用户名: 密码: 验证码:
基于多物理场耦合的柴油机仿真模型研究与声学性能优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强化柴油机是今后发动机行业发展的主流,而发动机强化后所出现的可靠性问题与振动噪声问题也日益凸显,解决这些问题成为内燃机工作者面临的重要责任。本文结合数字化仿真技术与试验分析技术对多物理场耦合条件下的柴油机可靠性与NVH性能进行了深入地研究,取得了显著的成果。
     建立了柴油机结构件与冷却水套的流固耦合计算模型,采用沸腾传热模型详细分析了柴油机在高热负荷下的散热性能,并以水套传热计算的结果为边界条件计算了柴油机主要结构件的温度场与应力场。在此基础上,对发动机的冷却水套进行了优化设计,提高了冷却系统的散热性能,改善了结构件的应力分布状况。
     对发动机曲轴在复杂耦合边界条件下的疲劳强度性能进行了深入研究,建立了带液力润滑轴承模型的曲轴多体动力学耦合计算模型,通过对比不同轴承模型的计算结果证明了轴承热力学性能对轴系动力学性能预测的重要性。以热弹性液力润滑轴承的曲轴多体动力学模型为基础,研究了曲轴的动态应力分布与疲劳强度性能,结合曲轴疲劳强度试验证明了曲轴数字化分析模型在曲轴疲劳强度设计中的重要性。
     首次将波束形成法应用于识别发动机噪声源,大幅提高了噪声源识别的效率与准确性。通过建立运动件多体动力学与液力润滑轴承耦合的整机计算模型对发动机噪声性能进行了预测,并对通过发动机振动与噪声测量结果验证了计算模型的可靠性。以噪声预测结果为基础,通过模态追踪法、形貌优化法对发动机主要结构件的噪声性能进行了改进设计,大幅降低了结构件的辐射噪声。
     通过测量柴油机的缸内燃烧状态、表面振动加速度以及辐射噪声,研究了传统衰减曲线法在柴油机噪声预测上的应用,指出了其优缺点。通过对柴油机的燃烧噪声影响因素的全面细致研究,找到了影响柴油机燃烧噪声的关键因素。提出了一种全新的基于噪声变化量的燃烧噪声优化方法,采用单变量寻优,多变量最优组合验证的方法对全转速工况下柴油机的噪声性能进行了优化设计。在国内率先完成了通过电控调节降低柴油机燃烧噪声和整机噪声的研究,为今后内燃机燃烧噪声控制的研究提供了重要的理论依据和工程应用基础。
Highly strengthened diesel engine is the mainstream of the engine industry future development; however, with the increasing of the enhanced performance of the engine, the reliability problems and NVH problems of strengthened engines are increasingly prominent. Engine NVH problems will seriously affect the durability and comfort of the vehicle. Therefore, the noise and vibration reduction work of strengthening the engines is received more and more attention. How to solve these problems becomes the important responsibility of internal combustion engine workers. Based on digital simulation techniques and experimental analysis techniques, this paper carried out a detailed research on the reliability and NVH performance for diesel engines under multi-physics coupling conditions, and achieved remarkable results.
     Fluid-solid coupling calculation model of diesel engine parts and water jacket was established. Using boiling heat transfer model, a detailed analysis was earned out for the thermal performance of diesel engine at high load transfer model. The temperature field and stress field of diesel engine parts were calculated with water jacket heat transfer results as boundary conditions. After that, the engine cooling water jacket was optimized; the cooling system thermal performance and the state of the structure stress distribution were improved.
     A detailed research was earned out on engine crankshaft fatigue strength performance under complex multi-physics coupling conditions. The crankshaft multi-body dynamics model was established coupled with hydraulic lubricating bearings calculation model, and by comparing with the different bearing calculation model results, the importance of thermodynamic properties in bearing dynamic performance prediction was proved. Based on thermal elastic hydrodynamic lubrication model and crankshaft bearing multi-body dynamics model, the dynamic stress distribution and fatigue strength of crankshaft were studied. Combined with the fatigue strength experiments, the importance of crankshaft digital analysis model in the fatigue strength of the crankshaft design was proved.
     The beamforming method was firstly used on noise source identification; this method significantly improves the efficiency and accuracy of the noise source identification. Coupled with multi-body dynamics model and bearings hydrodynamic lubricating model, the whole engine calculation model was established. Based on this model, the engine noise performance was predicted and verified by engine bench tests. On the basis of noise prediction, track by modal method and shape optimization method were used to improve the noise performance of the engine parts, the structural radiation noise was significantly reduced.
     By measuring the in cylinder of diesel engine combustion state and surface vibration acceleration and radiated noise, traditional attenuation curve method is studied on the diesel engine noise prediction application, and its advantages and disadvantages were pointed out. By comprehensive and detailed research on diesel engine combustion noise influence factors, the key factors that affect the diesel engine combustion noise were found. An entirely new combustion noise optimization method based on the noise changes was proposed. By single-variable optimization, multivariable optimal combination verification method, the optimization design was carried out for the combustion noise performance of a diesel engine. The studies on engine noise reduction in this dissertation took the lead in the combustion noise and whole engine noise reduction, provided important theoretical basis and engineering application foundation for the future internal combustion engine noise control study.
引文
[1]中华人民共和国环境保护部:中国环境噪声污染防治报告[OL].2011.http://wenku.baidu.com/view/bddec730eefdc8d377ee3205.html
    [2]舒歌群,高文志,刘月辉.动力机械振动与噪声[M].天津市:天津大学出版社,2008
    [3]郭磊.车用动力总成结构振动噪声的虚拟预测分析技术研究[D].博士学位论文,浙江大学,2009
    [4]Laimbock F., Meister G., Grilc S. Cfd Application in Compact Engine Developmen[J]. SAE 982016
    [5]陆瑞松.内燃机的传热与热负荷[M].北京市:人民交通出版社,1988
    [6]Prechsel E.1991年内燃机开发和2001年内燃机展望[J].国外内燃机,1992(1):48-51
    [7]肖永宁,潘克煜,韩国埏.内燃机热负荷和热强度[M].北京市:机械工业出版社,1988
    [8]Sandford M. H., Postlethwalte L. Engine Coolant Flow Simulation-a Correlation Study[J]. SAE 930068
    [9]普林特,康振黄,伯斯威特.流体力学实验教程[M].北京市:计量出版社,1986
    [10]张忠进,刘巽俊.柴油机非水冷却介质自然对流沸腾传热特性研究[J].内燃机学报,1998,4(16):441-445
    [11]Kubozuka T., Ogawa N., Hirano Y., et al. The Development of Engine Evaporation Cooling System[J]. SAE 870033
    [12]Finlay I. C., Gallacher G. R., Biddulph T. W., et al. The Application of Precision Cooling to the Cylinder-Head of a Small Automotive Petrol Engine[J]. SAE 880263
    [13]Arcoumanis C., Nouri J. M., Whitelav J. H. Coolant Flow in the Cylinder Head/Block of the Ford2.5L Di Diesel Engine[J]. SAE 910300
    [14]Couetoux H. Cooling System Control in Automotive Engines[J]. SAE 920788
    [15]Xu Z. Y., Johnson J. H., Chiang E. C. Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck.[J]. SAE 841711
    [16]Aa Kenny, F Bradshaw C., T Creed B. Electronic Thermostat Sysfem for Automotive Engines[J]. SAE Trans,1988,6 (97):411-418
    [17]Aoyai Y., Takenaka Y., Niino S., et al. Numerical Simulation Experimental Observation of Coolant Flow Around Cylinder Liner in V8 Engine[J]. SAE 880109
    [18]Sandford M. H. Engine Coolant Flow Simulation-a Correlation Study[J]. SAE 930068
    [19]Mark D. M. Computational Fluid Dynamic (Cfd) Analysis of a Six Cylinder Diesel Engine Cooling System with Experimental Correlations[J]. SAE 941081
    [20]Panos T., Kasi S. Role of Cfd in Heavy Machinery Development[J]. SAE 972718
    [21]Franz J. L., Simon G., Gerhard M. Cfd Application in Compact Engine Developmen[J]. SAE 982016
    [22]Kenji O. Cfd Simulation by Automatically Generated Tetrahedral and Prismatic Cells for Engine Intake Duct and Coolant Flow in Three Days[J]. SAE 2000-01-0294
    [23]Pirotais F., Bellettre J. A Diesel Engine Thermal Transient Simulation:Coupling Between a Combustion Model and a Thermal Model[J]. SAE 2003-01-0224
    [24]Divis M., Tichanek R., Spaniel M. Heat Transfer Analysis of Diesel Engine Head[J]. Acta Polytechnics 2003,5 (43):34-39
    [25]Zieher F., Langmayr F., Ennemoser A. Advanced Thermal Mechanical Fatigue Life Simulation of Cylinder Heads[J]. ABAQUS Users'Conference,2004
    [26]王书义,王宪成,段初华.发动机冷却水三维流动的实验研究[J].装甲兵工程学院学报,1994:14-20
    [27]王书义,王宪成.发动机冷却水三维流动数值模拟基础研究[J].内燃机学报,1994,12(1):57-63
    [28]屈盛官,黄荣华,孙自树等.高强化柴油机气缸盖水流分布试验研究[J].车用发动机,2001(3):29-31
    [29]屈盛官,夏伟,王颖等.高强化柴油机气缸套周围冷却水流动的数值模拟和试验研究[J].内燃机工程,2004(4):32-35
    [30]朱义伦,邓康耀.发动机缸头冷却水流场试验研究[J].上海交通大学学报,2000(4):463-465
    [31]常思勤,左孔天.发动机缸盖内部冷却水腔的设计与流动数值模拟[J].车用发动机,2000(1):25-27
    [32]陈群,刘巽俊,李骏等.CA498型车用柴油机冷却水套的CFD分析[J].汽车技术,2003(11):8-11
    [33]童彤,李军,李维成.柴油机水套的计算流体动力学(CFD)分析[J].现代车用动力, 2005(1):22-25
    [34]熊树生,周文华,张朝山等.发动机缸体冷却液流动传热的三维CFD模拟[J].浙江大学学报(工学版),2007(7):1191-1194
    [35]麦华志,李国祥.缸盖冷却水的单相流沸腾模型[J].山东内燃机,2005(2):8-11
    [36]肖翀,左正兴,覃文洁等.柴油机气缸盖的耦合场分析及应用[J].车用发动机,2006(4):26-29,34
    [37]陈红岩,李迎,俞小莉.柴油机流固耦合系统稳态传热数值仿真[J].农业机械学报,2007(2):56-60
    [38]刘永,李国祥,付松等.一种适用于缸盖水腔沸腾传热计算的模型[J].内燃机学报,2008(1):76-82
    [39]董非.考虑沸腾传热的内燃机流—固耦合及热负荷问题的数值模拟与应用研究[D].博士学位论文,江苏大学,2010
    [40]李佑长.四缸柴油机缸盖传热研究[D].博士学位论文,武汉理工大学,2007
    [41]孙军.曲轴—轴承系统摩擦学、刚度和强度的耦合研究[D].博士学位论文,合肥工业大学,2005
    [42]Jones G. J. Crankshaft Bearings:Oil Film History[J]. In Proceedings of 9th Leeds-Lyon Symposium on Tribology, Tribology of Reciprocating Engines,1981
    [43]Goenka P. K. Analytical Curve Fits for Solution Parameters of Dynamically Loaded Journal Bearings.[J]. Journal of Tribology, Transactions of the ASME,1984,106 (4) 421-428
    [44]Fantino B., Frene J. Comparison of Dynamic Behavior of Elastic Connecting-Rod Bearing in Both Petrol and Diesel Engines.[J]. Journal of Tribology,1985,107 (1):87-91
    [45]Paranjpe R. S., Goenka P. K. Analysis of Crankshaft Bearings Using a Mass Conserving Algorithm[J]. TRIBOLOGY TRANSACTIONS,1990,33 (3):333-344
    [46]Xu H., Smith E. H. A New Approach to the Solution of Elastohydrodynamic Lubrication of Crankshaft Bearings[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1990,204 (3):187-197
    [47]Bonneau D., Guines D., Frene J., et al. Ehd Analysis, Including Structural Inertia Effects and a Mass-Conserving Cavitation Model[J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME,1995,117 (3):540-547
    [48]Boedo S., Booker J. F. Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model[J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME,1997,119 (3):449-455
    [49]Paranjpe R. S., Tseregounis S. I., Viola M. B. Comparison Between Theoretical Calculations and Oil Film Thickness Measurements Using the Total Capacitance Method for Crankshaft Bearings in a Firing Engine[J]. TRIBOLOGY TRANSACTIONS,2000,43 (3):345-356
    [50]Kim B. J., Kim K. W. Thermo-Elastohydrodynamica Analysis of Connecting Rod Bearing in Internal Combustion Engine[J]. JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME,2001,123 (3):444-454
    [51]Kim T. J., Han J. S. Comparison of the Dynamic Behavior and Lubrication Characteristics of a Reciprocating Compressor Crankshaft in Both Finite and Short Bearing Models[J]. TRIBOLOGY TRANSACTIONS,2004,47 (1):61-69
    [52]Bukovnik S., Dorr N., Caika V., et al. Analysis of Diverse Simulation Models for Combustion Engine Journal Bearings and the Influence of Oil Condition[J]. TRIBOLOGY INTERNATIONAL,2006,39 (8):820-826
    [53]Habchi W., Vergne P., Bair S., et al. Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant On the Behaviour of Circular Tehd Contacts[J]. TRIBOLOGY INTERNATIONAL,2010,43 (10SI):1842-1850
    [54]李柱国,易智强.曲轴弹性主轴承负荷连续梁计算法研究及其对轴心轨迹的影响(一)[J].汽车技术,1983(4):2-11
    [55]李柱国,易智强.曲轴弹性主轴承负荷连续梁计算法研究及其对轴心轨迹的影响(二)[J].汽车技术,1983(5):8-14
    [56]裘祖干,张长松.动载径向粗糙轴承分析[J].内燃机学报,1993(2):159-164
    [57]王晓力.计入表面形貌效应的内燃机主轴承热流体动力润滑分析[D].博士学位论文,清华大学,1999
    [58]张朝,张直明.计入非牛顿效应的曲轴轴承的混合润滑分析[J].内燃机学报,1999,17(3):303-307
    [59]武中德,王黎钦,曲大庄等.大型水轮发电机推力轴承热弹流润滑性能分析[J].摩擦学学报,2001,21(2):147-150
    [60]戴旭东,马雪芬,赵三星等.曲轴主轴承油膜动力润滑与系统动力学的耦合分析[J].内燃机学报,2003,21(1):86-90
    [61]孙军,桂长林,潘忠德.内燃机曲轴-轴承系统曲轴变形引起的轴承润滑状态变化对曲轴强度的影响[J].机械工程学报,2006,42(10):109-114
    [62]何芝仙,桂长林,李震等.计入轴倾斜的曲轴-轴承系统动力学摩擦学耦合分析[J].农业机械学报,2007,38(12):5-10
    [63]向建华,廖日东,张卫正.高强化柴油机曲轴主轴承润滑特性研究[J].润滑与密封,2009,34(12):63-68
    [64]马富康.曲轴轴承不同仿真模型的比较分析[J].内燃机与动力装置,2008(5):16-19
    [65]卢伯聪,向建华,庄林毅.基于动态子结构的主轴承热弹性流体润滑研究[J].润滑与密封,2012,37(1):22-28
    [66]何芝仙,桂长林,李震等.计入曲轴倾斜时曲轴-轴承系统动力学摩擦学和弹性力学耦合分析[J].内燃机工程,2009,30(3):86-92
    [67]Guagliano M., Terranova A., Vergani L. Theoretical and Experimental-Study of the Stress-Concentration Factor in Diesel-Engine Crankshafts[J]. JOURNAL OF MECHANICAL DESIGN,1993,115 (1):47-52
    [68]Henry J. P., Toplosky J., Abramczuk M. Crankshaft Durability Prediction-A New 3-D Approach[J]. SAE 920087
    [69]Bickley I., D'Olier V., Fessler H., et al. Stresses and Deformations in Overlapped Diesel Engine Crankshafts Part 2:Evaluation of Results[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING,1998,212 (D4):255-270
    [70]Shiomi K., Watanabe S. Stress Calculation of Crankshaft Using Artificial Neural Network[J]. SAE 951810
    [71]Prakash V., Aprameyan K., Shrinivasa U. An Fern Based Approach to Crankshaft Dynamics and Life Estimation[J]. SAE 80565
    [72]Arrundale D., Gupta S., Rahnejat H. Multi-Body Dynamics for the Assessment of Engine Induced Inertial Imbalance and Torsional-Deflection Vibration[J]. MULTI-BODY DYNAMICS:MONITORING AND SIMULATION TECHNIQUES II,2000:207-232
    [73]Hwang S. J., Chen J. S., Jiang Y. Q. Engine Cranktrain System Simulation and Validation[J]. International Adams User Conference,2000
    [74]Mourelatos Z. P. A Crankshaft System Model for Structural Dynamic Analysis of Internal Combustion Engines[J]. Computers and Structures,2001,79 (20-21):2009-2027
    [75]Lei X. Y., Zhang G. C, Song X. G., et al. Modeling and Analyzing of Vibration in Working Crankshaft with Cracks[J]. DAMAGE ASSESSMENT OF STRUCTURES VI, 2005,293-294:401-408
    [76]Yamashita K., Yamashita H., Okamura H. Prediction Technique for Vibration of Power-Plant with Elastic Crankshaft Systemprediction Technique for Vibration of Power-Plant with Elastic Crankshaft System[J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C,2005,71 (10) 3012-3017
    [77]Chien W. Y., Pan J., Close D., et al. Fatigue Analysis of Crankshaft Sections Under Bending with Consideration of Residual Stresses[J]. INTERNATIONAL JOURNAL OF FATIGUE,2005,27 (1):1-19
    [78]Yilmaz Y., Anlas G. An Investigation of the Effect of Counterweight Configuration On Main Bearing Load and Crankshaft Bending Stress[J]. ADVANCES IN ENGINEERING SOFTWARE,2009,40 (2):95-104
    [79]Spiteri P., Ho S., Lee Y. Assessment of Bending Fatigue Limit for Crankshaft Sections with Inclusion of Residual Stresses[J]. International Journal of Fatigue,2007,29 (2): 318-329
    [80]Baragetti S., Cavalleri S.. Terranova A. A Numerical and Experimental Investigation On the Fatigue Behavior of a Steel Nitrided Crankshaft for High Power Ic Engines[J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME,2010,132 (0310143)
    [81]郝志勇,王东华.多缸机曲轴连续梁计算法的改进[J].内燃机学报,1984(3):263-280
    [82]施兴之,石金,李杨.连续梁法计算曲轴应力的研究[J].内燃机学报,1991(2):169-176
    [83]史绍熙,孙永平,张德庆等.柴油机设计手册(中册)[M].北京市:中国农业机械出版 社,1984
    [84]苏铁熊,张儒华,蔡坪等.利用有限元法研究曲轴弯曲应力的变化规律[J].车用发动机,1995(4):35-40
    [85]李桂琴,钱伯雄.内燃机曲轴应力三维有限元分析[J].拖拉机与农用运输车,1997(5):19-24
    [86]丁彦闯,牛天兰,吴昌华.柴油机曲轴整体三维应力精细分析[J].内燃机工程,1999(4):32-36
    [87]钱丽丽,姜树李,朱埏章等.连杆大头-曲柄销接触的三维有限元素法计算[J].内燃机工程,2000,21(1):54-58
    [88]蓝军,薛远.曲轴油孔应力集中的三维有限元分析[J].内燃机学报,2000,18(2)220-222
    [89]郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆,2003,23(z1):86-89
    [90]何芝仙,桂长林,李震等.计入轴瓦变形的曲轴动应力和疲劳强度计算[J].机械工程学报,2009,45(11):91-98
    [91]何芝仙,桂长林,李震等.基于动力学和摩擦学分析的曲轴疲劳强度分析[J].内燃机学报,2008,26(5):470-475
    [92]陈渊博,郝志勇,张焕宇.基于弯曲疲劳试验的柴油机曲轴疲劳寿命分析及改进[J].内燃机工程,2011(1):75-78
    [93]鲍珂,廖日东,左正兴.考虑滚压强化作用的铸铁曲轴弯曲疲劳分析[J].兵工学报,2011,32(8):918-925
    [94]Austen A. E. W., Priede T. Origins of Diesel Engine Noise[J]. IMechE symposium on engine noise and noise suppression, London,1958
    [95]Austen A. E. W., Priede T. Noise of Automotive Diesel Engines:Its Causes and Reduction[J].SAE 650165
    [96]Lalor N., Petyt M. Modes of Engine Structure Vibration as a Source of Noise[J]. SAE 7502002
    [97]Grover E. C., Lalor N. A Review of Low Noise Diesel Engine Design at I.S.V.R.fJ]. Journal of Sound and Vibration,1973,3 (28):403-428
    [98]Clare W. Shape Optimization of Engine Structure for Low Noise [D], UK:University of Southampton,1988
    [99]Christian B. Noise On Small Capacity Spark Ignition Engines by Structure Optimization[D], Austria:Technische Universitaet Graz,1992
    [100]Sakural Y., Hoshino H., Goino Y. Simulation Technique of Cylinder Block Vibration Under Firing Conditions[J]. The ninth international pacific conference on automotive engineering, Indonesla,1997
    [101]Athavale S. M., Sajanpawar P. R. Analytical Studies On Influence of Crankshaft Vibrations On Engine Noise Using Integrated Parametric Finite Element Model:Quick Assessment Tool[J]. SAE 991769
    [102]Priebsch H. H., Herbst H., Offner G., et al. Numerical Simulation and Verification of Mechanical Noise Generation in Combustion Engines[J]. PROCEEDINGS OF ISMA 2002:INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS 1-5,2002:2021-2030
    [103]Kandda H., Okubo M. Analysis of Noise Source and the Transfer Paths in Diesel Engines[J]. SAE 900014
    [104]Saad A. A. A., El-Sebai N. A. Combustion Noise Prediction Inside Diesel Engine[J]. SAE 1999-01-1774
    [105]Carlucci P., Ficarella A., Chiara F., et al. Preliminary Studies On the Effects of Injection Rate Modulation On the Combustion Noise of a Common Rail Diesel Engine[J]. SAE 2004-01-1848
    [106]Payri F., Broatch A., Tormos B., et al. New Methodology for in-Cylinder Pressure Analysis in Direct Injection Diesel Engines-Application to Combustion Noise[J]. MEASUREMENT SCIENCE & TECHNOLOGY,2005,16 (2):540-547
    [107]Torregrosa A. J., Broatch A., Martin J., et al. Combustion Noise Level Assessment in Direct Injection Diesel Engines by Means of in-Cylinder Pressure Components[J]. MEASUREMENT SCIENCE & TECHNOLOGY,2007,18 (7):2131-2142
    [108]Payri F., Broatch A., Margot X., et al. Sound Quality Assessment of Diesel Combustion Noise Using in-Cylinder Pressure Components[J]. MEASUREMENT SCIENCE & TECHNOLOGY,2009,20 (0151071)
    [109]Payri F., Torregrosa A. J., Broatch A., et al. Assessment of Diesel Combustion Noise Overall Level in Transient Operation[J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY,2009,10 (6):761-769
    [110]余兴倬,方新,周禹.用FEM-BEM法预测箱型振动构件的声场辐射[J].华中理工大学学报:163-168
    [111]葛蕴珊,梁杰.声边界元法在内燃机机体辐射噪声预报中的应用研究[J].内燃机学报,1995,13(1):60-64
    [112]韩松涛.内燃机的振动噪声控制及现代设计方法学研究[D].博士学位论文,天津大学,2002
    [113]邓晓龙,张宗杰,刘少彦.FEM/BEM方法预测发动机油底壳噪声辐射[J].华中科技大学学报(自然科学版),2003(5):80-82
    [114]贾维新,郝志勇,杨金才.发动机油底壳辐射噪声预测方法的研究[J].内燃机学报,2005,23(3):269-273
    [115]贾维新,郝志勇,杨金才.虚拟预测方法在柴油机低噪声设计中的应用[J].浙江大学学报:工学版,2007,41(3):489-493
    [116]杨陈,郝志勇,陈馨蕊.柴油机机体辐射噪声预测及低噪声改进设计[J].江苏大学学报:自然科学版,2008,29(4):301-303
    [117]李民,舒歌群,卫海桥.发动机安装条件对多体动力学计算影响的研究[J].内燃机工程,2009(4):63-67
    [118]刘仕民.内燃机燃烧噪声分离的计算方法[J].内燃机工程,1984(2):48-53
    [119]陈锦祥,张殿昌.声诊断内燃机燃烧过程的研究(一):燃烧噪声识别的数学模型[J].内燃机学报,1992,10(3):221-226
    [120]李中付,洪我世.内燃机噪声分离试验方法研究[J].测试技术学报,1996,10(2-3):715-719
    [121]卫海桥,舒歌群.内燃机缸内压力与燃烧噪声[J].燃烧科学与技术,2004(1):56-61
    [122]卫海桥,舒歌群,韩睿等.直喷式柴油机燃烧压力高频振荡与燃烧噪声的关系[J].燃烧科学与技术,2006,12(2):131-136
    [123]卫海桥,舒歌群,王养军等.直喷式柴油机瞬态工况燃烧噪声二级影响机理研究[J].内燃机学报,2007,25(3):208-216
    [124]丁春雨,薛冬新,宋希庚等.预喷射技术对柴油机噪声影响的试验研究[J].小型内燃 机与摩托车,2009,38(4):5-9
    [125]李兆文,舒歌群,张群.预喷射对柴油机瞬态工况燃烧噪声控制策略的试验研究[J].小型内燃机与摩托车,2012,41(3):10-14
    [126]周海涛,薛冬新,王平等.预喷射控制柴油机燃烧噪声的试验研究[J].车用发动机,2007(2):9-13
    [127]万欣,林大渊.内燃机设计[M].天津市:天津大学出版社,1989
    [128]张俊红.汽车发动机构造[M].天津市:天津大学出版社,2006
    [129]陈海娥,孟凡臣,宋建龙等.发动机冷却水套CFD分析[J].汽车技术,2003(8):16-20
    [130]刘巽俊,陈群,李骏等.车用柴油机冷却系统的CFD分析[J].内燃机学报,2003(2):125-129
    [131]张强,王志明.基于CFD的船用柴油机缸体水套设计[J].内燃机学报,2005(6)548-553
    [132]辛喆,张克鹏,谢斌等.耦合法用于柴油机冷却系统传热的研究[J].农业工程学报,2010(1):177-181
    [133]王唯栋,孙平,张锐等.柴油机机体-冷却水套流固耦合系统传热仿真[J].农业工程学报,2010(7):118-122
    [134]傅松,胡玉平,李新才等.柴油机缸盖水腔流动与沸腾传热的流固耦合数值模拟[J].农业机械学报,2010(4):26-30
    [135]张师帅.计算流体动力学及其应用 CFD软件的原理与应用[M].武汉市:华中科技大学出版社,2011
    [136]翟庆良.湍流新理论及其应用[M].北京市:冶金工业出版社,2009
    [137]马铁犹.计算流体动力学[M].北京市:北京航空学院出版社,1986
    [138]傅松.缸盖冷却水套内沸腾传热特性的研究[D].博士学位论文,山东大学,2010
    [139]张楠,沈泓萃,姚惠之.潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J].船舶力学,2005,9(1):1-13
    [140]李斌,崔国起,谷芳等.气缸盖冷却水腔内湍流模型[J].四川兵工学报,2010,31(10):75-78
    [141]王兆文.重载车用柴油机缸盖内冷却水流动分析及强化传热研究[D].博士学位论文,华中科技大学,2008
    [142]戴鑫鑫.发动机气缸盖内复杂流动与传热的仿真研究[D].硕士学位论文,北京交通大学,2008
    [143]陶文铨.传热学[M].西安市:西北工业大学出版社,2006
    [144]林宗虎.气液两相流和沸腾传热[M].西安市:西安交通大学出版社,2003
    [145]杨柳,李丽婷,李新才等.船用柴油机冷却水CFD分析及沸腾传热研究[J].舰船科学技术,2010(8):63-69
    [146]谷芳,崔国起,吴华杰.基于流固耦合模型的柴油机冷却系统优化设计[J].汽车工程,2012(8):675-678
    [147]白敏丽,吕继组,丁铁新.六缸柴油机冷却系统流动与传热的数值模拟研究[J].内燃机学报,2004(6):525-531
    [148]刘永长.内燃机热力过程模拟[M].北京市:机械工业出版社,2001
    [149]陈特銮.内燃机热强度[M].北京市:国防工业出版社,1991
    [150]李春玲.柴油机气缸盖温度场数值模拟[J].柴油机设计与制造,2006(2):18-20
    [151]郭良平,张卫正,王长园等.柴油机气缸盖传热规律研究[J].北京理工大学学报,2011(3):277-282
    [152]姚仲鹏,王新国.车辆冷却传热[M].北京市:北京理工大学出版社,2001
    [153]邓荣华,刘迎新,张凌伟等.乙二醇-水体系的理化性质研究[J].内蒙古工业大学学报(自然科学版),2009(2):106-112
    [154]希特凯著,马重芳译.内燃机的传热和热负荷[M].北京市:中国农业机械出版社,1981
    [155]袁兆成.内燃机设计[M].北京市:机械工业出版社,2008
    [156]何振鹏,张俊红,张桂昌等.不同耦合算法的曲轴应力分布及其影响因素分析[J].农业机械学报,2011(8):207-213
    [157]Chen L. A., Song X. G., Xue D. X., et al. Elastohydrodynamic Lubrication and Asperity Contact Simulation of Engine Main Bearing with Flexible Rotating Crankshaft and Flexible Engine Block[J]. ADVANCED TRIBOLOGY,2009:967-972
    [158]孙世基,黄承绪.机械系统刚柔耦合动力分析及仿真[M].北京市:人民交通出版社,2000
    [159]陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京市:清华大学出版社,2005
    [160]李东旭.高等结构动力学[M].北京市:科学出版社,2010
    [161]盛宏玉.结构动力学(第2版)[M].合肥市:合肥工业大学出版社,2007
    [162]苏铁熊,杨世文,崔志琴等.复杂结构结合部动力学仿真模型研究[J].华北工学院学报,2001,22(3):218-222
    [163]Oh K. P., Goenka P. K. Elastohydrodynamic Solution of Journal Bearings Under Dynamic Loading.[J]. Journal of Tribology,1985,107 (3):389-395
    [164]Wang Y. S., Zhang C., Wang Q. J., et al. A Mixed-Tehd Analysis and Experiment of Journal Bearings Under Severe Operating Condi tions[J]. TRIBOLOGY INTERNATIONAL,2002,35(6):395-407
    [165]杨守平,张付军,黄英等.柴油机曲轴系统扭振协同仿真及试验研究[J].内燃机工程,2011(4):46-51
    [166]郭磊,郝志勇,林琼.柴油机曲轴与气缸体系统动力学仿真研究[J].浙江大学学报(工学版),2007(5):780-784
    [167]黄映云,高浩鹏,刘鹏.基于多体动力学的柴油机曲轴疲劳强度与寿命分析[J].海军工程大学学报,2012(5):54-57
    [168]梁兴雨,舒歌群,李东海等.基于柔体曲轴多体动力学的轴系扭振响应分析[J].内燃机工程,2007(4):46-49
    [169]陈亮,宋希庚,明章杰等.基于有限元和多体动力学的柴油机曲轴动态强度与冲击响应分析[J].振动与冲击,2008(11):186-189
    [170]Sun J., Cai X. X., Liu L. P. Research On the Effect of Whole Cylinder Block On Ehl Performance of Main Bearings Considering Crankshaft Deformation for Internal Combustion Engine[J]. JOURNAL OF TRIBOLOGY -TRANSACTIONS OF THE ASME,2010,132 (044502-14)
    [171]尚晓江,邱峰,赵海峰.ANSYS结构有限元高级分析方法与范例应用[M].北京市:中国水利水电出版社,2008
    [172]李舜酩.机械疲劳与可靠性设计[M].北京市:科学出版社,2006
    [173]伍颖.断裂与疲劳[M].武汉市:中国地质大学出版社,2008
    [174]尚德广,王德俊.多轴疲劳强度[M].北京市:科学出版社,2007
    [175]何忠义.曲轴弯曲疲劳试验台的研制[J].内燃机车,1983(3):42-50
    [176]于正林,曹国华,姜涛.采用激振法的曲轴疲劳试验[J].中国机械工程,2008(5)551-554
    [177]朱孟华.内燃机振动与噪声控制[M].北京市:国防工业出版社,1995
    [178]杜功焕,朱哲民,龚秀芬.声学基础(第2版)[M].南京市:南京大学出版社,2001
    [179]杨陈.低噪声轻量化单缸柴油机的虚拟设计技术研究[D].博士学位论文,浙江大学,2009
    [180]刘月辉.基于虚拟技术的发动机噪声控制研究[D].博士学位论文,天津大学,2004
    [181]舒歌群,林建生.测振计算法在内燃机表面噪声测量中的应用[J].小型内燃机(9)
    [182]任明章,唐撷茹,顾崇衔.用声强技术测量结构的声辐射效率[J].应用声学(6)
    [183]梁兴雨.内燃机噪声控制技术及声辐射预测研究[D].博士学位论文,天津大学,2006
    [184]蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].北京市:清华大学出版社,2001
    [185]韩军.内燃机的非平稳信号分析方法及其噪声源小波识别技术的研究[D].博士学位论文,天津大学,2004
    [186]杨金才.内燃机噪声源识别的声模态及A计权小波改进算法的研究[D].博士学位论文,浙江大学,2006
    [187]金岩.基于小波变换与独立分量分析的内燃机振声特性研究[D].博士学位论文,浙江大学,2007
    [188]张金圈,毕传兴,陈心昭.Beamforming方法的阵列研究及其在噪声源识别中的应用[J].噪声与振动控制,2009,29(3):54-58
    [189]Zhou M., S Lepi. Powerplant Block-Crank Dynamic Interaction and Radiated Noise Prediction[J]. SAE 2003-01-1735
    [190]Sekita M., Tamura H., Vandenplas B., et al. A Combined Experimental-Numerical Approach for Motocycle Crank Noise:Modeling[J]. SAE 2002-01-2209
    [191]Gerard F., Tournour M., Masri N. E., et al. Numerical Modeling of Engine Noise Radiation through the Use of Acoustic Transfer Vectors:A Case Study[J]. SAE 2001-01-1514
    [192]贾维新,郝志勇,杨金才.6108G型柴油机机体虚拟改进设计及性能预测[J].内燃机工程,2005,26(1):16-19
    [193]邓晓龙.内燃机主要部件结构噪声预测及优化控制研究[D].博士学位论文,华中科技大学,2004
    [194]张保成,左正兴.内燃机结构辐射噪声分析技术研究[J].车用发动机,2006(5):51-54
    [195]张焕宇,郝志勇,李一民.490柴油机机体减振降噪研究[J].振动与冲击,2012,31(7):54-57
    [196]景国玺.活塞组多物理场耦合非线性问题及环组机油消耗改进设计研究[D].博士学位论文,浙江大学,2011
    [197]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京市:机械工业出版社,2004
    [198]谭忠棠,吴福光.多自由度线性系统阻尼受迫振动的统一解法[J].中山大学学报(自然科学版),1982(1):21-28
    [199]张子明,周星德,姜冬菊.结构动力学[M].北京市:中国电力出版社,2009
    [200]贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].博士学位论文,浙江大学,2008
    [201]汤东,沈飞,来超峰等.柴油机燃烧噪声的传递特性[J].江苏大学学报(自然科学版),2008(4):297-300
    [202]汤东,罗福强,梁昱等.柴油机燃烧噪声的频谱特性[J].农业机械学报,2007(10):186-189
    [203]卫海桥,舒歌群.内燃机缸内压力与燃烧噪声[J].燃烧科学与技术,2004(1):56-61
    [204]Payri F., Broatch A., Margot X., et al. Sound Quality Assessment of Diesel Combustion Noise Using in-Cylinder Pressure Components[J]. Measurement Science and Technology, 2009,20 (1)
    [205]Torregrosa A. J., Broatch A., Margot X., et al. Combustion Chamber Resonances in Direct Injection Automotive Diesel Engines:A Numerical Approach[J]. International Journal of Engine Research,2004,5 (1):83-91
    [206]林波,李兴虎.内燃机构造[M].北京市:北京大学出版社,2008
    [207]张成锋.柴油发动机燃烧噪声及其控制[J].科技创新导报,2011(1):78
    [208]王平.直喷式共轨柴油机燃烧噪声的研究[D].博士学位论文,大连理工大学,2008
    [209]胡强,彭美春,黄华等.喷油压力与供油提前角对乙醇柴油发动机的性能影响[J].拖 拉机与农用运输车,2007,34(4):9-11,14
    [210]刘省波,李岳林,李薛等.关于高EGR率下的柴油机燃烧及排放的研究[J].小型内燃机与摩托车,2010,39(4):25-28
    [211]闫淑芳,宫长明,刘巽俊.喷油压力对直喷式柴油机性能和排放的影响[J].吉林大学学报(工学版),2002,32(3):53-56
    [212]庞剑,谌刚,何华.汽车噪声与振动理论与应用[M].北京市:北京理工大学出版社,2006
    [213]郑贵聪.预喷射参数控制柴油机燃烧噪声研究[D].硕士学位论文,广西大学,2012
    [214]王平,宋希庚,薛冬新等.预喷射对柴油机燃烧噪声的影响[J].燃烧科学与技术,2008,14(6):496-500
    [215]李兆文,舒歌群,张群.预喷射对柴油机瞬态工况燃烧噪声控制策略的试验研究[J].小型内燃机与摩托车,2012,41(3):10-14
    [216]刘永超.内燃机噪声识别技术研究[D].硕士学位论文,重庆大学,2009
    [217]徐红梅.内燃机振声信号时频特性分析及源信号盲分离技术研究[D].博士学位论文,浙江大学,2008
    [218]王攀,邓兆祥,刘永超等.内燃机机械噪声和燃烧噪声的识别分离[J].重庆大学学报,2010,33(5):16-21
    [219]李兆文.柴油机燃烧噪声影响机理及控制研究[D].博士学位论文,天津大学,2010
    [220]岳艳.多次喷射对柴油机性能和排放影响的试验研究[D].硕士学位论文,天津大学,2010
    [221]石秀勇.喷油规律对柴油机性能与排放的影响研究[D].博士学位论文,山东大学,2008
    [222]吴小江.降低柴油机污染物排放的措施[J].农机化研究,2006(5):204-205
    [223]覃军.降低柴油机NOx排放的SCR系统控制策略研究[D].博士学位论文,武汉理工大学,2007
    [224]王攀.NPAC技术降低柴油机NOx和PM排放的机理分析及试验研究[D].博士学位论文,江苏大学,2009
    [225]王攀,蔡忆昔,李小华等.NPAC技术降低柴油机NOx和碳烟排放的试验研究[J].内燃机工程,2011,32(3):28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700