用户名: 密码: 验证码:
小型绝对式光电编码器动态误差检测系统及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的飞速发展以及航空航天技术的进步,各个研究单位对光电编码器的精度要求越来越高。不仅要求光电编码器能够实时输出角度位置信息,同时还要求光电编码器在角速度、角加速度作用下保精度输出数据。目前国内对光电编码器只能检测静态精度,对动态误差的检测还没有有效的方法。因此急需开展光电编码器动态误差检测系统及方法的研究。
     本文在参考国内外大量文献资料的基础上,对小型绝对式光电编码器误差检测方法进行了深入的研究,对比分析了国内外各检测方法的优缺点;研究了动态误差理论,深入分析了各因素对小型绝对式光电编码器动态误差的影响,为研究小型绝对式光电编码器动态误差检测奠定了理论基础。
     建立了小型绝对式光电编码器动态误差检测系统,完成了动态检测系统的软、硬件设计;提出了小型绝对式光电编码器动态误差数据处理方法;通过实验验证了小型绝对式光电编码器动态误差检测系统的可靠性。
     提出了高实时性、高精度、高分辨力基准光电编码器的实现方法,设计了基准光电编码器高实时性细分电路;采用径向基函数神经网络理论,实现了对基准光电编码器的高速误差补偿;提高了基准编码器的分辨力、测角精度及响应速度。
     提出了基于空间矢量力矩合成法的检测转台驱动方法。通过对无刷直流电机三相绕组通电时产生的力矩合成分析,研究了基于空间矢量力矩合成法的无刷直流电机驱动方法,实现了恒力矩稳速转动,有效降低了速度波动对光电编码器误差检测的影响。
     提出了基于贝叶斯理论优化最小二乘法的误差评估算法,在样本数据较少的情况下,实现了对小型绝对式光电编码器动态误差的评估;提出了基于小波变换及谱估计的动态误差分量评估算法,将光电编码器动态误差进行分解,实现了对各误差分量的评估。
     运用本文研究的方法设计了小型绝对式光电编码器动态误差检测系统,并对小型绝对式光电编码器进行了动态误差检测实验。所设计的动态误差检测系统精度为1.26″,转动范围为0~90r/min,能够实现对16位以下的小型绝对式光电编码器进行动态误差检测。实验表明:所设计的动态误差检测系统具有检测精度高、操作简单、环境适应性强等优点;所提出的动态误差评估方法准确可靠。研究结果可用于对小型绝对式光电编码器的动态误差检测,为改善光电编码器动态误差提供依据,对研制小型绝对式光电编码器具有重要的意义。
During the development of science, the progress of technology and the rapiddevelopment of aerospace technology, every research department requires higherprecision of encoder. Not only does they require the real time angle informationoutput but also the accuracy in angular velocity or acceleration state during theincreasing of sensibility to angular velocity and angular acceleration in photoelectricmeasuring and tracking equipment. Recently, it can only detect static state errorsinteriorly; there are not effective methods to detect dynamic errors. Therefore, theresearches of dynamic detection system and methods on the errors of photoelectricencoder are urgently needful.
     Thoroughly, this paper analyses the dynamic errors detection methods of smallsize photoelectric encoder on the base of substantive references at home and abroad;the merit and demerit of these detection methods are contrasted. The influences offactors on the errors of photoelectric encoder are analyzed by the study on dynamicerror theory; these works laid foundation for the dynamic errors detection of smallsize absolute photoelectric encoder.
     The dynamic errors detection system is established and its software and hardwareare designed; the data processing method is proposed. The experiments prove that thedynamic error detection system is reliable.
     The method of high precision, high resolution and real-time angle reference isproposed and the circuit of high speed subdivision is designed; the high speed errorcompensation is achieved by using the theory of RBF neural network; the resolutionratio, the precision and response of angle reference encoder are improved.
     The drive system of dynamic detection equipment using space-vector torquecombination is proposed. In the analysis of the composite torque by three phasewinding, this paper studies space-vector torque combination drive method. The motorcan rotate in stable speed with constant torque and the stable drive system effectivelyreduces the effect of speed fluctuation on the detection error.
     The error assessment method is proposed based on least square method optimizedby Bayesian theory. It can assess the errors of small size absolute photoelectricencoder when there are less sample data; the component assessment methods ofdynamic error are proposed based on wavelet transform and power spectrumestimation, they can decompose the dynamic errors into error components and assessthe error components.
     The detection system of small size photoelectric encoder is designed by usingthese methods. The error detection experiments of small size photoelectric encoderare completed by using the detection system. The detection precision of this system isbetter than1.26", the range of its speed is0~90r/min, and it can achieve dynamic errordetection of small size absolute photoelectric encoder below16bit. The experimentsshow that the detection equipment is high precision, convenient and no strictrequirements on the environment, the error assessment method is dependable. Theresults of research can be applied to the dynamic detection of photoelectric encoder,meanwhile provide evidence for the manufacture of small size photoelectric encoder.
引文
[1]万秋华,孙莹,王树洁,等.双读数系统的航天级绝对式光电编码器设计[J].光学精密工程,2009,17(1):52-57.
    [2]刘长顺,王显军,韩旭东,等.八矩阵超小型绝对式光电编码器[J].光学精密工程,2010,12(2):326-333.
    [3]王显军.基于SOC单片机的高集成度光电编码器电路设计[J].光学精密工程,2011,19(5):1082-1087.
    [4]赵长海,万秋华,龙科慧,等.光电轴角编码器的细分误差快速测量系统[J].传感器与微系统,2008,27(2-1):87-89.
    [5]曹振夫.260M光电轴角编码器结构及原理,光学精密工程,1995年10月,vo1.3:P126-131.
    [6]赵长海,万秋华,王树洁,等.21位光电编码器数据处理系统[J].电子测量与仪器学报,2010,24(6):569-573.
    [7]赵长海,万秋华,佘容红,等.24位绝对式光电编码器数据采集系统[J].光电技术应用,2010,31(3):468-471.
    [8] Andrey G. Anisimov, Anton V. Pantyushina, Oleg U. Lashmanov, et.al. Absolutescale-based imaging position encoder with submicron accuracy [C]. Proc. ofSPIE,2013,8788T.
    [9] Ioan Iov Incze, Csaba Szabó, Mária Imecs. Incremental Encoder in ElectricalDrives: Modeling and Simulation[C].SPIE,2010, SCI313:287–300.
    [10] R. R. Boye, D.W. Peters, J.R. Wendt, et.al. Application of resonant subwavelength gratings to a rotary position encoder [C]. Proc. of SPIE,2013,76040P.
    [11]鲜浩,任爱芝,盛仲飚.增量式光电编码器数据采集[J].华北工学院学报,2003,24(2):142-143.
    [12] Ioan Iov Incze, Csaba Szabó, Mária Imecs. Incremental Encoder in ElectricalDrives: Modeling and Simulation[C].SPIE,2010, SCI313:287–300.
    [13]吴宏圣,曾琪峰,乔栋,郭帮辉.提高光栅莫尔条纹信号质量的滤波方法[J].光学精密工程,2011,19(8):1944-1949.
    [14]李培华,林友德.光电编码器误差测量[J].光学技术,1996,18(2):1-7.
    [15]李谋.位置检测与数显技术[M].机械工业出版社,1993年7月.
    [16]汤天瑾,曹向群,林斌.光电轴角编码器发展现状分析及展望[J].光学仪器,2005,27(1):90-95.
    [17] Dario Mancini, Enrico Cascone, Pietro Schpni. Ganlileo High-ResolutionEncoder System [C].SPIE,1997,3112:328-334.
    [18] Mancini D.TNG control system: hardware, software and methods ado pled toimprove the performances of the fully digital drive system, in Telescope ControlSystems. ed. P. T. Wallace, Proc[C]. SPIE,2479,1995:245-252.
    [19] Dario Mancini, Enrio Cascope, Pietro Schipani. Italian National Galieo Telescope(TNG) system description and tracking performance in the workshop [C]. SPIE1997,3086:85-95.
    [20] Bonoli C, Mancini D, Bortoletto F.TNG control system: Computer Architecture,Interacting and ynchronization, in Telescop Control System, ed.P.T.Wallace.Proc
    [C].SPIE2479.1995:160-168.
    [21] EMIL M pertiu. Absolute-Type Position Transducers Using a PseudorandomEncoding [C].IEEE TRANSATIONS ON INSTRUMENTATION ANDMEASUREMENT, DECEMBER1987, IM-36(4):950-955.
    [22] Elimination of error in absolute position encoder using M-sequences [J].Electronics letters,3rdDecember1987,23(23):1372-1374.
    [23] Fusao KOHSAKA, Toshio HNO. Multiturn Absolute Encoder Using SpatialFilter [J].1990, SeriesIII,33(1):94-99.
    [24] Ueda T, Kohsaka F, Iinoo T, Kazami K, Nakayamam H, Optical AbsoluteEncoder Using Spatial Filter[C], Prov. of SPIE,1987.
    [25] Yasutake A, Shrahata H, Tokunaga T, Ueda T, Kohsaka F, Fabrication of CodedDisc of Rotary Encoder by Derect Exposing of Electron Beam[C], Prepr. of27thConf.SICE Jpn,1998(in Japanese).
    [26] G Voirin, U Benner, F Clube, Y Darbellay, O Parriaux. Performance ofInterferometers Rotation Encoders Using Diffraction Gratings [C]. SPIE,1997,3099:166-175.
    [27] A. Teimel. Technology and Applications of Grating Interferometers inHigh-precision Measurement [J]. Presision eng.,1992,14:147-154.
    [28] G Voirin, P Sixt, O Parriaux. Diditized dual frequency coupling grating forwaveguide displacement interferometry[C]. Proceedings CLEO-Europe,Amsterdam1994.
    [29] European patent application [P], EP96106843.4.
    [30] Voirin, O.Parriaux, H. Vuiliomenet, R. Wildi, U. Benner. SMOL, Schneider,Using Conventional Photolithography, Glass Masks as High Efficiency PhaseGratings [J]. Optical Engineering, September1995.34(9):26-32.
    [31] Frank Arnold, TechCom Ltd. Laser Encoder Provides Super Resolution forHigh-Precision Applications [J]. PCIM, February1990:26-32.
    [32] Bryce Horwitz. Diffractive Techniques Improve Encoder Performance [J]. LaserFocus World, October1996.
    [33] J.Akedo. Point Source Diffraction and Its Use in an Encoder [J]. Applied Optics,1998,27(22).
    [34] Wei Hung Yeh. High Resolution Optical Shaft Encoder for Motor Speed ControlBased on an Optical Disk Pick-up [J]. American Institute of Physics,1998,69(8):3068-3071.
    [35] Clude, S.Gray, D.Struchen, J.V.Tisserand, S.Malfoy, Y.Darbellay. HolographicMicrolithography [J]. Optical Engineering,1995,34(9):2724-2730.
    [36] M.Tennant, T.L.Koch, P.P.Mulgrew, R.P.Gnall, F.Ostermeyer, J.M.Verdiell,Characterization of Near Field Holography Grating Masks for OptoelectronicsFabricated Electron Beam Lithography [J]. J.Vac.Sci.Technol,1992, B10(6):2530-2535.
    [37] Psixt. Phase Masds and Grey-tone Masds [J]. Semicondutor Fabtech, ed. ICGPublishing Ltd.,1995,2:209-213.
    [38] L. Wronkowskl. Diffraction Model of an Optoelectronic Displacment MeasuringTransducer [J]. Optical&Laser Technology27(2):81-88.
    [39] A.Teimei. Technology and Application of Grating Interferometers inHigh-precision Measurement [J]. Prec Eng,1992,14:147.
    [40] OPTRA. Inc Laser Galvo-angle-encoder With Zero Added Inertia MichaelHercher and Geert Wyntjes [C]. SPIE Beam Deflection and ScanningTechnologies,1991,1451:230-234.
    [41] M.Heucher, G.Wyntjes. Laser Diode Interferometry [C]. Proc.SPIE (SPIE33RDannual Technical Symposium on Optical&Optoelectronic Applied Science andEngineering, August1989, San Diego, CA.
    [42] K.Hane, Y.Uchida, S.Hattori. Moire Displacement Measurement Technique for aLinear Encoder [J].Opt Laser Technol.1985,17:89.
    [43] V T Chitnis, Y Uchida, K Hane, S Hattori. Moiré Signals in Reflection[J].Opt.Commun.1985,54:27.
    [44] Y Torii, Ymizushima. Theory of Aligrment Monoitoring by Diffraction fromSuperimposed Dual Grating [J]. J.Opt.Soc.Am,1979,68:1716.
    [45] Y Cheng, E N Leith. Successive Fourier Transformation with an AchromaticInterferometer [J]. Appl.Opt,1984,15:4029.
    [46] H Kaijun, J jahns, A W Lohmann. Talbot Interfercmetry with a Vibrating PhaseObject [J]. Opt.Camum.1983,45.5:295.
    [47] B Smolinska, A Kalestynski. Autoidolon of Quasi-Periodic Optical Objects [J].Opt.Acta,1978,25(3):257.
    [48] K Patorski, P S, P Szwaykowski. Optical Differentiation of Quasi-periodicPatterns Using Talbot Interierometry [J]. Opt.Acta,1983,31(1):23.
    [49] L Wronkowski. Fresnel Images of Binary Diffraction Grating with open RationLess Than0.5[J]. J.Modren Opt.,1987,34.8:1057.
    [50] Beiser L, Laser Scanning Notebook [C]. SPIE optical Engineering Press, Bellingham, Washington:13-15.
    [51] Avolio G. Principles of Rotary Optical Encoder [J]. Sensors,1933,10(4):10-18.
    [52] Henkel S. Optical Encoders: Areview [J]. Sensors,1987,4(9):9-12.
    [53] Michael Hercher, Geert Wyntjes. Laser Galvo-angle-encoder With Zero AddedInertia [C]. SPIE,1991,1454:230-234.
    [54] R Sawada, O Ohguchi, K Mise, M Tsubamoto. Fabrication of AdvancedIntegrated Optical Micro-Encoder Chip [C]. Proc. IEEE, Micro ElectroMechanical Systems, Oiso, Japan,1994:337-342.
    [55] J Simada, O Ohguchi, R Sawada. Gradientindex Microlens Formed byIon-beamsputtering [J]. Appl.Opt,1992,31:5230-5236.
    [56] T Matsuura, N Yamada, S Nishi, Y Hasuda. Polymides derived from2-2-Bits(trifluormethyl)-4.4-diaminobipheny1.3.Property Control for Polymer Blends andCopolymerization of Fluorinated Polyimides [J]. Macromolecules,1993,26:419-423.
    [57] F Shimokawa, H Tanaka, Y Uenishi, R.Sawada. Reactive-fast-atom BeamEtching of GaAs using C12[J]. J.Appl.Phys,1989,66:2613-2618.
    [58] A Tanaka, H Ban, S Imamura. Preparation of a Novel Silicone-BasedPositivePhotoresist and Its Application to an Image Recersal Process [J]. ACSSymposium, No.412, American Chem.Soc.(1989).
    [59] J T Newmaster, Channel Reduction Schemes for Fimer-Optic Angle Encoders[J].1987,22:115-137.
    [60] N.EWIS. Fiber Optic Sensors Offer Advantages for Aircraft [R]. OpticalEngineering Reports,(July,1987).
    [61] J.L.Maida, Jr, and D.Varshneya. Fiber optic rotary positing transducer [J]. FiberOptic and Laser Sensors V, Pro.soc. Photo-OpticalInst.Eng.838,(August,1987),inpress.
    [62] A Migliori, G W.Swift, S L Garrett. Remotely readable fiber optic compass [P].U.S.Patent Number4,577,414(March,1986).
    [63] R.J.Baumbick. Fiber Optic Sensors for Measuring Angular Position andRotational Speed [G]. NASA Technical Memorandum81854(March1980).
    [64] T.M.Dwyer, G W.Swift, S L Garrett. Remotely readable fiber optic compass [P].U.S.Patent Number4,577,414(March,1986).
    [65] A.R.Luxmoore, ed., Optical Transducers and Techniques [M]. EngineeringMeasurement Applied Science Publishers, London,1983, Chap3.
    [66] Y.V. Filatov, M.Y. Agapov, M.N. Bournachev, D.P. Loukianov, P.A. Pavlov. Lasergoniometer systems for dynamic calibration of optical encoders [C]. Proceedingsof SPIE,2003,5144:381-390.
    [67] Tsukasa Watanabe, Hiroyuki Fujimoto, Kan Nakayama, Tadashi Masuda, MakotoKajitani. Automatic high precision calibration system for angle encoder [C].Proceedings of SPIE,2001,4401:267-274.
    [68]赵柱,续志军,王显军.基于运动控制技术的光电编码器自动检测系统[J].中国光学与应用光学,2009,2(2):134-138.
    [69]佟丽翠,李晨阳,赵柱,等.光电编码器自动检测过程的虚拟仪器化设计[J].仪表技术与传感器,2010,2:31-33.
    [70]杨巍.基于DSP的光电编码器自动检测系统研究[D].中国科学院研究生院硕士论文,2010:1-10.
    [71]郑广勇,罗飞,张南松,等.电梯旋转光电编码器性能自动检测系统的设计[J].机电工程技术,39(5),2010.
    [72]王爽.一种新型光电编码器转角精度检测装置及实验分析[J].自动化博览,增刊:101-104.
    [73]朱应时,胡国屿,周世红,等,圆光栅用于角度基准的研究[C],光学与光学工程(庆贺王大珩院士诞辰90周年学术论文集),2005年1月:265-274.
    [74]耿丽红,曹学东,李雪梅.高分辨力光电轴角编码器分辨力和精度的检测[J].工具技术,1995,29(3):43-46.
    [75]张琢,刘丽华,于瀛洁.动态测角仪测量误差检测方法研究[J].宇航计测技术,1999,19(2):1-6.
    [76]邓方,陈杰,陈文颉,等.高精度的光电编码器检测方法及其装置[J].北京理工大学学报,2007,27(11),977-980.
    [77]蒋永平,徐杜,黄尚廉.圆光栅增量式光电轴角编码器性能自动检测方法[J].工具技术,1995,29(3):43:46.
    [78]李俊强,熊昌友,李太景,等.圆光栅检测仪的研制[J].新技术新仪器,1999,19(6):30-41.
    [79]费斌,徐文雄,蒋庄德.计量圆光栅动态精度的检测技术[J].仪器仪表学报,1996,17(5):526-529.
    [80]杜颖财,王希军,王树洁,等.增量式光电编码器自动检测系统[J].2012,26(11):993-998.
    [81]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2000.
    [82][苏]B.A.格拉诺夫斯基,傅烈堂等译.动态测量[M].北京:中国计量出版社,1989.
    [83]王宏禹.随机数字信号处理[M].北京:科学出版社,1988.
    [84]董莉莉,熊经武,万秋华.光电轴角编码器的发展动态[J].光学精密工程,2002,8(2):198-202.
    [85]叶盛祥.光电位移精密测量技术[M].成都:四川科学技术出版社.乌鲁木齐:新疆科技卫生出版社,2003.
    [86]康华光,陈大钦.电子技术基础模拟部分(第四版)[M],北京:高等教育出版社,1999.
    [87]朱帆,吴易明,刘长春.四读头法消除码盘偏心和振动对叠栅条纹相位测量的影响[J].光学学报,2011,31(4):0412008.
    [88]肖松山,兰子穆,赵友全.码盘偏心对光电编码器测量的影响[J].光电工程,2007,34(10):66-68.
    [89] Yuji Matsuzoe, Nobuhiko Tsuji, Breadboard system and techniques to optimizethe optical system of an encoder [J]. Optical Engineer2001,40(2):283-288.
    [90]潘锋.自动量仪动态精度.北京:机械工业出版社,1983.
    [91]钱峰.EZ-USB FX2单片机原理、编程及应用[M].北京:北京航空航天大学出版社,2006:15-32.
    [92]马俊涛,李振宇.SlaveFIFO模式下CY7C68013和FPGA的数据通信[J].中国传媒大学学报自然科学版,2009,16(2):38-44.
    [93]李明,臧凤仙.基于FPGA的甚高频DDS设计[J].微计算机信息,2011,27(2):13-15.
    [94]金喜平,刘雪艳.一种新型锁相倍频鉴相细分理论的研究[J].仪表技术与传感器,1999:33-34.
    [95]李俊,施颂生.基于DDS的锁相频率合成器设计[J].现代电子技术,2007,262(23):74-76.
    [96](美)Roland E.Best.锁相环设计、仿真与应用[M].北京:清华大学出版社,2007.
    [97]王选择,郭军,谢铁邦.精密衍射光栅信号的椭圆拟合与细分校正算法[J].工具技术,2003,37(12):47-49.
    [98]齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报,2006,39(8):989-993.
    [99]刘文文,费业泰.高精度的光栅信号细分算法[J].应用科学学报,1999,17(1):70-74.
    [100]张求知,王鹏.光栅角光电编码器偏心误差修正方法研究[J].电光与控制,2011,18(7):64-67.
    [101]洪喜,续志军,杨宁.基于径向基函数网络的光电编码器误差补偿法[J].光学精密工程,2008,16(4):598-604.
    [102]林海军,滕召胜,杨进宝,刘让周.基于径向基函数神经网络集成-模糊加权输出的数字温度传感器误差补偿[J].仪器仪表学报,2011,32(7):1675-1680.
    [103]高贯斌,王文,林铿,陈子辰.基于径向基函数神经网络的关节转角误差补偿[J].机械工程学报,2010,46(12):20-24.
    [104]高贯斌,王文,林铿,陈子辰.圆光栅角度传感器的误差补偿及参数辨识[J].光学精密工程,2010,18(8):1766-1772.
    [105]朱帆,吴易明,刘长春.四读头法消除码盘偏心和振动对叠栅条纹相位测量的影响[J].光学学报,2011,31(4):0412008.
    [106]陆华才,徐月同,杨伟民,陈子辰.无位置传感器表面式永磁同步直线电机初始位置估计新方法[J].中国电机控制学报,2008,28(15):109-113.
    [107]王晓远,田亮,冯华.无刷直流电机直接转矩模糊控制研究[J].中国电机控制学报,2006,26(15):134-138.
    [108] Wang Huabin, Liu Heping.A novel sensorless control method for brushless DCmotor [J]. IET Electr. Power Appl,2009, Vol.3, Iss.3:240–246.
    [109]刘伟,王长松,周晓敏,岳士丰.无位置传感器无刷直流电机转子位置检测的研究[J].轻工机械,2007,25(3):108-110.
    [110]邹继斌,江善林,张洪亮.一种新型的无位置传感器无刷直流电机转子位置检测方法[J].电工技术学报,2009,24(4):48-53.
    [111]李志强,夏长亮,陈炜.基于线反电动势的无刷直流电机无位置传感器控制[J].电工技术学报,2010,25(7):38-44.
    [112]王华斌.基于间接电感法的永磁无刷直流电机无位置传感器控制[D].重庆大学博士论文,2009.
    [113]吕鲁莹.基于绕组电感的无刷直流电机转子位置检测方法研究[D].浙江大学硕士论文,2008.
    [114]苏健勇.基于磁链观测器的永磁同步电动机无传感器控制技术研究[D].哈尔滨工业大学博士学位论文,2009.
    [115]何志明.基于新型定子磁链观测器的无传感器直接转矩控制系统研究[D].重庆大学博士学位论文,2009.
    [116]夏长亮,杨晓军,史婷娜.基于扰动观测器的无刷直流电机无位置传感器控[J].电工技术学报,2002,17(6):25-28.
    [117] Terzic B, Jsdric M. Design and implementation of the extended kalman filter forthe speed and rotor position estimation of brushless DC motor [C].IEEETransactions on Industrial Elactronics,2001,48(6):1065-1073.
    [118] Shi T N, Lu N, Zhang Q.Brushless DC motor sliding mode control with kalmanfiter [C].IEEE International Conference on Industrial Technology,2008,4:1-6.
    [119] Tian Y,Shi T N,Xia C L.Position sensorless control using adaptive waveletneural network for PM BLDCM[C].IEEE International Symposium on IndustrialElectronics,2007,2848-2852.
    [120]夏长亮,文德,范娟,杨晓军.基于径向基函数神经网络的无刷直流电机无位置传感器控制[J].电工技术学报,2002,17(3):26-29.
    [121]宋飞,周波,吴小婧.校正无位置传感器无刷直流电机位置信号相位的闭环控制策略[J].中国电机工程学报,2009,29(12):52-57.
    [122]刘攀银,李辉,孙永奎.基于模糊理论的无刷直流伺服系统定位控制[J].微特电机,2008,3:22-28.
    [123]王奎英,吴欣慧,秦长海.一种无刷直流电动机快速制动准确定位控制方案的设计[J].工矿自动化,2010,9:62-64.
    [124]杨守旺,葛文奇,徐正平,孙海钢.音圈电机稳速系统及图形化调试界面设计[J].液晶与显示,2010,25(1):149-153.
    [125]李先祥,徐小增,肖红军.基于小波神经网络控制的无刷直流电机调速系统[J].中国电机控制学报,2005,25(9):126-129.
    [126]朱平平,高艳霞,周意成.无位置传感器无刷直流电机变速控制的新策略[J].电力电子技术,2002,36(2):36-38.
    [127]夏长亮.无刷直流电机控制系统[M].北京:科学出版社,2009:1-12.
    [128]王惠文.偏最小二乘回归方法及应用[M].北京:国防科技出版社,1996.
    [129]石贤良,吴成富.基于MATLAB的最小二乘法参数辨识与仿真[J].微处理机,2005,6:44-46.
    [130]程真英.动态测量误差的贝叶斯建模预报[D].合肥工业大学硕士学位论文.
    [131]刘春山.光栅测长仪动态误差测量实验研究[D].合肥工业大学硕士学位论文.
    [132]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社,2000:89-90.
    [133]巍宝琴,李白萍.最优小波基的选取原则[J].甘肃科技,2007,23(10):42-43..
    [134]边威.小波基的选取与构造方法讨论[D].东北师范大学硕士学位论文.
    [135]王凤英,张丽丽.功率估计及其MATLAB仿真[J].微计算机信息,2006,22(11):287-289.
    [136]杜丽萍.现代谱估计在噪声源识别中的应用[D].东北师范大学硕士学位论文.
    [137]刘志刚.基于现代谱估计理论的信噪分离方法及其应用研究[D].成都理工大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700