用户名: 密码: 验证码:
毛竹的遗传结构及群体演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis (Carrière) J. Houz.),为禾本科(Poaceae)竹亚科(Bambusoideae)刚竹属(Phyllostachys)植物,是我国分布最广面积最大的重要经济和生态竹种。为了有效评估、利用和保护毛竹遗传资源,本研究利用20对微卫星荧光标记(SSR)对中国现有分布区内有代表性的34个毛竹居群进行遗传多样性及群体结构的深入研究,进而探讨毛竹现有分布格局与可能的演化特点。主要研究结果如下:
     (1)微卫星多态性。本研究利用从NCBI中获得的毛竹cDNA序列开发适用于毛竹群体遗传研究的20对多态微卫星(SSR)位点。所有SSR位点在毛竹物种水平上多态百分率(Pp)为100%,在804个个体中共检测到169个等位基因,每个位点的等位基因数变化范围为4~15,平均为8.5个;PIC值在0.034~0.663之间,平均值为0.318;SSR位点的等位基因片段长度范围在12~51bp之间,75%的位点遵循任意等位基因突变模型(IAM),20%和5%的位点分别按逐步突变模型(SSM)和SSR位点侧翼区可能发生插入或删除事件。
     (2)遗传多样性和遗传分化。毛竹拥有中等水平的遗传多样性和群体间遗传分化,34个毛竹居群的平均等位基因丰富度和Nei’s基因多样度分别为2.31和0.320,群体内的遗传变异程度与地理位置无显著相关性,难以发现不同居群间的系统地理关系;毛竹物种水平上基因多样度和基因分化系数分别为0.376和0.162,这与AMOVA分析得出15.45%的遗传变异存在于居群间结论一致。尽管毛竹的大部分遗传变异(84.55%)存在于居群内,但相比于大部分林木群体(Fst <0.15),毛竹居群间的遗传分化程度仍然较高;毛竹群体大多数位点显著偏离哈迪温伯格平衡(P <0.05),总群体水平和单个群体水平固定指数分别为-0.192和-0.440,表明无论在总体水平还是群体内个体间,毛竹群体表现为杂合体过量现象,这体现了杂合子具有更强的生活力,更能适应选择压力,同时在毛竹这一以营养繁殖为主且世代周期长的物种中,杂合子优势更能稳定的保存下来;Mantel检验表明,群体间的遗传距离与地理距离呈显著正相关(r=0.247/0.215, P <0.05),比较符合距离分离模式,根据Fst估算毛竹的基因流为1.203,表明群体间的基因交流较少,尽管人为移栽可能会增加群体间的基因流,但仅在一定距离范围内(就近移栽),没有显著影响整个毛竹的遗传变异格局。
     (3)克隆多样性。与有性兼营养繁殖的物种相比,毛竹的克隆多样性程度中等偏低,这可能与毛竹的独特生物学特性有关,即以营养繁殖力强,开花周期长,自然结实率低。在34个毛竹居群804个体中共检测出261个多位点基因型(其中77个出现频率≥2),克隆分布范围最广的分布于14个居群中,克隆株数最大为107;毛竹物种水平上克隆尺度为3.08,群体水平上基因型比率(PD)为0.38,平均克隆尺度(Nc)为3.1±1.39,Simple多样性指数(D)为0.74±0.19,基因型分布的均匀度(E)为0.49±0.45。
     (4)毛竹的聚类分析。基于贝叶斯聚类结果,将34个采样群体按遗传组成分为两大群组,大群组(C1)包括绝大多数毛竹居群,小群组(C2)主要包括陕西周至、湖南怀化、广东仁化及贵州黎平群体,中南-华南地区为两个基因库的混合区域,该结果与基于遗传距离的聚类分析结果结果一致,组间分化程度极高,Fst=0.253;根据组成分分析(PCoA)、邻接法(NJ)以及K=3时的Structure聚类结果,大群组内毛竹居群分为两个亚组,其一主要包括来自云贵川交界、湖北、安徽霍山和福建共17个居群,其二主要包括广西、江西、浙江、江苏和安徽广德共13个居群,中南的群体则分属于两个亚组,尽管亚组间不存在地理区域划分,但大多数同一地理来源的居群属于同一亚组内。
     (5)部分毛竹居群传播历史的验证。毛竹有着非常悠久的栽培历史,SSR分析揭示出毛竹各栽培群体的来源不同,部分遗传多样性低的群体来源比较单一。陕西周至和山东崂山为南竹北移时期引种栽培群体,其中,陕西周至遗传多样性非常高,历史资料记载其引种来源为湖南、湖北等地,通过荧光SSR分析证实,可能来自湖南怀化、广东仁化和湖北咸宁等;根据聚类分析结果,也证实了山东崂山居群来源于浙江、江西和福建;根据资料记载,云贵川的毛竹为早期引种栽培,贵州赤水的毛竹是在清乾隆三十四年(公元1769年)从福建引种栽培,通过本研究进一步证实,云贵川交界的毛竹可能来源于福建武夷山,并经过长时间的发展分化及对环境的适应,四川兴文和贵州赤水居群内存在有一定的特有等位基因。
     (6)保护策略。对于遗传变异较丰富的居群,如湖南怀化、贵州黎平和广东仁化,应给予重视和优先保护,防止深度破坏该物种;对于特有基因丰富度高的居群,如四川兴文,以及分布在各个群体的特异种质要加大力度进行异地保存和利用。
Moso bamboo, Phyllostachys edulis (Carrière) J. Houz.(Poaceae), native to China, is themost economically and ecologically important bamboo species. Since the economic interests andthe strong clonality, it has been widely cultivated in southern China, which inevitably reduces thenatural stands and leads to gene lost of this species. An accurate assessment of genetic diversityand structure within and between populations is crucial in order to design and implementappropriate conservation strategies and utilization of biodiversity in natural and domesticatedspecies. Previous RAPD studies revealed a low genetic diversity in this bamboo, but detailedinsights into the population genetics are largely missing. In this study, twenty polymorphicmicrosatellite (SSR) markers, developed from cDNA sequences of moso bamboo (Phyllostachysedulis) and fluorescently labeled, were used to evaluate the genetic diversity, putativephylogenetic relationships and population structure of Ph. edulis including34representativepopulations (804individuals) from across the geographic range of the plant in China. The mainresearch results and conclusions were as follows,
     (1) SSR Polymorphism
     From Phyllostachys edulis cDNA sequences available in NCBI, twenty polymorphicmicrosatellite loci were successfully developed to assess the population genetics of Ph. edulis.All twenty loci were polymorphic and revealed a total of169alleles across all34populations.The number of detected alleles (Na) varied from4~15, with an average of8.5alleles per locus.Polymorphism information content (PIC) was0.034~0.663(average,0.318) which shows thatall loci are informative. Range of allele size (R) at SRR loci were found to vary from12~51bp.75%of loci variation followed infinite allele mutation (IAM) which creates a new allele, and20%and5%were resulted from stepwise mutation model (SSM) with increase or decrease byone repeat type and from insertion-deletion event in the flanking regions, respectively.
     (2) Genetic diversity, differentiation and gene flow
     Ph. edulis possessed middling a middle level genetic diversity and population differentiation.Gene diversity (H) and differentiation (Gst) at the species level were0.376and0.162respectively,in keeping with the majority of the genetic diversity occurring within populations (84.55%)according to the AMOVA results. Despite all this, compared with other forest trees, the geneticdifferentiation in Ph. edulis is till high. Rich gene diversity was detected in HN5(0.538), GD1(0.524) and GZ2(0.465), and mean allelic richness and gene diversity within population were2.31and0.32. There was no significant correlation between genetic variation level and thepopulation locations (latitude and longitude), through which it’s difficult to exposit thephylogenetic relationships of Ph. edulis. Most loci in the34populations significantly deviatedfrom HWE, and inbreed coefficient at individual population and total population level were-0.440and-0.192due to heterozygotes excess in Ph. edulis. It revealed that heterozygotes have stronger vitality than homozygotes under selective pressure, besides, the heterozygote advantagecould be fixed in this species with long generation period. An overall estimated number of geneflow (Nm=1.203) may indicate human activities promoted gene flow among populations ofmoso bamboo, which characterized by particularly extensive vegetative reproduction.Furthermore, a significant positive correlation of the genetic distances with the geographicdistances between populations was found (r=0.247/0.215, P <0.05). This ruled a simpleisolation by distance model and implied that migrations from human occurred in a limited regionand did not significantly changed the whole genetic structure of Ph. edulis.
     (3) Clonal diversity
     All34Ph. edulis populations were multiclonal. The vasted clone distributed across14populations and the maximum clone size was107ramets indicating the strong clonality.Relatively medium to low clonal variation, compared with other sexual vs. clonal plants, wasfound in this bamboo species, which possibly resulted from its long flowering interval. A total of261multigenotypes (genets) were identified by genotyping804individuals (ramets) and theclone size at species level is3.08. Within populations, the proportion of distinguishablegenotypes (PD) and Simpson index (D) were0.38and0.74, respectively.
     (4) Population structure
     Structure analysis exhibited that there were two gene pools among populations, althoughsome individuals had mixed ancestry. Main cluster (C1) included the majority of populationswith high mean posterior probability (0.95) and a few populations were assigned to another (C2).While hierarchy AMOVA indicated a strong genetic differentiation (Fst=0.253) between the twoclusters. Bayesian model-based structure analysis revealed the presence of two clusters thatbasically consistent with the clustering results based on genetic distance. By neighbor-joining(NJ), principal coordinate analysis (PCoA) and Structure analysis when K=3, two subgroupswere detected within the main cluster (C1). They consisted of17and13populations respectivelyand did not correlate with geographic regions. However, We found that masses of populations ina limited region belonged to the same subgroups.
     (5) Partial populations relationships
     Moso bamboo has a very long cultivation history in China. SSR analysis revealed that somecultivation populations had different introduced sources. For two populations (SX and SD)introduced from different sources in the1960~70s, SX showed the similarity with HN5, GD1and GZ2, while SD was similar to populations from ZJ and JX. The higher genetic diversity inSX population, linked to the document, indicated that it might be introduced from variouslocations (including HN5) for many times. According to historical materials, Ph. edulispopulations on the border of Yunnan, Guizhou and Sichuan province, in south-western China,might be introduced and cultivated long long time ago. Once there was no moso bamboo inChishui of Guizhou province. GZ1population was introduced initially from Fujian province andfounded in the year A.D.1769. Together with the geography distribution and SSR analysis, weconcluded that populations in south-western China might originate from FJ5population in south-eastern China.
     (6) Conservation strategies
     The genetic structure in this study suggested some ideas for the protection and managementof Ph. edulis populations. Some populations in HN5, GD1and GZ2should have the first priorityin preserving of the habitats. SC2population with higher private alleles and other distinctivegenetic resources distributed in any populations should have the highest preservation in ex situconservation. For some cultivated and highly disturbed populations, the low genetic diversityrequires careful consideration.
引文
Abreu AG, Grombone-Guaratini MT, Monteiro M, et al.(2011) Development of microsatellite markers forAulonemia aristulata (Poaceae) and cross-amplification in other bamboo species. Am J Bot98, e90-92.
    Adams MD, Kelley JM, Gocayne JD, et al.(1991) Complementary DNA sequencing: expressed sequence tagsand human genome project. Science252,1651-1656.
    Alberto F, Gouveia L, Arnaud-Haond S, et al.(2005) Within-population spatial genetic structure,neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Mol Ecol14,2669-2681.
    Armour J, Alegre S, Miles S, et al.(1999) Minisatellites and mutation processes in tandemly repetitive DNA.In: Microsatellites: evolution and applications., pp.24-33. Oxford University Press, Oxford.
    Avise JC, Arnold J, Ball RM, et al.(1987) Intraspecific phylogeography: the mitochondrial DNA bridgebetween population genetics and systematics. Annual review of ecology and systematics18,489-522.
    Ayala FJ, Kiger JA (1984) Modem genetics. Menlo Park-California: BenjamidCummings Series in the LifeSciences.
    Ayres D, Ryan F (1997) The clonal and population structure of a rare endemic plant, Wyethia reticulata(Asteraceae): allozyme and RAPD analysis. Mol Ecol6,761-772.
    Balloux F, Goudet J (2002) Statistical properties of population differentiation estimators under stepwisemutation in a finite island model. Mol Ecol11,771-783.
    Balloux F, Lehmann L, de Mee s T (2003) The population genetics of clonal and partially clonal diploids.Genetics164,1635-1644.
    Barkley NA, Newman ML, Wang ML, et al.(2005) Assessment of the genetic diversity and phylogeneticrelationships of a temperate bamboo collection by using transferred EST-SSR markers. Genome48,731-737.
    Bassam BJ, Caetano-Anollés G, Gresshoff PM (1992) DNA amplification fingerprinting of bacteria. Appliedmicrobiology and biotechnology38,70-76.
    Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA inpolyacrylamide gels. Analytical biochemistry196,80-83.
    Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nature Protocols2,2649-2654.
    Batley J, Barker G, O'Sullivan H, et al.(2003a) Mining for single nucleotide polymorphisms andinsertions/deletions in maize expressed sequence tag data. Plant Physiology132,84-91.
    Batley J, Mogg R, Edwards D, et al.(2003b) A high-throughput SNuPE assay for genotyping SNPs in theflanking regions of Zea mays sequence tagged simple sequence repeats. Molecular Breeding11,111-120.
    Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similarconstraints in intergenic and intronic sequences. Genome Res11,1335-1345.
    Bhattacharya S, Das M, Bar R, et al.(2006) Morphological and molecular characterization of Bambusa tuldawith a note on flowering. Ann Bot98,529-535.
    Blair MW, Hedetale V, McCouch SR (2002) Fluorescent-labeled microsatellite panels useful for detectingallelic diversity in cultivated rice (Oryza sativa L.). Theoretical and Applied Genetics105,449-457.
    Blears M, De Grandis S, Lee H, et al.(1998) Amplified fragment length polymorphism (AFLP): a review ofthe procedure and its applications. Journal of Industrial Microbiology and Biotechnology21,99-114.
    Botstein D, White RL, Skolnick M, et al.(1980) Construction of a genetic linkage map in man using restrictionfragment length polymorphisms. American journal of human genetics32,314.
    Bracco M, Lia V, Hernández J, et al.(2012) Genetic diversity of maize landraces from lowland and highlandagro-ecosystems of Southern South America: implications for the conservation of native resources.Annals of Applied Biology160,308-321.
    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1992) Primer-template interactions during DNA amplificationfingerprinting with single arbitrary oligonucleotides. Molecular and General Genetics MGG235,157-165.
    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1993) Enhanced detection of polymorphic DNA by multiplearbitrary amplicon profiling of endonuclease-digested DNA: identification of markers tightly linked tothe supernodulation locus in soybean. Molecular and General Genetics241,57-64.
    Caetano-Anollés G, Brant B (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotideprimers. Nature Biotechnology9,553-557.
    Chalmers K, Sprent J, Simons A, et al.(1992) Patterns of genetic diversity in a tropical tree legume (Gliricidia)revealed by RAPD markers. Heredity (Edinb)69,465-472.
    Charlesworth D, Bartolomé C, Schierup MH, et al.(2003) Haplotype structure of the stigmaticself-incompatibility gene in natural populations of Arabidopsis lyrata. Mol Biol Evol20,1741-1753.
    Chen Y-Y, Chu H-J, Liu H, et al.(2012) Abundant genetic diversity of the wild rice Zizania latifolia in centralChina revealed by microsatellites. Annals of Applied Biology161,192-201.
    Chen Y-y, Han Q-x, Cheng Y, et al.(2010) Genetic variation and clonal diversity of the endangered aquatic fernCeratopteris pteridoides as revealed by AFLP analysis. Biochemical Systematics and Ecology38,1129-1136.
    Chiang T-Y, Hung K-H, Hsu T-W, et al.(2004) Lineage sorting and phylogeography in Lithocarpus formosanusand L. dodonaeifolius (Fagaceae) from Taiwan. Annals of the Missouri Botanical Garden91,207-222.
    Cho Y-I, Park J-H, Lee C-W, et al.(2011) Evaluation of the genetic diversity and population structure ofsesame (Sesamum indicum L.) using microsatellite markers. Genes&Genomics33,187-195.
    Chung MY, López-Pujol J, Chung MG (2013) Low genetic diversity in marginal populations of Bletilla striata(Orchidaceae) in southern Korea: Insights into population history and implications for conservation.Biochemical Systematics and Ecology46,88-96.
    Clark-Tapia R, Alfonso-Corrado C, Eguiarte LE, et al.(2005) Clonal diversity and distribution in Stenocereuseruca (Cactaceae), a narrow endemic cactus of the Sonoran Desert. Am J Bot92,272-278.
    Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical treespecies Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol10,349-356.
    Davis G, McMullen M, Baysdorfer C, et al.(1999) A maize map standard with sequenced core markers, grassgenome reference points and932expressed sequence tagged sites (ESTs) in a1736-locus map.Genetics152,1137-1172.
    De Witte LC, Armbruster GJ, Gielly L, et al.(2012) AFLP markers reveal high clonal diversity and extremelongevity in four key arctic-alpine species. Mol Ecol21,1081-1097.
    de Witte LC, Stocklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot106,859-870.
    Di Rienzo A, Peterson A, Garza J, et al.(1994) Mutational processes of simple-sequence repeat loci in humanpopulations. Proceedings of the National Academy of Sciences91,3166-3170.
    Dong W-J, Wu M-D, Lin Y, et al.(2011) Evaluation of15caespitose bamboo EST-SSR markers forcross-species/genera transferability and ability to identify interspecies hybrids. Plant Breeding130,596-600.
    Dong YR, Zhang ZR, Yang HQ (2012) Sixteen novel microsatellite markers developed for Dendrocalamussinicus (Poaceae), the strongest woody bamboo in the world. Am J Bot99, e347-349.
    Drenkard E, Richter BG, Rozen S, et al.(2000) A simple procedure for the analysis of single nucleotidepolymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiology124,1483-1492.
    Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot,123-131.
    Esselman E, Jianqiang L, Crawford D, et al.(1999) Clonal diversity in the rare Calamagrostis porteri ssp.insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA(RAPD) and intersimple sequence repeat (ISSR) markers. Mol Ecol8,443-451.
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the softwareSTRUCTURE: a simulation study. Mol Ecol14,2611-2620.
    Excoffier L, Lischer HEL (2010) Arlequin suite ver3.5: a new series of programs to perform populationgenetics analyses under Linux and Windows. Mol Ecol Resour10,564-567.
    Fang D, Roose M (1997) Identification of closely related citrus cultivars with inter-simple sequence repeatmarkers. Theoretical and Applied Genetics95,408-417.
    Friar E, kochert G (1991) Bamboo germplasm screening with nuclear restriction fragment lengthpolymorphisms. Theor Appl Genet82,697-703.
    Friar E, Kochert G (1994) A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae)using nuclear restriction fragment length polymorphisms. Theor Appl Genet89.
    Gao QG, Zhang DJ, Duan YZ, et al.(2012) Intraspecific divergences of Rhodiola alsia (Crassulaceae) based onplastid DNA and internal transcribed spacer fragments. Botanical Journal of the Linnean Society168,204-215.
    Garg K, Green P, Nickerson DA (1999) Identification of candidate coding region single nucleotidepolymorphisms in165human genes using assembled expressed sequence tags. Genome Res9,1087-1092.
    Goldstein DB, Schlotterer C (1999) Microsatellites: evolution and applications. Oxford University Press,Oxford.
    Grodzicker T, Williams J, Sharp P, et al.(1974) Physical mapping of temperature-sensitive mutations ofadenoviruses39,439-446.
    Gross C, Nelson PA, Haddadchi A, et al.(2012) Somatic mutations contribute to genotypic diversity in sterileand fertile populations of the threatened shrub, Grevillea rhizomatosa (Proteaceae). Ann Bot109,331-342.
    Guichoux E, Lagache L, Wagner S, et al.(2011) Current trends in microsatellite genotyping. Mol Ecol Resour11,591-611.
    Gupta P, Roy J, Prasad M (2001) Single nucleotide polymorphisms (SNPs): a new paradigm in molecularmarker technology and DNA polymorphism detection with emphasis on their use in plants. CurrentScience80,524-535.
    Haig SM (1998) Molecular contributions to conservation. Ecology79,413-425.
    Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA-forming potential is widelyfound in evolutionarily diverse eukaryotic genomes. Proceedings of the National Academy of Sciences79,6465-6469.
    Hamilton M (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecificvariation. Mol Ecol8,521-523.
    Hamilton M (2011) Population genetics.Wiley-Blackwell.
    Hamilton MB, Miller JR (2002) Comparing relative rates of pollen and seed gene flow in the island modelusing nuclear and organelle measures of population structure. Genetics162,1897-1909.
    Hamrick J, Godt M (1989) Allozyme diversity in plant species. In ‘Plant population genetics, breeding andgenetic resources’.(Eds AHD Brown, MT Clegg, AL Kahler, BS Weir) pp.43–63. Sinauer Associates,Sunderland, MA.
    Hamrick J, Godt M (1996) Effects of life history traits on genetic diversity in plant species. PhilosophicalTransactions of the Royal Society of London. Series B: Biological Sciences351,1291-1298.
    Hamrick J, Godt M, Brown A, et al.(1990) Allozyme diversity in plant species. Plant population genetics,breeding, and genetic resources.,43-63.
    Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woodyplant species. In: Population genetics of forest trees, pp.95-124. Springer.
    Hamrová E, Mergeay J, Petrusek A (2011) Strong differences in the clonal variation of two Daphnia speciesfrom mountain lakes affected by overwintering strategy. BMC evolutionary biology11,231.
    Han Y-C, Teng C-Z, Zhong S, et al.(2007) Genetic variation and clonal diversity in populations of Nelumbonucifera (Nelumbonaceae) in central China detected by ISSR markers. Aquatic Botany86,69-75.
    Hao C, Wang L, Ge H, et al.(2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat(Triticum aestivum L.) revealed by SSR markers. PLoS One6, e17279.
    Hare MP (2001) Prospects for nuclear gene phylogeography. Trends in Ecology&Evolution16,700-706.
    Harushima Y, Yano M, Shomura A, et al.(1998) A high-density rice genetic linkage map with2275markersusing a single F2population. Genetics148,479-494.
    Hatey F, Tosser-Klopp G, Clonscard-Martinato C, et al.(1998) Expressed sequence tags for genes: a review.Genet. Sel. Evol.30,521-541.
    Helentjaris T, Slocum M, Wright S, et al.(1986) Construction of genetic linkage maps in maize and tomatousing restriction fragment length polymorphisms. Theoretical and Applied Genetics72,761-769.
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation.Biological Journal of the linnean Society58,247-276.
    Hsiao J, Lee S (1999) Genetic diversity and microgeographic differentiation of Yushan cane (Yushanianiitakayamensis; Poaceae) in Taiwan. Mol Ecol8,263-270.
    Hsiao JY, Rieseberg LH (1994) Population genetic structure of Yushania niitakayamensis (Bambusoideae,Poaceae) in Taiwan. Mol Ecol3,201-208.
    Huang J-C, Wang W-K, Peng C-I, et al.(2005) Phylogeography and conservation genetics of Hygrophilapogonocalyx (Acanthaceae) based on atpB–rbcL noncoding spacer cpDNA. J Plant Res118,1-11.
    Huang S-F, Hwang S-Y, Wang J-C, et al.(2004) Phylogeography of Trochodendron aralioides(Trochodendraceae) in Taiwan and its adjacent areas. Journal of Biogeography31,1251-1259.
    Huang S, Chiang Y-C, Schaal BA, et al.(2001) Organelle DNA phylogeography of Cycas taitungensis, a relictspecies in Taiwan. Mol Ecol10,2669-2681.
    Hunt HV, Campana MG, Lawes MC, et al.(2011) Genetic diversity and phylogeography of broomcorn millet(Panicum miliaceum L.) across Eurasia. Mol Ecol20,4756-4771.
    Husband BC, Barrett SC (1995) Estimates of gene flow in Eichhornia paniculata (Pontederiaceae): effects ofrange substructure. Heredity (Edinb)75,549-560.
    Isagi Y, Shimada K, Kushima H, et al.(2004) Clonal structure and flowering traits of a bamboo [Phyllostachyspubescens (Mazel) Ohwi] stand grown from a simultaneous flowering as revealed by AFLP analysis.Mol Ecol13,2017-2021.
    Jain A, Bhatia S, Banga S, et al.(1994) Potential use of random amplified polymorphic DNA (RAPD)technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship toheterosis. Theoretical and Applied Genetics88,116-122.
    Jarne P, Lagoda PJ (1996) Microsatellites, from molecules to populations and back. Trends in Ecology&Evolution11,424-429.
    Jian S, Ban J, Ren H, et al.(2010) Low genetic variation detected within the widespread mangrove speciesNypa fruticans (Palmae) from Southeast Asia. Aquatic Botany92,23-27.
    Jolivet C, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): II. Effect of density andclonal propagation on spatial genetic structure based on simulation studies. Tree Genetics&Genomes7,541-552.
    Jolivet C, Rogge M, Degen B (2013) Molecular and quantitative signatures of biparental inbreeding depressionin the self-incompatible tree species Prunus avium. Heredity (Edinb)110,439-448.
    Judson OP, Normark BB (1996) Ancient asexual scandals. Trends in Ecology&Evolution11,41-46.
    Jugran A, Bhatt ID, Rawat S, et al.(2011) Genetic diversity and differentiation in Hedychium spicatum, avaluable medicinal plant of Indian Himalaya. Biochem Genet49,806-818.
    Kalia RK, Rai MK, Kalia S, et al.(2010) Microsatellite markers: an overview of the recent progress in plants.Euphytica177,309-334.
    Kaneko S, Franklin DC, Yamasaki N, et al.(2008) Development of microsatellite markers for Bambusaarnhemica (Poaceae: Bambuseae), a bamboo endemic to northern Australia. Conservation Genetics9,1311-1313.
    Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecology&Evolution17,230-241.
    Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics49,725.
    Kitamura K, Kawahara T (2009) Clonal identification by microsatellite loci in sporadic flowering of a dwarfbamboo species, Sasa cernua. J Plant Res122,299-304.
    Kitamura K, Saitoh T, Matsuo A, et al.(2009) Development of microsatellite markers for the dwarf bamboospecies Sasa cernua and Sasa kurilensis (Poaceae) in northern Japan. Mol Ecol Resour1470.
    Kobayashi M (1997) Phylogeny of world bamboos analysed by restriction fragment length polymorphisms ofchloroplast DNA. The bamboos,225-234.
    Korbie DJ, Mattick JS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification.Nature Protocols3,1452-1456.
    Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annual reviewof genomics and human genetics1,539-559.
    Kumar S, Bisht I, Bhat K (2010) Population structure of rice (Oryza sativa) landraces under farmermanagement. Annals of Applied Biology156,137-146.
    Kurata N, Umehara Y, Tanoue H, et al.(1997) Physical mapping of the rice genome with YAC clones. In:Oryza: From Molecule to Plant, pp.101-113. Springer.
    Lai C, Hsiao J (1997) Genetic variation of Phyllostachys pubescens (Bambusoideae, Poaceae) in Taiwan basedon DNA polymorphisms. Botanical Bulletin of Academia Sinica38.
    Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution.Mol Biol Evol4,203-221.
    Lewontin R, Cockerham CC (1959) The goodness-of-fit test for detecting natural selection in random matingpopulations. Evolution13,561-564.
    Li A, Ge S (2001) Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSRmarkers. Ann Bot87,585-590.
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on asimple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and AppliedGenetics103,455-461.
    Lin X, Lou Y, Zhang Y, et al.(2011) Identification of genetic diversity among cultivars of Phyllostachysviolascens using ISSR, SRAP and AFLP markers. The Botanical Review77,223-232.
    Lin XC, Ruan XS, Lou YF, et al.(2009) Genetic similarity among cultivars of Phyllostachys pubescens. PlantSystematics and Evolution277,67-73.
    Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeatwithin the cardiac muscle actin gene. American journal of human genetics44,397.
    Liu J, Zheng X, Potter D, et al.(2012) Genetic diversity and population structure of Pyrus calleryana (Rosaceae)in Zhejiang province, China. Biochemical Systematics and Ecology45,69-78.
    Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis.Bioinformatics21,2128-2129.
    Loh JP, Kiem R, Set O, et al.(2000) A study of genetic variation and relationship within the bamboo subtribeBambusinae using amplified fragment length polymorphism. Ann Bot85,607-612.
    Lu S-Y, Peng C-I, Cheng Y-P, et al.(2001) Chloroplast DNA phylogeography of Cunninghamia konishii(Cupressaceae), an endemic conifer of Taiwan. Genome44,797-807.
    Manrique-Poyato MI, López-León MD, Gómez R, et al.(2013) Population genetic structure of the grasshopperEyprepocnemis plorans in the South and East of the Iberian Peninsula. PLoS One8, e59041.
    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer research27,209-220.
    Marulanda ML, Márquez P, Londo o X (2002) AFLP analysis of Guadua angustifolia (Poaceae:Bambusoideae) in Colombia with emphasis on the Coffee Region. Bamboo Science and Culture16,32-42.
    Matsui T, Bhowmik PK, Yokozeki K (2004) Phenylalanine ammonia-lyase in moso bamboo shoot: Molecularcloning and gene expression during storage. Asian Journal of Plant Sciences3,315-319.
    Matsumoto A, Uchida K, Taguchi Y, et al.(2010) Genetic diversity and structure of natural fragmentedChamaecyparis obtusa populations as revealed by microsatellite markers. J Plant Res123,689-699.
    Melotto-Passarin DM, Tambarussi EV, Dressano K, et al.(2011) Characterization of chloroplast DNAmicrosatellites from Saccharum spp and related species. Genet Mol Res10,2024-2033.
    Meng L, Yang R, Abbott RJ, et al.(2007) Mitochondrial and chloroplast phylogeography of Picea crassifoliaKom.(Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol Ecol16,4128-4137.
    Meunier J-R, Grimont P (1993) Factors affecting reproducibility of random amplified polymorphic DNAfingerprinting. Research in Microbiology144,373-379.
    Miyazaki Y, Ohnishi N, Hirayama K, et al.(2009) Development and characterization of polymorphicmicrosatellite DNA markers for Sasa senanensis (Poaceae: Bambuseae). Conservation Genetics10,585-587.
    Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot83,383-404.
    Moreno S, Martín JP, Ortiz JM (1998) Inter-simple sequence repeats PCR for characterization of closely relatedgrapevine germplasm. Euphytica101,117-125.
    Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends in Ecology&Evolution14,389-394.
    Muraya MM, de Villiers S, Parzies HK, et al.(2011) Genetic structure and diversity of wild sorghumpopulations (Sorghum spp.) from different eco-geographical regions of Kenya. Theoretical andApplied Genetics123,571-583.
    Mutegi E, Sagnard F, Semagn K, et al.(2011) Genetic structure and relationships within and between cultivatedand wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers.Theoretical and Applied Genetics122,989-1004.
    Nasu S, Suzuki J, Ohta R, et al.(2002) Search for and analysis of single nucleotide polymorphisms (SNPs) inrice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA research9,163-171.
    Navascués M, Stoeckel S, Mariette S (2009) Genetic diversity and fitness in small populations of partiallyasexual, self-incompatible plants. Heredity (Edinb)104,482-492.
    Nayak S, Rout GR (2005) Isolation and characterization of microsatellites in Bambusa arundinacea and crossspecies amplification in other bamboos. Plant Breeding124,599-602.
    Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy ofSciences70,3321-3323.
    Nei M (1975) Molecular population genetics and evolution. Frontiers of biology40, I.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, Columbia.
    Neigel JE (1997) A comparison of alternative strategies for estimating gene flow from genetic markers. Annualreview of ecology and systematics,105-128.
    Norouzi M, Talebi M, Sayed-Tabatabaei B-E (2012) Chloroplast microsatellite diversity and population geneticstructure of Iranian pomegranate (Punica granatum L.) genotypes. Scientia Horticulturae137,114-120.
    Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoreticallydetectable alleles in a finite population. Genetical research22,201-204.
    Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta.Proceedings of the National Academy of Sciences96,5586-5591.
    Peakall R, Smouse PE (2012) GenAlEx6.5: genetic analysis in Excel. Population genetic software for teachingand research-an update. Bioinformatics28,2537-2539.
    Pear JR, Kawagoe Y, Schreckengost WE, et al.(1996) Higher plants contain homologs of the bacterial celAgenes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy ofSciences93,12637-12642.
    Peng Y, Chen K (2011) Phylogeographic pattern of Populus cathayana in the southeast of Qinghai-Tibetanplateau of China revealed by cpSSR markers. Silva Fennica45,583-594.
    Peng Z, Lu T, Li L, et al.(2010) Genome-wide characterization of the biggest grass, bamboo, based on10,608putative full-length cDNA sequences. BMC Plant Biol10,116.
    Peng Z, Lu Y, Li L, et al.(2013) The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla). Nat Genet45,456-461.
    Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon,877-885.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data.Genetics155,945-959.
    Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Current opinion in plantbiology5,94.
    Ramanayake SMSD, Meemaduma VN, Weerawardene TE (2007) Genetic diversity and relationships betweennine species of bamboo in Sri Lanka, using Random Amplified Polymorphic DNA. Plant Systematicsand Evolution269,55-61.
    Richards AJ (1997) Plant breeding systems. Garland Pub.
    Rodriguez M, Rau D, O’Sullivan D, et al.(2012) Genetic structure and linkage disequilibrium in landracepopulations of barley in Sardinia. Theoretical and Applied Genetics125,171-184.
    Rossetto M, McNally J, Henry RJ (2002) Evaluating the potential of SSR flanking regions for examiningtaxonomic relationships in the Vitaceae. Theoretical and Applied Genetics104,61-66.
    Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation bydistance. Genetics145,1219-1228.
    Schaal B, Hayworth D, Olsen K, et al.(1998) Phylogeographic studies in plants: problems and prospects. MolEcol7,465-474.
    Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proceedings of the NationalAcademy of Sciences97,7024-7029.
    Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluatingmicrosatellite markers. Ecol Lett9,615-629.
    Semagn K, Bj rnstad, Ndjiondjop M (2006) An overview of molecular marker methods for plants. AfricanJournal of Biotechnology5.
    Sharma R, Deshpande S, Senthilvel S, et al.(2010) SSR allelic diversity in relation to morphological traits andresistance to grain mould in sorghum. Crop and Pasture Science61,230-240.
    Sharma RK, Gupta P, Sharma V, et al.(2008) Evaluation of rice and sugarcane SSR markers for phylogeneticand genetic diversity analyses in bamboo. Genome51,91-103.
    Sharma V, Bhardwaj P, Kumar R, et al.(2009) Identification and cross-species amplification of EST derivedSSR markers in different bamboo species. Conservation Genetics10,721-724.
    Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics139,457-462.
    Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of geneflow. Evolution43,1349-1368.
    Soller M, Beckmann J (1983) Genetic polymorphism in varietal identification and genetic improvement.Theoretical and Applied Genetics67,25-33.
    Soltis DE, Gitzendanner MA, Strenge DD, et al.(1997) Chloroplast DNA intraspecific phylogeography ofplants from the Pacific Northwest of North America. Plant Systematics and Evolution206,353-373.
    Stoeckel S, Grange J, Fernández-Manjarres JF, et al.(2006) Heterozygote excess in a self-incompatible andpartially clonal forest tree species-Prunus avium L. Mol Ecol15,2109-2118.
    Su Z, Zhang M, Sanderson SC (2011) Chloroplast phylogeography of Helianthemum songaricum (Cistaceae)from northwestern China: implications for preservation of genetic diversity. Conservation Genetics12,1525-1537.
    Suyama Y, Obayashi K, Hayashi I (2000) Clonal structure in a dwarf bamboo (Sasa senanensis) populationinferred from amplified fragment length polymorphism (AFLP) fingerprint. Molecular Ecologe9,901-906.
    Taberlet P, Gielly L, Pautou G, et al.(1991) Universal primers for amplification of three non-coding regions ofchloroplast DNA. Plant molecular biology17,1105-1109.
    Taguchi F, Terachi T, Tsunewaki K (1988) Intar and inter specific variation of mitochondrial DNA in threePhyllostachys species. Bamb Journal6,28-36.
    Tamura K, Peterson D, Peterson N, et al.(2011) MEGA5: molecular evolutionary genetics analysis usingmaximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28,2731-2739.
    Tang D-Q, Lu J-J, Fang W, et al.(2010) Development, characterization and utilization of GenBankmicrosatellite markers in Phyllostachys pubescens and related species. Molecular Breeding25,299-311.
    Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature322,652-656.
    Tompkins RD, Trapnell DW, Hamrick J, et al.(2012) Genetic variation within and among remnant bigbluestem (Andropogon gerardii, Poaceae) populations in the Carolinas. Southeastern Naturalist11,455-468.
    Valdes AM, Slatkin M, Freimer N (1993) Allele frequencies at microsatellite loci: the stepwise mutation modelrevisited. Genetics133,737-749.
    Vallejo-Marín M, Dorken ME, Barrett SCH (2010) The ecological and evolutionary consequences of clonalityfor plant mating. Annual Review of Ecology, Evolution, and Systematics41,193-213.
    Van De Loo FJ, Broun P, Turner S, et al.(1995) An oleate12-hydroxylase from Ricinus communis L. is a fattyacyl desaturase homolog. Proceedings of the National Academy of Sciences92,6743-6747.
    Vanoverbeke J, De Meester L (2010) Clonal erosion and genetic drift in cyclical parthenogens–the interplaybetween neutral and selective processes. Journal of Evolutionary Biology23,997-1012.
    Vignal A, Milan D, SanCristobal M, et al.(2002) A review on SNP and other types of molecular markers andtheir use in animal genetics. Genetics Selection Evolution34,275-306.
    Vos P, Hogers R, Bleeker M, et al.(1995) AFLP: a new technique for DNA fingerprinting. Nucleic acidsresearch23,4407-4414.
    Wang H, Laqiong, Sun K, et al.(2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae)highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Mol Ecol19,2964-2979.
    Wang L, Abbott RJ, Zheng W, et al.(2009) History and evolution of alpine plants endemic to theQinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol Ecol18,709-721.
    Wang Y-J, Shi X-P, Zhong Z-C (2012) Clonal diversity and genetic differentiation in rhizomatous herb, Irisjaponica (Iridaceae) populations on Jinyun Mountain, southwest China. Sains Malaysiana41,149-154.
    Watanabe M, Ito M, Kurita S (1994) Chloroplast DNA phylogeny of Asian bamboos (Bambusoideae, Poaceae)and its systematic implication. J Plant Res107,253-261.
    Weber D, Helentjaris T (1989) Mapping RFLP loci in maize using BA translocations. Genetics121,583-590.
    Welch DBM, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction orgenetic exchange. Science288,1211-1215.
    Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic acidsresearch18,7213-7218.
    Williams JG, Kubelik AR, Livak KJ, et al.(1990) DNA polymorphisms amplified by arbitrary primers areuseful as genetic markers. Nucleic acids research18,6531-6535.
    Wright S (1943) Isolation by distance. Genetics28,114.
    Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems ofmating. Evolution19,395-420.
    Wright S (1978) Evolution and the genetics of populations: A treatise in four Volumes. Vol.4, Variability withinand among natural populations. University of Chicago Press.
    Xie Z-w, Lu Y-q, Ge S, et al.(2001) Clonality in wild rice (Oryza rufipogon, Poaceae) and its implications forconservation management. Am J Bot88,1058-1064.
    Yang FS, Li YF, Ding X, et al.(2008) Extensive population expansion of Pedicularis longiflora(Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climatechange. Mol Ecol17,5135-5145.
    Yang J-Q, Tang W-Q, Liao T-Y, et al.(2012) Phylogeographical analysis on Squalidus argentatus recapitulateshistorical landscapes and drainage evolution on the island of Taiwan and mainland China. Int J Mol Sci13,1405-1425.
    Yeh F, Yang R, Boyle T, et al.(2000) PopGene32, Microsoft Windows-based freeware for population geneticanalysis, version1.32. In: Molecular Biology and Biotechnology Centre, University of Alberta,Edmonton, Alberta, Canada.
    Yu J, Hu S, Wang J, et al.(2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science296,79-92.
    Zhang Q, Chiang TY, George M, et al.(2005) Phylogeography of the Qinghai-Tibetan Plateau endemicJuniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol14,3513-3524.
    Zhang Y-J, Ma P-F, Li D-Z (2011) High-throughput sequencing of six bamboo chloroplast genomes:phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One6,e20596.
    Zhao C, Ma X-G, Liang Q-L, et al.(2013) Phylogeography of an alpine plant (Bupleurum smithii, Apiaceae)endemic to Qinghai-Tibetan Plateau and adjacent regions inferred from chloroplast DNA sequencevariation. Journal of Systematics and Evolution.
    Zhao Y, Chen C, Rong J, et al.(2012) Population clonal diversity and fine-scale genetic structure in Oryzaofficinalis (Poaceae) from China, implications for in situ conservation. Genetic Resources and CropEvolution59,113-124.
    丁雨龙(1998)刚竹属(Phyllostachys)系统分类的研究,南京林业大学.
    方伟,何祯祥,黄坚钦, et al.(2001)雷竹不同栽培类型RAPD分子标记的研究.浙江林学院学报18,1-5.
    王芋华(2006)粗枝云杉(Picea asperata Mast.)天然群体的遗传变异,中国科学院研究生院(成都生物研究所).
    田波,陈永燕,严远鑫, et al.(2005)一个竹类植物MADS盒基因的克隆及其在拟南芥中的表达.科学通报50,145-151.
    艾文胜,彭小兰,李典军, et al.(2009)湖南毛竹生态地理研究.湖南林业科技36,1-6.
    余学军,张立钦,方伟, et al.(2005)绿竹不同栽培类型RAPD分子标记的研究.西南林学院学报25.
    李淑娴,尹佟明,邹惠渝, et al.(2002)用水稻微卫星引物进行竹子分子系统学研究初探.林业科学38,42-48.
    李潞滨,武静宇,胡陶, et al.(2008)毛竹基因组大小测定.植物学通报25,574-578.
    李鹏,杜凡,普晓兰, et al.(2004)巨龙竹种下不同变异类型的RAPD分析.云南植物研究26,290-296.
    阮晓赛,林新春,娄永峰, et al.(2008)毛竹种源遗传多样性的AFLP和ISSR分析.浙江林业科技28,29-33.
    周芳纯(1998)竹林培育学.中国林业出版社,北京.
    金顺玉,卢孟柱,高健(2010)毛竹木质素合成相关基因C4H的克隆及组织表达分析.林业科学研究,319-325.
    袁金玲(2010)孝顺竹遗传多样性,再生体系构建及杂交育种研究,中国林业科学研究院.
    高志民,郑波,彭镇华(2010)毛竹PeMADS1基因的克隆及转化拟南芥初步研究.林业科学46,37-41.
    梁泰然(1990)中国竹林类型与地理分布特征.竹子研究汇刊9,1-16.
    郭瑞华(2009)福建省竹林资源现状及其在社会经济中的地位和作用.亚热带水土保持21,46-47.
    郭广平,顾小平,袁金玲, et al.(2011)不同生理年龄毛竹DNA甲基化的MSAP分析.遗传33,794-800.
    彭镇华,刘贯水,李潞滨(2011)磁珠富集法开发毛竹SSR标记引物.林业科学24,743-748.
    葛颂,李承森(1997)植物群体遗传结构研究的回顾和展望. In:植物科学进展(第I卷)., p. v15.高等教育出版社,北京.
    刘志伟,张智俊,杨丽(2010)毛竹抗逆锌指蛋白基因cDNA克隆与序列分析.生物技术通报1,87-92.
    刘华波,王哲,刘君, et al.(2012)燕山山脉西伯利亚杏的遗传多样性和遗传结构.林业科学48,68-74.
    刘颖丽,高志民,彭镇华(2008)毛竹cab-PhE11基因的克隆与序列分析河北农业大学学报31.
    吴妙丹,董文娟,汤定钦(2009)4个丛生杂种竹的SSR分子鉴定.分子植物育种7,959-965.
    吴林森,金晓春,杨勇春, et al.(2010)毛竹β-1,4-糖苷酶基因cDNA克隆与表达分析.生物技术通报3,104-108.
    师丽华,杨光耀(2002)毛竹种子等级的RAPD研究.南京林业大学学报(自然科学版)26,65-68.
    张守峰(2005)毛竹(Phyllostachys edulis)遗传多样性研究,南京林业大学.
    张玲,焦培培,李志军(2012)中国新疆灰叶胡杨群体遗传多样性的SSR分析.生态学杂志31.
    杨光耀,赵奇僧(2000)苦竹类植物的RAPD分析及其系统意义.江西农业大学学报22,12-16.
    杨光耀,赵奇僧(2001)用RAPD分子标记探讨倭竹族的属间关系.竹子研究汇刊20,1-5.
    杨志坚(2006)糙花少穗竹天然居群遗传多样性研究,福建农林大学.
    蒋瑶,胡尚连,陈其兵, et al.(2008)四川省不同地区梁山慈竹RAPD与ISSR遗传多样性研究.福建林学院学报28,276-280.
    郑健,郑勇奇,张川红, et al.(2008)花楸树天然群体的遗传多样性研究.生物多样性16,562-569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700