用户名: 密码: 验证码:
喹吖啶酮及芳香胺化合物:自组装、发光及堆积结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计、合成了四种氟原子取代喹吖啶酮衍生物、四种三氟甲基取代喹吖啶酮衍生物、两种三氟甲基取代芳香胺化合物(三氟甲基喹吖啶酮的中间体氧化产物),研究了含氟原子喹吖啶酮化合物的自组装特性、四甲基喹吖啶酮化合物的扭曲自组装行为及芳香胺化合物的热诱导固态发光开关性质,探讨了有机固体发光材料堆积结构与自组装及固态发光性能的关系。
     1、合成了不同长度烷基取代的氟代喹吖啶酮(Cn-DFQA)和三氟甲基喹吖啶酮(Cn-DTFMQA)衍生物,并通过氧化喹吖啶酮中间体的方法分别获得了双三氟甲基取代(AA-1)和四个三氟甲基取代(AA-2)的芳香胺化合物。对化合物组成与结构进行了确认,考察了化合物的溶液光物理性质,获得了九种单晶。
     2、以Cn-DFQA和Cn-DTFMQA化合物为构筑基元进行自组装微米材料研究。Cn-DFQA微米材料的形貌和性质明显具有烷基链长度依赖特性。单晶结构分析表明,C4-DFQA与C8-DFQA分子均通过π…π相互作用形成一维分子柱,而C10-DFQA与C16-DFQA的分子堆积结构和弱相互作用都十分类似,分子通过弱相互作用形成分子层。以C8-DTFMQA和C12-DTFMQA制备了长度超过1mm的超长微米材料,单晶研究表明分子的一维组装优势是制备超长微米材料的主要原因之一。
     3、以非手性中心对称的C6-TMQA和C10-TMQA化合物为构筑基元,通过掺杂某些特定溶剂(乙醇、正丙醇、异丙醇、乙酸和丙酸)成功制备了具有扭曲形貌的自组装纤维,扭曲纤维具有热致变色性质。运用光谱、单晶及分子模拟等手段,我们提出了该系列化合物扭曲的可能起因:在掺杂溶剂存在下,喹吖啶酮分子在组装时会发生交错式的堆积导致最终扭曲结构的形成。
     4、研究了三氟甲基取代芳香胺衍生物(AA-1与AA-2)的固态发光开关行为,两种化合物均具有热诱导可逆固态相转变特性并伴随发光颜色的变化。通过控制熔融样品的冷却速度可以获得不同的发光相态,此外,还观察到了两个“单晶-单晶”转变过程。通过对比单晶结构与实验现象,我们认为分子堆积结构的相互转换是获得固态发光开关的原因。我们还发现了其中一种AA-2绿色晶体具有固体蓝移发射特性,通过分子模拟我们认为在该绿色单晶中分子几何结构的较大变形导致能级差显著升高是导致该固体发射蓝移的主要原因。
Organic semiconductor materials, possessing several notable advantages including easy design and synthesis, mechanical flexibility, and low cost, have been used as active elements in optoelectronic devices such as organic light emitting diodes (OLEDs), solar cells, sensors, field effect transistors, optical waveguides and lasers. Recently, molecular materials fabricated from organic molecules through non-covalent interactions (hydrogen bondings,π-πinteractions, metal-metal interactions, etc.), have gradually become a research hotspot. Organic molecules can be prepared into molecular materials (micro-/nano-materials, thin films, single crystals, etc.) with abundant functions such as electricity, light, sensor, energy conversion, molecular machines etc, because of intermolecular non-covalent interaction. For organic solid materials, the constituent molecules may form strong intermolecular interactions and assembly packing structures resulting in that the properties of these materials are governed by the whole collective rather than by individual molecules. The performance of organic molecule-based devices strongly depends on the molecular assembly structures. Therefore, understanding and controlling molecular arrangement in solid state are fundamental issues for obtaining the solid material with desired chemical and physical properties.
     1. In chapter II, four fluorinated quinacridone compounds (Cn-DFQA, n = 4, 8, 10, 16), four quinacridone derivatives substituted with trifiuoromethyl (Cn-DTFMQA, n = 4, 8, 12, 16) and two trifluoromethyl substituted aromatic amine compounds (AA-1 and AA-2) have been synthesized. All the compounds are obtained in high yields and characterized by ~1H NMR spectroscopy, mass spectra, and element analysis. The concentration-dependent photophysics properties (absorption spectra, emission spectra and the Photoluminescence quantum efficiency) of synthesized compounds in solutions have been studied in detail.
     2. In chapter III, it was demonstrated that Cn-DFQA could be used as building blocks to fabricate organic luminescent micro-materials. The assembly properties of Cn-DFQA have obvious alky chain length dependent characteristic. The alky chain length has dramatic effect on the morphology of the resulted micro-materials. The molecules C4-DFQA and C8-DFQA with shorter alky chains could assemble into 1-D micro-materials, while C10-DFQA and C16-DFQA with longer alky chains aggregate into diamond and hexagonal micro-particle crystals, respectively. The emission spectra of the 1-D micro-materials formed by C4-DFQA or C8-DFQA exhibited red shift compared with that of the micro-particle crystals composed of C10-DFQA or C16-DFQA. The single crystal structure analysis revealed that in the crystals C4-DFQA and C8-DFQA there are 1-D molecular columns based on intermolecularπ…πand hydrogen bond interactions, while 2-D hydrogen bond molecular sheets are observed in the crystals C10-DFQA and C16-DFQA. The molecular packing properties of the four crystals suggest that C4-DFQA and C8-DFQA molecules have the tendency to form 1-D structure, while C10-DFQA and C16-DFQA molecules posses the characteristic to generate the sheet structures. The single crystal structures give a rational explanation for the alky chain length dependent morphology properties of the Cn-DFQA based micro materials. Therefore, it is possible to control the morphologies and emission properties of the organic micro and nano-materials through varying the molecular structures.
     Self-assembled 1D nanostructures with distinct morphologies are fabricated by the deposition of Cn-DTFMQA solutions (1.0×10~(-3)M). The microstructures fabricated from C8-DTFMQA and C12-DTFMQA give ultralong 1D nanowires (more than 1 mm) with high aspect ratios. The investigation of the crystal structure suggests that DTFMQA-C8 molecules should have the tendency to aggregate into a straight liner 1-D structure in nature. The single crystal structure feature of C8-DTFMQA provided a rational explanation for the formation of the flat fibers. It is known that the energy of hydrogen bong is C=O…H-C >π…π> C-F…H-C, so the 1D aggregate tendency of C8-DTFMQA molecules is the kay factor to form ultralong micromaterials.
     3. In chapter IV, we show that two achiral center-symmetrical quinacridone (QA) derivatives, N,N'-di(n-hexyl)-1,3,8,10-tetramethylquinacridone (C6TMQA) and N,N'-di(n-decyl)-1,3,8,10-tetramethylquinacridone (C10TMQA), could be employed as building blocks to fabricate well-defined twisted nanostructures by controlling the mixture solvent's composition and concentration. The bowknot-like bundles with twisted fiber arms were prepared based on C6TMQA. The uniform twisted fibers were generated from C10TMQA in ethanol/THF solution. The scanning electron microscope (SEM), UV-Vis spectra, differential scanning Calorimetry (DSC), X-ray diffraction, infrared (IR), nuclear magnetic resonance (NMR), single crystal and molecule simulations characterizations revealed that the introduction of ethanol molecules in the solution systems could induce the staggered aggregation of C6-TMQA (or C10-TMQA) molecules and the formation of twisted nanostructures. The twisted materials generated from achiral organic functional molecules may be valuable to the design and fabrication of new materials for optoelectronic applications. The twisted materials generated from achiral organic functional molecules may be valuable to the design and fabrication of new materials for optoelectronic applications.
     4. In chapter V, AA-1 and AA-2 display thermo-induced and revisable solid sate phase transformation properties, which are accompanied by the switches between the different emission colors. For AA-1 or AA-2, the different phases could be obtained by controlling the solidification speed of the melted AA-1 or AA-2 sample. The red phases of AA-1 and AA-2 can undergo solid phase transfer into corresponding yellow phase of AA-1 and green AA-2 phase, respectively. The single crystal to single crystal transformation from red crystal AA-1 to yellow crystal AA-1 has been achieved. The phase dependent emission properties of AA-1 and AA-2 have been attributed to the different molecular packing properties and changeable molecular geometry for different solid phases of AA-1 and AA-2. The novel organic luminescence materials AA-1 and AA-2, which could be efficiently switched between two different luminescent phases based on the external thermal stimulation, may be employed to fabricate the display, sensing, memory devices.
     In summary, we have synthesized and characterized ten novel organic light-emitting materials. Their concentration-dependent photophysical properties in solution were investigated, and nine single crystals were grown and their structures were analyzed. Through investigating the self-assembly behaviors of Cn-DFQA, Cn-DTFMQA and Cn-TMQA and the thermal induced solid-state luminescent switch behaviors of AA-1 and AA-2, the relationship between the morphologies and luminescent properties of solid materials and molecular packing structures was elucidated.
引文
1 H.Klauk,Organic Electronics:Materials,Manufacturing and Applications,Wiley-VCH,2006.
    2 黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社,2001.
    3 G.Crawford,Flexible Flat Panel Displays,John Wiley & Sons,2005.
    4 D.A.Bernards,R.M.Owens,G.G.Malliaras,Organic Semiconductors in Sensor Applications,Springer-Verlag Berlin Heidelberg,2008.
    5 O.Hayden,C.K.Payne,Nanophotonic Light Sources for Fluorescence Spectroscopy and Cellular Imaging,Angew.Chem.Int.Ed.2005,44,1395.
    6 X.Duan,Y.Huang,Y.Cui,J.Wang,C.M.Lieber,Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,Nature 2001,409,66.
    7 Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim,H.Yan,One-dimensional nanostructures:synthesis,characterization and applications,Adv.Mater 2003,15,353.
    8 Y.Che,A.Datar,K.Balakrishnan,L.Zang,Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide,J.Am.Chem.Soc.2007,129,7234.
    9 T.Naddo,Y.Che,W.Zhang,K.X.Y.Balakrishnan,M.Yen,J.Zhao,J.S.Moore,L.Zang,Detection of Explosives with a Fluorescent Nanofibril Film,J.Am.Chem.Soc.2007,129,6978.
    10 R.P.Pandian,M.Dolgos,V.Dang,J.Z.Sostaric,P.M Woodward,P.Kuppusamy,Structure and Oxygen-Sensing Paramagnetic Properties of a New Lithium 1,8,15,22-Tetraphenoxyphthalocyanine Radical Probe for Biological Oximetry,Chem.Mater.2007,19,3545.
    11 Y.Sun,K.Ye,H.Zhang,J.Zhang,L.Zhao,B.Li,G.Yang,B.Yang,Y.Wang,S.-W.Lai,C.-M.Che,Luminescent One-Dimensional Nanoscale Materials with pt~Ⅱ...Pt~ⅡInteractions,Angew.Chem.Int.Ed.2006,45,5610.
    12 Y.S.Zhao,C.Di,W.Yang,G.Yu,Y.Liu,J.Yao,Photoluminescence and Electroluminescence from Tris(8-hydroxyquinoline)aluminum Nanowires Prepared by Adsorbent-Assisted Physical Vapor Deposition,Adv.Funct.Mater.2006,16,1985.
    13 J.-S.Hu,H.-X.Ji,A.-M.Cao,Z.-X.Huang,Y.Zhang,L.-J.Wan,A.-D.Xia,D.-P.Yu,X.-M.Meng,S.-T.Lee,Facile solution synthesis of hexagonal Alq_3 nanorods and their field emission properties,Chem.Commun.2007,3083.
    14 W.Chen,Q.Peng,Y.Li,Alq_3 Nanorods:Promising Building Blocks for Optical Devices,Adv.Mater.2008,20,2747.
    15 Y.S.Zhao,H.Fu,A.Peng,Y.Ma,D.Xiao,J.Yao,Low-Dimensional Nanomaterials Based on Small Organic Molecules:Preparation and Optoelectronic Properties,Adv.Mater.2008,20,2859.
    16 王嘉,烷基、树枝状取代喹吖啶酮化合物的合成、光谱性质及低维组装特性的研究,吉林大学博士学位论文,2006年。
    17 F.Balzer,V.G.Bordo,A.C.Simonsen,H.G..Rubahn,Isolated hexaphenyl nanofibers as optical waveguides,Appl.Phys.Lett.2003,10.
    18 K.Al-Shamery,H.-G.Rubahn,H.Sitter,Organic Nanostructures for Next Generation Devices,Springer Series in materials science,Springer-Verlag Berlin Heidelberg,2008.
    19 Y.S.Zhao,H.Fu,F.Hu,A.Peng,W.Yang,J.Yao,Tunable Emission from Binary Organic One-Dimensional Nanomaterials:An Altemative Approach to White-Light Emiss,Adv.Mater.2008,20,79.
    20 Y.Zhou,L.Wang,J.Wang,J.Pei,Y.Cao,Highly Sensitive Air-Stable Photodetectors Based on Single Organic Sub-micrometer Ribbons Self-Assembled through Solution Processing,Adv.Mater.2008,20,3745.
    21 Y.Yamamoto,T.Fukushima,Y.Suna,N.Ishii,A.Saeki,S.Seki,S.Tagawa,M.Taniguchi,T.Kawai,T.Aida,Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers,Science 2006,314,1761.
    22 A.Schwab,D.E.Smith,B.Bond-Watts,D.E.Johnston,J.Hone,A.T.Johnson,J.C.de Paula,W.F.Smith,Photoconductivity of Self-assembled Porphyrin Nanorods,Nano Lett.2004,1261.
    23 H.-X.Ji,J.-S.Hua,L.-J.Wan,ZnOEP based phototransistor:signal amplification and light-controlled switch,Chem.Commun.2008,2653.
    24 X.Zhang,J.Jie,W.Zhang,C.Zhang,L.Luo,Z.He,X.Zhang,W.Zhang,C.Lee,S.Lee,Facile One-Step Growth and Patterning of Aligned Squaraine Nanowires via Evaporation-Induced Self-Assembly,Adv.Mater.2008,1716.
    25 R.Bai,M.Ouyang,R.-J.Zhou,M.-M.Shi,M.Wang,H.-Z.Chen,Well-defined nanoarrays from an n-type organic perylene-diimide derivative for photoconductive devices,Nanotechnology 2008,055604.
    26 F.J.M.Hoeben,P.Jonkheijm,E.W.Meijer,A.P.H.J.Schenning,About supramolecular assemblies of pi-conjugated systems,Chem.Rev.2005,1491.
    27 F.W(u|¨)rthner,Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,Chem.Commun.2004,1564.
    28 A.C.Grimsdale,K.M(u|¨)llen,The Chemistry of Organic Nanomaterials,Angew.Chem.Int.Ed.2005,5592.
    29 Y.S.Zhao,H.Fu,A.Peng,Y.Ma,D.Xiao,J.Yao,Low-Dimensional Nanomaterials Based on Small Organic Molecules:Preparation and Optoelectronic Properties,Adv.Mater 2008,2859.
    30 L.Zang,Y.Che,J.S.Moore,One-Dimensional Self-Assembly of Planar π-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices,Acc.Chem.Res.2008,1596.
    31 L.C.Palmer,Y.S.Velichko,M.O.de la Cruz,S.I.Stupp,Supramolecular self-assembly codes for functional structures,Phil.Trans.R.Soc.A 2007,1417.
    32 I.W.Hamley,Peptide Fibrillization,Angew.Chem.Int.Ed.2007,8128.
    33 Z. Yang, B.Xu, Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules, J. Mater. Chem. 2007, 2385.
    34 A. Kishimura, T. Yamashita, T. Aida, Phosphorescent Organogels via "Metallophilic" Interactions for Reversible RGB-Color Switching, J. Am. Chem. Soc. 2005, 179.
    35 A. Hirst, D. K. Smith, Two-Component Gel-Phase Materials-Highly Tunable Self-Assembling Systems, Chem. Eur. J. 2005, 11, 5496.
    36 W. Lu, V. A. L. Roy, C.-M. Che, Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes, Chem. Commun. 2006, 3972.
    37 W. Lu, S. S.-Y. Chui, K.-M. Ng, C.-M. Che, A Submicrometer Wire-to-Wheel Metamorphism of Hybrid Tridentate Cyclometalated Platinum(II) Complex, Angew. Chem. Int. Ed 2008, 47, 4568.
    38 H. Engelkamp, S. Middelbeek, R. J. M. Nolte, Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity, Science 1999, 785.
    39 J. J. van Gorp, Helices by Hydrogen Bonding: Folding and Stacking of Chiral Supramolecular Scaffolds, PhD Thesis of Eindhoven University of Technology, 2004.
    40 K. C. Hannah, B. A. Armitage, DNA-Templated Assembly of Helical Cyanine Dye Aggregates: A Supramolecular Chain Polymerization, Acc. Chem. Res. 2004, 37, 845.
    41 M. M. J. Smulders, A. P. H. J. Schenning, E. W. Meijer, Principle of Chiral and Achiral C3-Symmetrical Discotic Triamides, J. Am. Chem. Soc. 2008, 606.
    42 L. J. Prins, P. Timmerman, D. N. Reinhoudt, Amplification of chirality: the "sergeants and soldiers" principle applied to dynamic hydrogen-bonded assemblies, J. Am. Chem. Soc. 2001, 10153.
    43 A. J. Wilson, M. Masuda, R. P. Sijbesma, E. W. Meijer, Chiral Amplification in the Transcription of Supramolecular Helicity into a Polymer Backbone, Angew. Chem. Int. Ed. 2005, 2275.
    44 V. V. Borovkov, J M Lintuluoto, Y. J. Inoue, Syn-Anti Conformational Changes in Zinc Porphyrin Dimers Induced by Temperature-Controlled Alcohol Ligation, J. Phys. Chem. B 1999, 5151.
    45 L. Zhang, Q. Lu, M. Liu, Fabrication of Chiral Langmuir-Schaefer Films from Achiral TPPS and Amphiphiles through the Adsorption at the Air/Water Interface, J. Phys. Chem. B. 2003, 2565.
    46 L. Zhang, J. Yuan, M. Liu, Supramolecular Chirality of Achiral TPPS Complexed with Chiral Molecular Films, J. Phys. Chem. B. 2003, 12768.
    47 J. Yuan, M. H. Liu, Chiral Molecular Assemblies from a Novel Achiral Amphiphilic 2-(Heptadecyl) Naphtha[2,3]imidazole through Interfacial Coordinati, J. Am. Chem. Soc. 2003,5051.
    48 P. Guo, M Liu, Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization, Langmuir 2005, 3410.
    49 X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, M. Liu, Self-Assembled Spiral Nanoarchitecture and Supramolecular Chirality in Langmuir-Blodgett Films of an Achiral Amphiphilic Barbituric Acid, J. Am. Chem. Soc. 2004, 1322.
    50 P. Guo, L. Zhang, M. Liu, A Supramolecular Chiroptical Switch Exclusively from an Achiral Amphiphile, Adv. Mater. 2006, 177.
    51 J, M. Ribó, J. Crusats, F. Sagués, J. Claret, R. Rubires, Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions, Science 2001, 292, 2063.
    52 M. Wang, Y.-L. Yang, K. Deng, C. Wang, Uncoiling Process of Helical Molecular Fibrillar Structures Studied by AFM, J. Phys. Chem. C 2007, 6194.
    53 M. Irie, Chiroptical Molecular Switches, Chem. Rev. 2000, 1683.
    54 Y. Yokoyama, Fulgides for Memories and Switches, Chem. Rev. 2000, 1717.
    55 G. Berkovic, V. Krongauz ,V. Weiss, Spiropyrans and Spirooxazines for Memories and Switches, Chem. Rev. 2000, 1741.
    56 S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Rapid and reversible shape changes of molecular crystals on photoirradiation, Nature 2007, 446, 778.
    57 M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, Angelo Sironi, H. Naito, T. Komatsu, T. Kitamura, Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III), J. Am. Chem. Soc. 2000, 5147.
    58 H. Zhang, Z. Zhang, K. Ye, J. Zhang, Y. Wang, Organic Crystals with Tunable Emission Colors Based on a Single Organic Molecule and Different Molecular Packing Structures, Adv. Mater. 2006, 2369.
    59 C. Kitamura, T. Ohara, N. Kawatsuki, A. Yoneda, T. Kobayashi, H. Naito, T. Komatsu, T. Kitamura, Conformational polymorphism and optical properties in the solid state of 1,4,7,10-tetra(n-butyl)tetracene, CrystEngComm 2007, 644.
    60 S. Kohmoto, R. Tsuyuki, H. Masu, I. Azumaya, K. Kishikaw, Polymorphism-dependent fluorescence of 9,10-bis(pentafluorobenzoyloxy)anthracene, Tetrahedron Lett. 2008, 39.
    61 T. Mutai, H. Satou, K. Araki, Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion, Nat. Mater. 2005, 685.
    62 R. Davis, N. P. Rath, S. Das, Thermally reversible fluorescent polymorphs of alkoxy-cyano-substituted diphenylbutadienes: role of crystal packing in solid state fluorescence, Chem. Commun. 2004, 74.
    63 R. Davis, N. S. S. Kumar, S. Abraham, C. H. Suresh, N. P. Rath, N. Tamaoki, S. Das, Molecular Packing and Solid-State Fluorescence of Alkoxy-Cyano Substituted Diphenylbutadienes: Structure of the Luminescent Aggregates, J. Phys. Chem. C 2008, 2137.
    64 Y. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H.-Y. Sung, I. D. Williamsa, B. Z. Tang, Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement, Chem. Commun. 2007, 40.
    65 W. Herbst and K. Hunger, Industrial Organic Pigments 3rd ed, Wiley-VCH, Weinheim, 2004.
    66 H. Lieberman, Liebigs Ann.Chem.Lett. 1935,245.
    67 T. B. Reeve, E. C. Botti, Du Pont Official Digest 1958, 991.
    68 N. Tsubokawa, M. Kobayashi, T. Ogasawara, Graft polymerization of vinyl monomers initiated by azo groups introduced onto organic pigment surface, Progress in Organic Coatings 1999, 39.
    69 K. Y. Law, Organic photoconductive materials: recent trends and development, Chem. Rev. 1993, 449.
    70 M. Tomoda, S. Kusabayashi, M. Yokoyama, Organic Solar Cell Fabrication Using Quinacridone pigments, Chem. Lett. 1984, 1305.
    71 K. Manabe, S. Kusabayashi, M. Yokoyama, Long-life Organic Solar Cell Fabrication Using Quinacridone Pigment, Chem. Lett. 1987, 609.
    72 M. Hiramoto, S. Kawase, M. Yokoyama, Influence of Oxygen and Water on Photocurrent Multiplication in Organic Semiconductor Films, Jpn. J. Appl. Phys. 1996, 349.
    73 T. Shichiri, M. Suezaki, T. Inoue, Three-Layer Organic Solar Cell, Chem. Lett. 1992, 1717.
    74 T. Wakimoto, Y. Yonemoto, J. Funaki, M. Tsuchida, R. Murayama, H. Nakada, H. Matsumoto, S. Yamamura, Luminescence properties of novel soluble quinacridones, Syn. Metals 1997, 15.
    75 T. Wakimoto, R. Murayama, K. Nagayama, Y. Okuda, H. Nakada, Organic EL cells with high luminous efficiency, Appl. Surface Sci. 1997, 113/114, 698.
    76 T. Wakimoto, R. Murayama, H. Nakada, K. Imai, G. Sato, M. Nomura, Organic electroluminescent diodes with doped quinacridone derivatives, Poly. Preprints Jpn. 1991, 40, 3600.
    77 J. Shi, C. W. Tang, Doped organic electroluminescent devices with improved stability, Appl. Phys. Lett. 1997, 70, 1665.
    78 H. Mattoussi, H. Murata, C. D. Merritt, Y. Lizumi, J. Kido, Z. H. Kafafi, Photoluminescence quantum yield of pure and molecularly doped organic solid films, J. Appl. Phys. 1999, 86, 2642.
    79 S. E. Shaheen, G. E. Jabbour, B. Kippelen, N. Peyghambarian, J. D. Anderson, S. R. Marder, N. R. Amstrong, E. Bellmann, R. H. Grubbs, Organic Light-Emitting Diode with 20 lm/W Efficiency Using a Triphenyldiamine Side-Goup Polymer as the Hole Transport Layer, Appl. Phys. Lett. 2002, 3212.
    80 H. Murata, C. D. Merritt, H. Inada, Y. Shirota, Z. H. Kafafi, Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability,Appl.Phys.Lett.1999,3252.
    81 E.M.Gross,J.D.Anderson,A.F.Slaterbeck,S.Thayumanavan,S.Barlow,Y.Zhang,S.R.Marder,H.K.Hall,M.Flore Nabor,J.F.Wang,E.A.Mash,N.R.Armstrong,R.M.Wightman,Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones:Cross Reactions With Triarylamines Lead to Singlet Emission Through Triplet-Triplet Annihilation Pathways,J.Am.Chem.Soc.2000,4972.
    82 J.Blochwist,M.Pfeiffer,M.Hofmann,K.Leo,Non-polymeric OLEDs with a doped amorphous hole transport layer and operating voltages down to 3.2 V to achieve 100cd/m~2,Syn.Metals 2002,127,169.
    83 J.Li,M.Yahiro,K.Ishida,K Matsushige,Influence of doping location and width of dimethylquinacridone on the performance of organic light emitting devices,J.Phys.D:Appl.Phys.2005,38,392.
    84 J.Liu,B.Gao,Y.Cheng,Z.Xie,Y.Geng,L.Wang,X.Jing,F.Wang,Novel White Electroluminescent Single Polymer Derived from Fluorene and Quinacridone,Macromolecules 2008,1162.
    85 H.Yanagisawa,J.Mizuguchi,S.Aramaki,Y.Sakai,Organic Field-Effect Transistor Devices Based on Latent Pigments of Unsubstituted Diketopyrrolopyrrole or Quinacridone,J.J.App.Phy.2008,4728.
    86 G.Klein,D.Kaufmann,S.Sch(u|¨)rch,J.L.Reymond,A fluorescent metal sensor based on macrocyclic chelation,Chem.Commun.2001,561.
    87 张慧东,张萍,孙迎辉,叶开其,张晶莹,王悦,喹吖啶酮衍生物/介孔分子筛MCM-41组装体的金属离子传感性能研究,高等学校化学学报2006,506.
    88 G.Klein and J.L.Reymond,An Enzyme Assay Using pM,Angew.Chem.Int.Ed.2001,1771.
    89 J.A.Smith,R.M.West,M.Allen,Acridones and Quinacridones:Novel Fluorophores for Fluorescence Lifetime Studies,J.Fluorescence 2004,151.
    90 G.Lincke,review of thirty years of research on quinacridones.X-ray crystallography and crystal engineering-Part Ⅰ.Extension of the Donnay-Harker-Law,Dyes and Pigments 2000,101.
    91 G.Lincke,On quinacridones and their supramolecular mesomerism within the crystal lattice,Dyes and Pigments 2002,169.
    92 E.F.Paulus,F.J.J.Leusen and M,U.Schmidt,Crystal structures of quinacridones,CrystEngComm 2007,131
    93 H.Yao,C.A.Micheals,S.J.Stranick,T.Isohashi,K.Kimura,Collapse and Self-Reconstruction of Mesoscopic Architectures of Supramolecular J Aggregates in Solution:From Strings to Tubular Rods,Lett.Org.Chem.2004,280.
    94 Q.X.Tang,H.X.Li,M.He,W.P.Hu,C.M.Liu,K.Q.Chen,C.Wang,Y.Q.Liu,D.B.Zhu,Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine,Adv.Mater.2006,65.
    95 B.Song,H.Wei,Z.Q.Wang,X.Zhang,M.Smet,W.Dehaen,Supramolecular Nanofibers by Self-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and-Stacking Interactions,Adv.Mater.2007,416.
    96 E.F.Paulus,F.J.J.Leusen,M.U.Schmidt,Crystal structures of quinacridones,CrystEngComm 2007,131.
    97 K.Ye,J.Wang,H.Sun,Y.Liu,Z.C.Mu,F.Li,S.M.Jiang,J.Y.Zhang,H.X.Zhang,Y.Wang,C.M.Che,Supramolecular Structures and Assembly and Luminescent Properties of Quinacridone Derivatives,J.Phys.Chem.B 2005,8008.
    98 H.Nakahara,K.Kitahara,H.Nishi,K.Fukuda,Orientation Control of Quinacridone Derivatives with Long Alkyl Chains in Langmuir-Blodgett Films,Chem.Lett.1992,711.
    99 S.De Feyter,A.Gesquiere,F.C.De Schryver,Aggregation properties of soluble quinacridones in two and three dimensions,Chem.Mater.2002,989-997.
    100 D.L.Qiu,K.Q.Ye,Y.Wang,B.Zou,X.Zhang,S.B.Lei,L.J.Wan,In Situ Scanning Tunneling Microscopic Investigation of the Two-Dimensional Ordering of Different Alkyl Chain-Substituted Quinacridone Derivatives at Highly Oriented Pyrolytic Graphite/Solution Interface,Langmuir 2003,678.
    101 X.Y.Yang,Z.C.Mu,Z.Q.Wang,X.Zhang,J.Wang,Y.Wang,STM study on quinacridone derivative assemblies:modulation of the two-dimensional structure by coad-sorption with dicarboxylic acids,Langmuir 2005,7225.
    102 Z.Mu,Z.Wang,X.Zhang,K.Ye,Y.Wang,Two-dimensional supramolecular assemblies of quinacridone derivatives:from achiral to chiral racemates and domains,J.Phys.Chem.B 2004,19955.
    103 X.Yang,J.Wang,X.Zhang,Z.Wang,Y.Wang,STM Study on 2D Molecular Assemblies of Luminescent Quinacridone Derivatives:Structure Fine-tuned by Introducing Bulky Substitutes and Co-adsorption with Monofunctional/Bifunctional Acid,Langmuir 2007,23,1287.
    104 J.Wang,Y.Zhao,J.Zhang,J.Zhang,B.Yang,Y.Wang,D.Zhang,H.You,D.Ma,Assembly of One-Dimensional Organic Luminescent Nanowires Based on Quinacridone Derivatives,J.Phys.Chem.C 2007,9177.
    105 F.Babudri,G.M.Farinola,F.Naso,R.Ragni,Fluorinated organic materials for electronic and optoelectronic applications:the role of the fluorine atom,Chem.Commun.2007,1003.
    106 周春龙,穆振义,有机染料化学及工艺学 中国石化出版社。
    107 李述问,范如霖,实用有机化学手册 上海科技出版社。
    108 罗代暄主编,化学试剂与精细化学品合成基础(有机分册) 高等教育出版社。
    109 J.N.Demas and G.A.Grosby,The measurement of photolumineseence quantum yields.A review,J.Phys.Chem.1971,75,991.
    110 D.Takahashi,H.Oda,T.Izumi,R.Hirohashi,Substituent effects on aggregation phenomena in aqueous solution of thiacarbocyanine dyes,Dyes and Pigments 2005,66,1.
    111(a) S.De Feyter,A.Gesquiere,F.C.De Schryver,Aggregation properties of soluble quinacridones in two and three dimensions,Chem.Mater.2002,14,989.
    112 U.Keller,K.M(u|¨)llen,S.De Feyter,F.C.De Schryver,Hydrogen-bonding and phase-forming behavior of a soluble quinacridone,Adv.Mater.1996,8,490.
    113 叶开其,喹吖啶酮衍生物的合成、分子堆积结构及发光性能的研究,吉林大学博士学位论文,2004.
    114 C.A.Hunter,J.K.M.Sanders,The nature of pi-pi interactions,J.Am.Chem.Soc.1990,112,5525.
    115 D.Ranganathan,V.Haridas,R.gilardi,I.L.Karle,Self-Assembling Aromatic-Bridged Serine-Based Cyclodepsipeptides(Serinophanes):A Demonstration of Tubular Structures Formed through Aromatic π-π Interactions,J.Am.Chem.Soc.1998,120,10793.
    116 M.Munakata,L.P.Wu,T.Kuroda-Sowa,M.Maekawa,Y.Suenaga,G.L.Ning,T.Kojima,Supramolecular Silver(Ⅰ) Complexes with Highly Strained Polycyclic Aromatic Compounds,J.Am.Chem.Soc.1998,120,8610.
    117 C.A.Hunter,The Role of Aromatic Interactions in Molecular Recognition,Chem.Soc.Rev.1994,101.
    118 S.S.Labana,L.L.Labana,Quinacridones,Chem.Rev.1967,67,1.
    119 S.Fernandez,J.L.Pizarro,J.L.Mesa,L.Lezama,M.I.Arriotua,R.Olazcuaga,T.Rojo,Hydrothermal Synthesis and Structural Characterization of the (C_nH_(2n+6)N_2)[Mn_3(HPO_3)_4](n=3-8) New Layered Inorganic-Organic Hybrid Manganese(Ⅱ) Phosphites.Crystal Structure and Spectroscopic and Magnetic Properties of (C_3H_(12)N_2)[Mn_3(HPO_3)_4],Inorg.Chem.2001,40,3476.
    120 P.S.Shah,T.Hanrath,K.P.Johnston,B.A.Korian,Nanocrystal and Nanowire Synthesis and Dispersibility in Supercritical Fluids,J.Phys.Chem.B 2004,108,9574.
    121 O.Hayden,C.K.Payne,Nanophotonic Light Sources for Fluorescence Spectroscopy and Cellular Imaging,Angew.Chem.Int.Ed.2005,44,1395.
    122 Duan,X.Duan,Y.Huang,Y.Cui,J.Wang,C.M.Lieber,Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,Nature 2001,409,66.
    123 A.Henglein,Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles,Chem.Rev.1989,89,1861.
    124 C.Burda,X.B.Chen,R.Narayanan,M.A.El-Sayed,Chemistry and Properties of Nanocrystals of Different Shapes,Chem.Rev.2005,105,1025.
    125 P.Moriarty,Nanostructured materials,Rep.Prog.Phys.2001,64,297.
    126 X.G.Peng,M.C.Schlamp,A.V.Kadavanich,A.P.Alivisatos,Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,J.Am.Chem.Soc.1997,119,7019.
    127 W.C.W.Chan,S.M.Nie,Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,Science 1998,281,2016.
    128 Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 2003, 353.
    129 J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 1999, 32, 435.
    130 T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M. Yen, J. Zhao, J. S. Moore, L. Zang, Detection of Explosives with a Fluorescent Nanofibril Film, J. Am. Chem. Soc. 2007, 129, 6978.
    131 Y. Che, X. Yang, S. Loser, L. Zang, Expedient Vapor Probing of Organic Amines Using Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor, Nano Lett. 2008, 8, 2219.
    132 Y. Che, X. Yang, L. Zang, Ultraselective fluorescent sensing of Hg~(2+) through metal coordination-induced molecular aggregation, Chem. Commun. 2008, 1413.
    133 J. Wang, Y. F. Zhao, J. H. Zhang, J. Y. Zhang, B. Yang, Y. Wang, D. K. Zhang, H. You, D. G. Ma, Assembly of One-Dimensional Organic Luminescent Nanowires Based on Quinacridone Derivatives,J. Phys. Chem. C 2007, 9177.
    134 H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, H. Nakanishi, Size-Dependent Colors and Luminescences of Organic Microcrystals, Jpn. J. Appl. Phys. Part 2 1996, 35(2B), L221.
    135 H. B. Fu, J. N. Yao, Size Effects on the Optical Properties of Organic Nanoparticles, J. Am. Chem. Soc. 2001, 123, 143.
    136 H. B. Fu, D. B. Xiao, J. N. Yao, G. Q. Yang, Nanofibers of 1,3-Diphenyl-2-pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles, Angew. Chem. Int. Ed. 2003, 42, 2883.
    137 H. B. Liu, Y. L. Li, S. Q. Xiao, H. Y. Gan, T. G. Jiu, H. M. Li, L. Jiang, D. B. Zhu, D. P. Zhu, B. Xiang, Y. F. Chen, Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction, J. Am. Chem. Soc. 2003, 125, 10794.
    138 B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song, S. Y. Park, Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative, J. Am. Chem. Soc. 2004, 126, 10232.
    139 P. Yan, A. Chowdhury, M. W. Holman, D. M. Adams, Self-Organized Perylene Diimide Nanofibers, J. Phys. Chem. B 2005, 109, 724.
    140 K. L. Genson, J. Holzmueller, M. Ornatska, Y. S. Yoo, M. H. Par, M. Lee, V. V. Tsukruk, Assembling of Dense Fluorescent Supramolecular Webs via Self-Propelled Star-Shaped Aggregates, Nano Lett. 2006, 6, 435.
    141 F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun. 2004, 1564.
    142 K. Balakrishnan, A. Datar, T. Naddo, J. L. Huang, R. Oitker, M. Yen, J. C. Zhao, L. Zang, Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control, J. Am. Chem. Soc. 2006, 128, 7390.
    143 W. Su, Y. Zhang, C. Zhao, X. Li, J. Jiang, Self-Assembled Organic Nanostructures: Effect of Substituents on the Morphology, ChemPhysChem 2007, 8, 1857.
    144 J. A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation, and perfluoroalkylation reactions, Chem. Rev. 2004, 104, 6119.
    145 S. A. Jenekhe, J. A. Osaheni, Excimers and Exciplexes of Conjugated Polymers, Science 1994, 265, 765.
    146 Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides, Science 2001,291, 1947.
    147 Z. Liu, S. Peng, Q. Xie, Z. Hu, Y. Yang, S. Zhang, Y. Qian, Large-scale synthesis ultralong Bi_2S_3 nanoribbons via solvothermal process, Adv. Mater. 2003, 936.
    148 L. X. Zheng, M. J. O'Connel, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, Y. T. Zhu, Ultralong single-wall carbon nanotubes, Nature Materials 2004, 3, 673.
    149 X. Sun, M. Hagner, Mixing Aqueous Ferric Chloride and O-Phenylenediamine Solutions at Room Temperature: A Fast, Economical Route to Ultralong Microfibrils of Assemblied O-Phenylenediamine Dimers, Langmuir 2007, 23, 10441.
    150 G. R. Desiraju, Hydrogen Bridges in Crystal Engineering: Interactions without Borders, Acc. Chem. Res. 2002, 35, 565.
    151 J.-H. Fuhrhopa, W. Helfrich, Fluid and solid fibers made of lipid molecular bilayers, Chem. Rev. 1993, 93, 1565.
    152 C. Thalacker, F. Würther, Chiral perylene bisimide-melamine assemblies: hydrogen bond-directed growth of helically stacked dyes with chiroptical properties, Adv. Funct. Mater. 2002,12, 209.
    153 A. Brizard, R. Oda, I. Huc, Chirality effects in self -assembled fibrillar networks, Top. Curr. Chem. 2005, 256, 167.
    154 A. Ajayaghosh, V. K. Praveen, p-organogels of self-Assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. Acc. Chem. Res. 2007, 40, 644.
    155 K. Maeda, E. Yashima, Dynamic helical structures: detection and amplification of chirality, Top. Curr. Chem. 2006, 265, 47.
    156 A. R. A. Palmans, E. W. Meijer, Amplification of chirality in dynamic supramolecular aggregates, Angew. Chem. Int. Ed. 2007, 46, 8948.
    157 S. N. Fejer, D. J. Wales, Helix self-assembly from anisotropic molecules, Phys. Rev. Lett. 2007, 99,086106.
    158 W. Yang, X. Chai, L. Chi, X. Liu, Y. Cao, R. Lu, Y. Jiang, X. Tang, H. Fuchs, T. Li, From achiral molecular components to chiral supermolecules and supercoil self-assembly, Chem,Eur.J. 1999,5, 1144.
    159 J. Yuan, M. Liu, Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl)naphtha[2,3]imidazole through interfacial coordination, J. Am. Chem. Soc. 2003, 125,5051.
    160 X. Huang, C. Li, S. Jiang, X. Wang, B. Zhang, M. Liu, Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphliphilic barbituric acid, J. Am. Chem. Soc. 2004, 126, 1322.
    161 M. Wang, Y.-L. Yang, K. Deng, C. Wang, Uncoiling process of helical molecular fibrillar structures studied by AFM, J. Phys. Chem. C 2007, 111, 6194.
    162 J. Wang,, Y. F. Zhao, J. H. Zhang, J. Y. Zhang, B. Yang, Y. Wang, D. K. Zhang, H. You, D. G. Ma, Assembly of one-dimensional organic luminescent nanowires based on quinacridone derivatives, J. Phys. Chem. C 2007, 111, 9177.
    163 J. Cornil, D. A. dos Santos, D. Beljonne, Z. Shuai, J. L. Brédas, In Semiconducting Polymers; G. Hadziioannou, P. F., Eds, van Hutten, Wiley-VCH: Weinheim, 2000, 88-114.
    164 D. Horn, J. Gieger, Organic Nanoparticles in the Aqueous, Angew. Chem. Int. Ed. 2001,40,4330-4361.
    165 R. Hilfiker, Polymorphism in the Pharmaceutical Industry, Wiley-VCH: Weinheim, 2006, 47.
    166 B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, 2004, 50 and 194.
    167 M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al, Gaussian 03, Revision C.02. Gaussian, Inc.: Pittsburgh, PA 2003.
    168 Q. X. Tang, H. X. Li, M. He, W. P. Hu, C. M. Liu, K. Q. Chen, C. Wang, Y. Q. Liu, D. B. Zhu, Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine, Adv. Mater. 2006, 18, 65.
    169 B. Song, H. Wei, Z. Q. Wang, X. Zhang, M. Smet, W. Dehaen, Supramolecular Nanofibers by Self-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and Stacking Interactions,Adv. Mater. 2007, 19, 416.
    170 Organic Photochromic and Thermochromic Compounds (Eds.: J. C. Crano, R. Guglielmetti), Plenum, New York, 1999.
    171 M. Irie, Chiroptical Molecular Switches, Chem. Rev. 2000, 100, 1683.
    172 F. M. Raymo, M. Tomasulo, Optical Processing with Photochromic Switches, Chem. Eur. J. 2006, 12,3186.
    173 J. B. Beck, S. J. Rowan, Multi-Stimuli, Multi-Responsive Metallo-Supramolecular Polymers, J. Am. Chem. Soc. 2003, 125, 13922.
    174 S. Wang, W. Shen, Y. Feng, H. Tian, A multiple switching bisthienylethene and its photochromic fluorescent organogelator, Chem. Commun. 2006, 1497.
    175 C. Wang, Z. Wang, D. Zhang, D. Zhu, Thermal modulation of the monomer /excimer fluorescence for bispyrene molecules through the gel-solution transition of an organogel: A thermo-driven molecular fluorescence switch, Chem. Phy. Lett. 2006, 428, 130.
    176 M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, S. Shinkai, Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching, Chem. Commun. 2005, 4149.
    177 J.G. Masters, J.M. Ginder, A.G. MacDiarmid, A.J. Epstein, Thermochromism in the insulating forms of polyaniline: Role of ring-torsional conformation, J. Chem. Phys. 1992,4768.
    178 F. Babudri, G. M. Farinola, F. Naso, R. Ragni, Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom, Chem. Commun. 2007, 1003.
    179 D. Horn, J. Rieger, Organic nanoparticles in the aqueous phase-theory, experiment, and use, Angew. Chem. Int. Ed. 2001, 40, 4331.
    180 T. E. Kaiser, H. Wang, V. Stepanenko, F. Würthner, Supramolecular Construction of Fluorescent J-Aggregates Based on Hydrogen-Bonded Perylene Dyes, Angew. Chem. Int. Ed. 2007, 46, 5541.
    181 J. Cornil, D. Beljonne, J. P. Calbert, J. L. Brédas, Interchain Interactions in Organic pi-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport, Adv. Mater. 2001, 13,1053.
    182 Z. Xie, H. Wang, F. Li, W. Xie, L. Liu, B. Yang, L. Ye, Y. Ma, Crystal Structure of a Highly Luminescent Slice Crystal Grown in the Vapor Phase: A New Polymorph of 2,5-Diphenyl-1,4-distyrylbenzene, Cryst. Growth Des. 2007, 7, 25120.
    183 W. J. Feast, P. W. L(o|¨)venich, H. Puschmann, C. Taliani, Synthesis and structure of 4,4-bis(2,3,4,5,6-pentafluorostyryl)stilbene, a self-assembling J-aggregate based on aryl-fluoroaryl interactions, Chem. Commun. 2001, 505.
    184 M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al, Gaussian 03, Revision C.02. Gaussian, Inc.: Pittsburgh, PA 2003.
    185 G. Gigli, F. Della Sala, M. Lomascolo, M. Anni, G. Barbarella, A. Di Carlo, P. Lugli, R. Cingolani, Photoluminescence Efficiency of Substituted Quaterthiophene Crystals, Phys. Rev. Lett. 2001, 86, 167.
    186 B. Dunn, J. I. Zink, Molecules in Glass: Probes, Ordered Assemblies, and Functional Materials, Acc. Chem. Res. 2007, 40, 747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700