径研究.声学学报, 2003,28(5):447-453
    [92]周广林.扫描声强法测量四极子声源声功率时参数确定.黑龙江科技学院学报,2006,(3)
    [93]周广林,陈剑,于飞等.扫描声强法测量声功率时扫描参数的确定.农业机械学报,2004,35(4):136-139
    [94]周广林,毕传兴,陈剑等.基于扫描声强法的声功率测量扫描路径误差研究.振动工程学报,2003,16(1):23-28
    [95]毕传兴,周广林,陈剑等.方波扫描路径确定声源声功率误差特性分析.计量学报,2003,24(1):72-76
    [96]吴振华,毕传兴,赵旭东等.基于扫描声强法的声功率测量软件研究.振动工程学报,2004,17(s):1080-1083
    [97]GB16404,声学-用声强法测定噪声源声功率级,第一部分:离散点的测量[S].
    [98]GB16404,GB/T 16404.2-1999,声学-用声强法测定噪声源声功率级,第二部分:扫描测量
    [99]GB/T 17561-1998(IDT. EC 1043:1993),声强测量仪用声压传声器对测量
    [100]李毅民,应怀憔.声强测量仪在行波场中的检定.振动工程学报,2004,17(z2):1105-1106
    [101]JJG 992-2004,声强测量仪检定规程.国家质量监督检验检疫总局,2004,9
    [102]Hiroo Yane. A Portable Acoustic Intensity Meter Made as a Trial, Inter-Noise,1984.
    [103]Sound intensity analysing system type 3360. Bruel & Kjaer Technical Review,1981
    [104]M.Brock. Wind and turbulence noise of turbulence screen, nose cone and sound intensity probe with wind screen. Bruel & Kjaer Technical Review,1986.1
    [105]F.Jacobsen. A simple and effective correction for phase mis-match in intensity probes. Applied Acoustics,1991.1
    [106]E.Frederiksen. Acoustic calibrator for intensity measurement systems. Bruel & Kjaer Technical Review,1987.1
    [107]G.Krishnappa,V.J.Chiu. Calibration and performance verification of sound intensity probes using gating technique. Noise Control Engineering Journal,1991,5-6
    [108]蒋孝熠,连小珉.声强技术及其在汽车工程中的应用.北京:清华大学出版社,2010:45-50
    [109]E.Benarrous,M.Chamant. On the design of an acoustic probe insensitive to pseudo-sound. Revue d'Acoustique,1981.1
    [110]MJ.Crocker,JP.Arenas. Fundamentals of the direct measurement of sound intensity and practical applications. ACOUSTICAL PHYSICS,2003.3-4
    [111]甘长胜,陈心昭,李登啸.FFT分析仪——微机声强测量系统及其应用.应用声学, 1988,8(5):4-11
    [112]朱玉田,陈心昭,李登啸.基于单机的便携式互谱声强测量仪的研制.合肥工业大学,1990,13(1):34-39
    [113]合肥工业大学.高性能智能化声强测量分析系统鉴定材料.2004
    [114]连小珉,许国贤,朱彦武等.应用sims声强测量系统控制客车噪声.汽车研究与开发,1995,(1):5-9
    [115]T.Fujimori,S.Sato,T.Nemoto,H.Miura. Multi-microphone spherical sound intensity probe. Journal of the Acoustical Society of Japan,1995.9
    [116]P.Rasmussen. Source location using vector intensity measurements. Sound and Vibration,1989.3
    [117]R.Hickling,W.Wei,R.Raspet. Finding the direction of a sound source using a vector sound-intensity probe. Journal of the Acoustical Society of America,1993.10
    [118]FJacobsen,V.Cutanda,P.M.Juhl. A numerical and experimental investigation of the performance of sound intensity probes at high frequencies. Journal of the Acoustical Society of America,1998.2
    [119]F Jacobsen, et al. A Sound Intensity Probe for Measuring from 50 Hz To 10kHz, Denmark:Bruel&Kjaer,1996:3-7
    [120]陆益民.互谱声强测量误差分析及修正方法研究,2008
    [121]明瑞森.声强技术.杭州:浙江大学出版社1995:164-193
    [122]陈心昭,刘征宇.现场获取声压-残余声强指数的方法.合肥工业大学学报,1994,17(2):1-5
    [123]陈心昭,李登啸,刘征宇等.利用残余声强校正双传声器声强测量系统相位不匹配误差的研究.仪器仪表学报,1995,16(2):130-134
    [124]R. W.Guy. Standing wave tube testing of sound intensity probes. Journal of the Acoustical Society of America,1993,1
    [125]A.Small. Standard sound intensity measurements in practice. Noise & Vibration Worldwide,1994.6
    [126]张晓飞,董浩斌,鲁永康等.一款JFET低噪声前置放大器的设计.电声技术,2009,33(11):34-36
    [127]谢楷,张昌民,刘丞.智能仪表中的量程切换电路.仪表技术,2008,4:62-64
    [128]吴乐南,盛莉莉.含噪信号量化对测量精度的影响.东南大学学报自然科学版,2000,30(1):27-31
    [129]宋兴.克服模拟开关导通电阻影响放大器增益的方法.试验技术与试验机,1997,37(3):45-45
    [130]战丰丰,鲍爱达,郭涛.加速度对传声器影响的逆用分贝叠加修正.探测与控制学 报,2010,32(2):60-63
    [131]毛东兴.响度感知特征研究进展.声学技术,2009,28(6):693-696
    [132]何岭松.频率计权网络的公式化表达.仪器仪表学报,1996,17(5):540-542
    [133]白川.传声器的振动噪声及其降低方法.电声技术,1984(02)
    [134]金晖,何洁.频率计权的全数字实现.仪器仪表学报,2006,(z2):1495-1496,1499
    [135]GB3785-83声级计的电、声性能及测试方法.1983:3-5
    [136]JJG-188-2002声级计检定规程.2002:7-9
    [137]罗刚.不确定度A类评定及不确定度B类评定的探讨.计量与测试技术,2007,34(12):42-43
    [138]应怀樵.波形和频谱分析与随机数据处.北京:中国铁道出版社,1983.5
    [139]C8051F060/1/2/3/4/5/6/7 Mixed Signal ISP Flash MCU Family, Silicon Laboratories,2004:3-25
    [140]H.Kuttruff. Measurement of sound intensity with a multi microphone arrangement. Acustica,1990.11
    [141]A.Kuttruff,A-Schmitz. Measurement of sound intensity by means of multi-microphone probes. Acustica,1994.7-8
    [142]孟臣,李敏.多串口扩展器在单片机系统中的应用.电子元器件应用,2004,6(2):15-18,48
    [143]林维中,陈奇明.测量噪声对数字量化误差的影响及在数字控制器中应用.自动化仪表,1991,12(6):11-14
    [144]张海涛,涂亚庆,牛鹏辉.相位差测量的FFT法和DTFT法误差分析.电子测量与仪器学报,2007,21(3):61-65
    [145]皇甫堪.现代数字信号处理.北京:电子工业出版社,2003
    [146]张圣训.数字信号处理技术.浙江:浙江大学出版社,1996
    [147]IEC 1260-1995, Electroacoustics-Octave-band and fractional-octave-band filters.
    [148]陈继康,张益.声强探头相位误差的电补偿技术.应用声学,1996,(6):25-28
    [149]赵松龄.声学测量技术20年.声学技术,2002,21(1):52-54
    [150]Mingzhang Ren,F.A.Jacobsen. Simple technique for improving the performance of intensity probes. Noise Control Engineering Journal,1992.1-2
    [151]甘长胜,陈心昭.现场修正声强测量系统相位失配误差方法研究.合肥工业大学学报,1998,21(3):1-7
    [152]陈心昭,李登啸.利用残余声强校正双传声器声强测量系统相位不匹配误差的研究.仪器仪表学报,1995,16(2):130-134
    [153]陈剑.微机声强测量系统的误差及其修正方法研究.1996.11
    [154]Mingzhang Ren,F.Jacobsen. A simple technique for improving the performance of intensity probes, Noise Control Engineering Journal,1992
    [155]D.R.Jarvis. The calibration of sound intensity instruments. Acustica,1994.3-4
    [156]F.Jacobsen, E.S.Olsen, The influence of microphone vents on the performance of sound intensity probes. Applied Acoustics,1994.1
    [157]Technical Documentation:Microphone Handbook Vol.1:Theory Briiel & Kjaer
    [158]Product Data Sound Intensity Calibrator-Type 3541 (bp07O3-13), Briiel & Kjaer
    [159]赵其昌,程国胜.声强探头相位特性的研究.电声技术,1992,(7):2-6
    [160]S.Gade. Technical Review Sound intensity. II. Instrumentation and applications,Bruel & Kjaer,1982
    [161]B&K Product Data Sound Intensity Probe Sets Types 3583/3584,Sound Intensity Microphone Pairs Types 4178/4197,Dual Preamplifier Type 2682,Bruel & Kjaer,1998
    [162]G.Krishnappa. Scattering/diffraction effects in the two-microphone technique of measuring sound intensity at sound incidence angles other than Odeg. Noise Control Engineering Journal,1984.5-6
    [163]J.C.Rebillat. Numerical calculation of sound diffraction around intensity probes. Acustica,1987.5
    [164]J.C.Rebillat,S.Rifai. Experimental measurements of acoustical diffraction around sound intensity probes. Acustica,1990,1
    [165]F.Jacobsen, E.S.Olsen. Testing sound intensity probes in interference fields. Acustica,1994.3-4
    [166]Jing-Fang Li, J.C.Pascal. The influence of microphone vents on measurements of acoustic intensity and impedance. Journal of the Acoustical Society of America,1996,2
    [167]黄薇,胡永举,程正.基于声强的交通流数据采集与状态分析.交通科技与经济,2010,(4):12-14
    [168]胡永举,李洋.关于交通噪声与交通流状态关系的研究.公路工程,2008,(1):67-69
    [169]曹钟勇.交通运输系统运行的评价指数.交通运输工程学报,2002,(3):71-75
    [170]中华人民共和国道路交通安全法实施条例,2004.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700