用户名: 密码: 验证码:
抗生素、益生菌及银耳孢子发酵物对猪肠道硬壁门菌和拟杆门菌、脂肪沉积和脂肪代谢相关基因表达的影响及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肠道菌群种类和数量可以影响宿主脂肪沉积,而硬壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)是哺乳动物肠道中的优势菌群。前人的研究主要集中在粪便或食糜中菌群,反映大肠肠腔内菌群,不能反映小肠内及肠粘膜菌群。小肠内菌群与大肠明显不同,肠粘膜菌群与肠腔菌群明显不同。本研究在考察不同沉脂能力猪脂肪沉积和回肠内容物、回肠粘膜菌群差异的基础上,研究回肠粘膜菌群与脂肪沉积的关系和G-细菌细胞壁成分LPS及其受体TLR4与肠道粘膜菌群的关系,在此基础上考察不同微生态调节剂对猪回肠粘膜菌群、脂肪沉积、血液生化指标、炎性因子基因和脂肪代谢相关基因表达的影响,初步探讨肠粘膜菌群影响脂肪沉积的作用途径。研究包括以下四个试验:
     试验一猪回肠粘膜和食糜菌群与脂肪沉积的关系
     为研究肠粘膜上菌群与脂肪沉积的关系,本试验考察不同沉脂能力猪回肠粘膜和回肠食糜菌群差异和脂肪沉积差异。选取日龄接近,体重20kg左右杜洛克x梅山猪(DM)和杜长大猪(DLY)各6头,单笼饲养,饲喂同一玉米-豆粕日粮,试猪达110kg时全部屠宰,测定背膘厚度、眼肌面积、板油重和肌内脂肪含量,并采集回肠粘膜样品,采用根据细菌16S rDNA基因序列的实时荧光定量PCR方法测定回肠粘膜中硬壁菌门、拟杆菌门和总细菌拷贝数。结果表明:(1)DLY猪试验期极显著短于DM猪(P<0.01),平均日增重极显著高于DM猪(P<0.01),而平均日采食量显著低于DM猪(P<0.05),料肉比极显著低于DM猪(P<0.01)。DM猪和DLY猪板油重无显著差异,而DM猪的屠宰率、平均背膘厚度、眼肌面积和肌内脂肪含量均极显著高于DLY猪(P<0.01)。(2)两种猪回肠食糜中总细菌、硬壁菌和拟杆菌数量均高于回肠粘膜(P<0.01)。不同种类猪之间对比,DM猪回肠食糜中硬壁菌数量显著高于DLY猪(P<0.05)。而回肠食糜总细菌、拟杆菌及粘膜中总细菌、硬壁菌和拟杆菌在两种猪间无显著差异。DM猪回肠食糜和粘膜中硬壁菌和拟杆菌的比值均高于DLY猪(P<0.01)。(3)猪食糜中占总细菌比例最大的是硬壁菌(P<0.01),但回肠粘膜中占总细菌比例最大的是拟杆菌(P<0.01)。(4)肠粘膜和食糜中硬壁菌相对丰度、硬壁菌/拟杆菌比值与平均背膘厚正相关(P<0.01,P<0.01),而拟杆菌相对丰度与平均背膘厚度负相关(P<0.01)。硬壁菌/拟杆菌比值对背膘厚的影响大于硬壁菌/总细菌比值。
     试验二猪回肠粘膜菌群与血浆LPS水平、TLR4、TLR5基因表达量的关系
     本试验考察猪回肠粘膜菌群与血浆LPS水平、TLR4、TLR5基因的关系,试验动物和试验设计同试验一。屠宰后取回肠粘膜和皮下脂肪样品,测定回肠粘膜中硬壁菌门、拟杆菌门和总细菌数量,测定回肠粘膜和皮下脂肪中TLR4、TLR5基因相对于β-actin基因的表达量以及宰前血浆中LPS水平。结果表明:DM猪回肠粘膜和皮下脂肪中TLR4mRNA表达水平显著高于DLY猪(P<0.05)。DM猪和DLY猪回肠粘膜中TLR5mRNA相对表达量无显著差异(P>0.05)。两种猪皮下脂肪TLR4mRNA表达量均极显著高于回肠粘膜(P<0.01)。皮下脂肪和回肠粘膜中TLR4mRNA表达水平与肠道硬壁菌/拟杆菌比值均呈正相关关系(P<0.01),其决定系数R2分别为0.7437和0.7739。血浆LPS水平与硬壁菌/拟杆菌比值呈正的线性关系(P<0.01),其中血浆LPS水平与回肠粘膜中硬壁菌/拟杆菌比值相关性强于血浆LPS水平与回肠食糜中硬壁菌/拟杆菌比值的相关性。
     试验三微生态调节剂对猪生产性能、胴体品质和回肠粘膜菌群的影响
     试验一证明肠粘膜硬壁菌/拟杆菌比值与背膘厚呈正相关,且其相关关系强于食糜中菌群这一比值与背膘厚的关系。试验二证明肠粘膜硬壁菌/拟杆菌比值与血浆LPS、LPS受体TLR4基因表达水平呈正相关。为了进一步验证试验一和实验二结果,本试验考察不同微生态调节剂:硫酸粘杆菌素、芽孢杆菌和银耳孢子发酵物对猪生产性能、胴体品质和回肠粘膜菌群的影响。选取日龄接近,体重20+0.63kg的DLY猪24头,分为4个处理,每个处理6个重复,每个重复1头猪。4个处理组分别为对照组(C组,不加抗生素),硫酸粘杆菌素组(CS组),芽孢杆组(BS组),银耳孢子发酵物组(TFS组)。试猪达110kg左右时屠宰,每个处理屠宰4头猪,测定生产性能、胴体指标和回肠粘膜硬壁菌、拟杆菌及总细菌数量。结果表明:(1)硫酸粘杆菌素、芽孢杆菌和银耳孢子发酵物均可提高试猪生产性能。(2)各种微生态调节剂对DLY猪屠宰率和板油重无显著影响。硫酸粘杆菌素极显著降低试猪背膘厚度(P<0.01),有降低硬壁菌/总细菌比例和硬壁菌/拟杆菌比值及升高拟杆菌/总细菌比例的趋势;而芽孢杆菌极显著提高试猪背膘厚度(P<0.01),显著提高硬壁菌/总细菌比例(P<0.05)、有降低拟杆菌/总细菌比例和提高硬壁菌/拟杆菌比值的趋势。银耳孢子发酵物极显著提高试猪背膘厚度(P<0.01),极显著降低拟杆菌/总细菌比例(P<0.01)。(3)不同肠道微生态调节剂作用下猪平均背膘厚与回肠粘膜硬壁菌/总细菌和硬壁菌/拟杆菌比值呈正的线性关系(P<0.05)。
     试验四微生态调节剂对猪血清指标、炎性因子和脂肪代谢相关基因表达量的影响
     试验三结果验证了试验一的结论,为探讨肠道菌群影响脂肪沉积的作用途径,本试验在试验三的基础上考察硫酸粘杆菌素、芽孢杆菌和银耳孢子发酵物对猪血液生化指标、脂肪代谢相关基因和炎症因子基因表达量的影响。试验动物和试验设计同试验三,在试验三试猪体重达20kg.50kg和110kg体重时禁食13h后,早上8点左右前腔静脉采血,用以测定血浆LPS、血清中葡萄糖、胰岛素、瘦素和脂质水平。并在试猪达110kg体重时采集皮下脂肪和回肠粘膜,用以测定炎性因子基因和脂肪代谢相关基因的表达量。试验结果表明:(1)芽孢杆菌极显著提高试猪血浆脂多糖水平(P<0.01),硫酸粘杆菌素和银耳孢子发酵物有提高血浆脂多糖水平的趋势(P>0.05)。(2)微生态调节剂对不同体重阶段猪血液指标影响不同,但表现出一定趋势:硫酸粘杆菌素提高血糖、胰岛素水平,降低血清瘦素水平;芽孢杆菌降低血糖水平,提高血清瘦素水平;银耳孢子发酵物降低血糖、胰岛素水平,提高血清瘦素水平。硫酸粘杆菌素有降低猪血清总甘油三酯、胆固醇、游离脂肪酸水平的趋势;芽孢杆菌有提高血清甘油三酯,总胆固醇水平的趋势;银耳孢子发酵物有降低110kg阶段猪血清甘油三酯和总胆固醇水平的趋势。(3)不同微生态调节剂对不同组织炎性因子基因表达量影响不同,但总体上讲,硫酸粘杆菌素降低TLR4.TNF-α、IL1β和IL6表达量,芽孢杆菌提高TLR4、 TNF-α、IL1β和IL6表达量,银耳孢子发酵物提高TLR4-TNF-α、IL1β表达量。(4)硫酸粘杆菌素降低猪脂肪合成相关基因的表达,提高脂肪分解转运相关基因的表达;芽孢杆菌提高脂肪合成相关基因的表达量,对脂肪分解基因表达量影响较小;银耳孢子发酵物提高猪脂肪分解相关基因表达量,降低脂肪合成相关基因表达量。
     综上所述:
     (1)猪回肠粘膜中总细菌、硬壁菌和拟杆菌数量均显著低于回肠食糜中各类细菌数量
     (2)硬壁菌/拟杆菌比值对背膘厚的影响大于硬壁菌/总细菌比值;猪回肠粘膜硬壁菌/拟杆菌比值与脂肪沉积的相关关系强于回肠食糜硬壁菌/拟杆菌比值与脂肪沉积的相关关系
     (3)猪血浆LPS水平与回肠硬壁菌/拟A杆菌比值正相关;猪脂肪组织和回肠粘膜TLR4基因表达水平与肠粘膜硬壁菌/拟杆菌比值正相关
     (4)根据实验一得出的相关关系,CS降低试猪背膘厚与其减小硬/总和硬/拟比值结果一致;BS增加试猪背膘厚与其增加硬/总和硬/拟比值结果一致;而TSF增加试猪背膘厚与其增加硬/总结果一致,但减小硬/拟比值结果不一致
     (5)不同微生态制剂作用下背膘厚和硬壁门菌/拟杆菌的变化规律与血浆LPS,TLR4基因的变化不完全一致
     (6)硫酸粘杆菌素、芽孢杆菌可能通过影响猪肠道食糜和粘膜中硬壁菌、拟杆菌数量及丰度,从而影响试猪皮下脂肪和回肠粘膜炎性因子基因的表达,脂肪代谢关键酶基因的表达,而最终影响脂肪的沉积能力。而银耳孢子发酵物影响脂肪沉积的作用与回肠菌群变化无关。
Gut microbiota which is mainly consisted of Firmicutes and Bacteroidetes divisions has been shown to affect fat storage and energy harvesting of host.Previous studies mainly focused on the flora in the feces or digesta, reflecting flora of the intestine lumen not the intestinal mucosa flora. Mucosa flora composition was significantly different from intestine lumen.Duroc x Meishan and DLY pigs has different capable of fat deposition. The amount of fat deposition and the intestinal flora of the two kinds of rossbred pigs were investigated. Then the correlation between intestinal mucosa flora and the amount of fat deposition was studied. And the correlation between intestinal mucosa flora and the expression level of TLR4was studied. The effect of different microbial modulator on intestinal mucosa flora, the amount of fat deposition, blood biochemical parameters, the inflammatory factor gene and fat metabolism gene expression were investigated. The mechanism that the gut microbiota regulates fat storage in pigs was also investigated. Four experiments were conducted as follows:
     EXP.1The correlation between intestinal mucosa flora and the amount of fat deposition of pigs
     To study the relationship between intestinal mucosa flora and the amount of fat deposition, the amount of fat deposition and the intestinal flora of Duroc x Meishan(DM) and DLY pigs were investigated. Six DM pigs and Six DLY pigs(about20kg) were feed the same corn-soybean meal. Each pig was removed from the test on the day it most nearly approximated110kg. Every pig from each treatment were slaughtered, and the backfat depth, longissimus muscle area, leaf lard weight and intramuscular fat content of pigs were measured. Ileum mucosa were collected for detecting the16S rDNA gene sequence of total bacterial, Firmicutes and Bacteroidetes divisions using the RT-PCR method. Results of the experiment indicated that:(1) DLY pigs trial period was significantly shorter than the DM pigs(P<0.01), average daily gain was significantly higher than DM pigs (P<0.01), while the average daily feed intake was significantly lower than DM pigs (P <0.05), F/G was significantly lower than DM pigs (P<0.01). Leaf lard weight was no significant different between DM and DLY pigs. The yield of carcass, average backfat depth, longissimus muscle area, intramuscular fat content of DM pigs were significantly higher than DLY pigs (P<0.01).(2)The copy numbers of total bacterial,Firmicutes and Bacteroidetes divisions of ileum contents from both kind pigs were significantly higher than ileum mucosa(P<0.01). The copy numbers of Firmicutes divisions of ileum contents from DM pigs were significantly higher than DLY pigs(P<0.05). There were no significant different of total bacterial, Firmicutes and Bacteroidetes divisions of ileum mucosa between two kinds of rossbred pigs. The copy numbers of Firmicutes and Bacteroidetes divisions of ileum contents and ileum mucosa frome DM pigs were significantly higher than DLY pigs(P<0.01).(3)Both kind pigs having the sum of percents of Firmicutes and Bacteroidetes divisions of ileum contents and ileum mucosa which were about85%. Firmicutes of ileum contents from both kind pig has the largest proportion(P<0.01) while Bacteroidetes of ileum mucosa has the largest proportion(P<0.01).(4) The relative abundance of Firmicutes, Firmicutes/Bacteroides ratio of gut lumenal contents and intestinal mucosa were positively correlated to average backfat(.P<0.01,.P<0.01), while the relative abundance of Bacteroides and average backfat thickness negatively correlated (.P<0.01).
     EXP.2The relationship between ileum mucosa flora and plasma LPS level, TLR4, TLR5gene expression level of pigs
     The relationship between ileum mucosa flora and plasma LPS level, TLR4, TLR5gene expression level was studied,animal and the experimental design were the same to EXP.1. After slaughter, ileum mucosa and subcutaneous fat were collected for measuring the copy numbers of Firmicutes and Bacteroidetes divisions and expression level of TLR4and TLR5. Results of the experiment indicated that:TLR4mRNA expression levels of intestinal mucosa and subcutaneous fat from DM pigs were significantly higher than DLY pigs (P<0.05). TLR5mRNA expression levels of intestinal mucosa from DM pigs was no significant different from DLY pigs. TLR4mRNA expression levels of subcutaneous fat from both kind pigs was significantly higher than intestinal mucosa(P<0.01). TLR4mRNA expression levels of intestinal mucosa and subcutaneous fat were positive correlated to intestine Firmicutes/Bacteroidetes, The coefficient of determination R2were0.7437and0.7739respectively.
     EXP.3The effect of the of microbial regulators on pig performance, carcass quality and mucosal flora
     The EXP.1proved that the ratio of Firmicutes/Bacteroidetes was positively correlated to fat deposition amount, and the coefficient of determination was higher than the one of ileum contents. To further validate this relationship, the effect of colistin sulfate, Bacillus and white fungus spores fermentation products on pig production performance, carcass quality and mucosa flora were investigated.24pigs (20±0.63kg) were randomly allotted into4dietary treatments with6replicate pens per treatment and1pig per pen:(1) control diets containing no antibiotic (C group),(2) colistin sulfate added to the control diets (CS group),(3) Bacillus added to the control diets (BS group),(4) TFS added to the control diets (TFS group). Each pig was removed from the test on the day it most nearly approximated110kg.4pigs from each treatment were slaughtered, and the backfat depth, longissimus muscle area, leaf lard weight, intramuscular fat content and the copy number of total bacterial, Firmicutes and Bacteroidetes of ileum mucosa were measured. Results of the experiment indicated that:(1) The colistin sulfate, probiotics and white fungus spores fermentation products improved pig performance.(2) Variety of microbial modulator showed no significant effect on yield of carcass and leaf lard weight.The colistin sulfate significantly reduced the pig backfat thickness (P<0.01), and probiotics and white fungus spores fermentation products significantly improved pig backfat depth, longissimus muscle area and intramuscular fat content.(3)There were no significantly differences among the copy numbers of total bacterial,Firmicutes and Bacteroidetes. Colistin sulfate had no effect on the rate of Firmicutes/total bacterial and Firmicutes/Bacteroidetes, but had trends of reducing the rate of Firmicutes/total bacterial, Firmicutes/Bacteroidetes and increasing the rate of Bacteroidetes/total bacterial. Probiotic significantly increased the rate of Firmicutes/total bacterial(P<0.05) and had trends of reducing the rate of Bacteroidetes/total bacterial and increasing the rate of Firmicutes/Bacteroidetes. White fungus spores fermentation products significantly reduced the rate of Bacteroidetes/total bacterial. The BS and TSF goup had higher rate of Firmicutes/total bacterial than CS group(P<0.05). The TSF goup had the lowest rate of Bacteroidetes/total bacterial than CS group(P<0.01).
     EXP.4Effect of microbial modulator on pig serum indicators inflammatory factors and fat metabolism gene expression levels
     The EXP.3verified the conclusion of the EXP.1, to study the pathway of intestinal flora affecting fat deposition, the effect of microbial regulators on pig blood biochemical indicators, the expression levels of fat metabolism-related genes and the inflammatory cytokines were investigated. Animals and experimental design were same to EXP.3. Vena cava blood were sampled for determination of plasma LPS, serum glucose, insulin, leptin, and lipid levels when pigs have weights up to20kg,50kg and110kg. Subcutaneous fat and intestinal mucosa were sampled for determination of inflammatory factors and fat metabolism gene expression levels. Results of the experiment indicated that:(1)The probiotic significantly increased the level of plasma lipopolysaccharide, colistin sulfate and white fungus spores fermentation products trend to increase plasma lipopolysaccharide levels.(2)Microbial modulator has different effect on blood indicators of different weight stage pigs, but showed some trend:the colistin sulfate raise plasma glucose and insulin levels, and lower serum leptin levels; probiotics reduce plasma glucose levels, serum leptin levels; TSF lower plasma glucose and insulin levels, serum leptin levels. Colistin sulfate trend to reduce the pig serum total triglycerides, cholesterol, free fatty acids; probiotics trend to increase serum triglycerides, total cholesterol; TSF trend to reduce110kg stage pig serum triglycerides and total cholesterol.(3) Microbial modulator has different effect on inflammatory factor gene expression levels of different tissue, but generally speaking, colistin sulfate reduce TLR4, TNF-a, IL1β and IL6expression levels, probiotics increase TLR4, TNF-a, IL1β and IL6expression levels, and TSF increase TLR4, TNF-a, IL1β.(4)The colistin sulfate reduced the pig fat synthesis gene expression, increased lipolysis and fat transport related gene expression; probiotics increased fat synthesis genes expression, reduce lipolysis gene expression; TSF increase pig fat decomposition related gene expression levels, reduce fat synthesis gene expression.
     In summary, the results of this study showed that:
     (1) The total bacteria, relative abundance of Firmicutes and Bacteroides from ileal mucosa were significantly lower than the lumenal
     (2) The effect of Firmicutes/Bacteroides ratio on backfat thickness is stronger than Firmicutes/total bacteria ratio; Lleum mucosa Firmicutes/Bacteroides ratios has stronger correlation to fat deposition than ileal digesta in pig
     (3) Porcine plasma LPS levels and ileum Firmicutes/Bacteroides ratio were positively correlated; TLR4gene expression levels in porcine adipose tissue and the Ileum mucosa were positively correlated to intestinal mucosa Firmicutes/Bacteroides ratio
     (4) According to the results of Exp.1, CS decrease backfat thickness is consistent with decreasing Firmicutes/Bacteroides ratio; BS increase backfat thickness is consistent with increasing Firmicutes/Bacteroides ratio; TSF increase backfat thickness is inconsistent with decreasing Firmicutes/Bacteroides ratio
     (5) Under the action of different probiotics backfat thickness and Firmicutes/Bacteroides variation are not entirely consistent with plasma LPS, TLR4gene changes
     (6) Colistin sulfate, Bacillus may influence the number and abundance of Firmicutes and Bacteroides in pig intestine, thus affecting the trial pig backfat and intestinal inflammatory cytokines gene expression, fat metabolism key enzyme gene expression, and ultimately affect the ability of fat deposition.The Tremella fuciformis ferment substance affect the role of fat deposition has nothing to do with ileal flora..
引文
[1]Backhed, F.,Ding, H.,Wang, T., etc. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, November 2,2004,2004,101 (44):15718-15723.
    [2]Turnbaugh, P. J.,Ley, R. E.,Mahowald, M. A., etc. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444 (7122):1027-131.
    [3]Ley, R. E.,Backhed, F.,Turnbaugh, P., etc. Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, August 2, 2005,2005,102(31):11070-11075.
    [4]Guo, X.,Xia, X.,Tang, R., etc. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs[J]. Letters in Applied Microbiology,2008,47 (5):367-373.
    [5]Schwiertz, A.,Taras, D.,Schafer, K., etc. Microbiota and SCFA in Lean and Overweight Healthy Subjects[J]. Obesity,2009,18 (1):190-195.
    [6]Waldram, A.,Holmes, E.,Wang, Y., etc. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents[J]. J Proteome Res, May,2009,8 (5): 2361-75.
    [7]Bhat, P.,Albert, M. J.,Rajan, D., etc. Bacterial flora of the jejunum:a comparison of luminal aspirate and mucosal biopsy[J]. J Med Microbiol, May,1980,13 (2):247-56.
    [8]Pryde, S. E.,Richardson, A. J.,Stewart, C. S., etc. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig[J]. Appl Environ Microbiol, Dec,1999,65 (12):5372-7.
    [9]Zoetendal, E. G.,von Wright, A.,Vilpponen-Salmela, T., etc. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces[J]. Appl Environ Microbiol, Jul,2002,68 (7):3401-7.
    [10]Mai, V.,Morris, J. G., Jr. Colonic bacterial flora:changing understandings in the molecular age[J]. J Nutr, Feb,2004,134 (2):459-64.
    [11]Eckburg, P. B.,Bik, E. M.,Bernstein, C. N., etc. Diversity of the Human Intestinal Microbial Flora[J]. Science, June 10,2005,2005,308 (5728):1635-1638.
    [12]Lepage, P.,Seksik, P.,Sutren, M., etc. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD[J]. Inflammatory Bowel Diseases,2005,11 (5):473-480.
    [13]El Aidy, S.,Merrifield, C. A.,Derrien, M., etc. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation[J]. Gut, June 21,2012, 2012.
    [14]Trayhurn, P.,Bing, C.,Wood, I. S. Adipose tissue and adipokines-energy regulation from the human perspective[J]. J Nutr, Jul,2006,136 (7 Suppl):1935S-1939S.
    [15]Lee, D. E.,K.ehlenbrink, S.,Lee, H., etc. Getting the message across:mechanisms of physiological cross talk by adipose tissue[J]. Am J Physiol Endocrinol Metab, Jun,2009,296 (6):E1210-29.
    [16]Cani, P. D.,Amar, J.,iglesias, M. A., etc. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, Jul,2007,56 (7):1761-72.
    [17]Weisberg, S. P.,McCann, D.,Desai, M., etc. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest, Dec,2003,112 (12):1796-808.
    [18]Xu, H.,Barnes, G. T.,Yang, Q., etc. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest, Dec,2003,112 (12): 1821-30.
    [19]Brake, D. K.,Smith, E. O.,Mersmann, H., etc. ICAM-1 expression in adipose tissue:effects of diet-induced obesity in mice[J]. Am J Physiol Cell Physiol, Dec,2006,291 (6):C1232-9.
    [20]Cani, P. D.,Possemiers, S.,Van de Wiele, T., etc. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, Aug,2009,58 (8):1091-103.
    [21]Amar, J.,Chabo, C.,Waget, A., etc. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes:molecular mechanisms and probiotic treatment[J]. EMBO Molecular Medicine,2011,3 (9):559-572.
    [22]Zeigler, C. C.,Persson, G. R.,Wondimu, B., etc. Microbiota in the Oral Subgingival Biofilm Is Associated With Obesity in Adolescence[J]. Obesity,2012,20 (1):157-164.
    [23]Hong, P.-Y.,Croix, J. A.,Greenberg, E., etc. Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity[J]. PLoS ONE,2011,6 (9):e25042.
    [24]Shen, X. J.,Rawls, J. F.,Randall, T., etc. Molecular characterization of mucosal adherent-bacteria and associations with colorectal adenomas[J]. Gut Microbes, May-Jun,2010,1 (3): 138-47.
    [25]欧刚卫.儿童近端小肠粘膜相关菌群分布研究[J].贵州医药,2009,33(8):675-678.
    [26]庞勇,胡铁军,王占博,etc. PIC猪胴体瘦肉率的回归预测研究[J].肉类工业,2004,(4):28-31.
    [27]周丽,陈宏权.皖南花猪的背膘厚度与胴体组成之相关分析[J].畜牧与兽医,2009,41(1):56-58.
    [28]尹佳,周光宏,徐幸莲.基于猪胴体影像分级仪的我国商品猪瘦肉率预测方程的建立[J].食品科学,2010,31(23):84-87.
    [29]Berg, R. D. The indigenous gastrointestinal microflora[J]. Trends Microbiol, Nov,1996,4 (11): 430-5.
    [30]Hooper, L. V.,Midtvedt, T.,Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine[J]. Annu Rev Nutr,2002,22 283-307.
    [31]Whitman, W. B.,Coleman, D. C.,Wiebe, W. J. Prokaryotes:the unseen majority[J]. Proc Natl Acad Sci U S A, Jun 9,1998,95 (12):6578-83.
    [32]Hugenholtz, P.,Goebel, B. M.,Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J]. J Bacteriol, Sep,1998,180 (18): 4765-74.
    [33]Qin, J.,Li, R.,Raes, J., etc. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, Mar 4,2010,464 (7285):59-65.
    [34]Xu, J.,Bjursell, M. K.,Himrod, J., etc. A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis[J]. Science, March 28,2003,2003,299 (5615):2074-2076.
    [35]Manichanh, C.,Rigottier-Gois, L.,Bonnaud, E., etc. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach[J]. Gut, Feb,2006,55 (2):205-11.
    [36]Frank, D. N.,St Amand, A. L.,Feldman, R. A., etc. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases [J]. Proc Natl Acad Sci U S A, Aug 21,2007,104 (34):13780-5.
    [37]Peterson, D. A.,Frank, D. N.,Pace, N. R., etc. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases[J]. Cell Host Microbe, Jun 12,2008,3 (6): 417-27.
    [38]Wen, L.,Ley, R. E.,Volchkov, P. Y, etc. Innate immunity and intestinal microbiota in the development of Type 1 diabetes[J]. Nature, Oct 23,2008,455 (7216):1109-13.
    [39]Kriegel, M. A.,Sefik, E.,Hill, J. A., etc. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice[J]. Proc Natl Acad Sci U S A, Jul 12,2011,108(28):11548-53.
    [40]Qin, J.,Li, Y.,Cai, Z., etc. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, Oct 4,2012,490 (7418):55-60.
    [41]Andersson, A. F.,Lindberg, M.,Jakobsson, H., etc. Comparative analysis of human gut microbiota by barcoded pyrosequencing[J]. PLoS ONE,2008,3 (7):e2836.
    [42]Backhed, F.,Manchester, J. K.,Semenkovich, C. F., etc. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proceedings of the National Academy of Sciences, January 16,2007,2007,104 (3):979-984.
    [43]Turnbaugh, P. J.,Backhed, F.,Fulton, L., etc. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host Microbe, Apr 17,2008, 3 (4):213-23.
    [44]Ley, R. E.,Turnbaugh, P. J.,Klein, S., etc. Microbial ecology:Human gut microbes associated with obesity[J]. Nature,2006,444 (7122):1022-1023.
    [45]Armougom, F.,Henry, M.,Vialettes, B., etc. Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase inLactobacillus in Obese Patients and Methanogens in Anorexic Patients[J]. PLoS ONE,2009,4 (9):e7125.
    [46]Nadal, I.,Santacruz, A.,Marcos, A., etc. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents[J]. Int J Obes (Lond), Jul,2009,33 (7):758-67.
    [47]Turnbaugh, P. J.,Gordon, J. I. The core gut microbiome, energy balance and obesity[J]. The Journal of Physiology,2009,587 (17):4153-4158.
    [48]郭秀兰.猪肠道硬壁菌门和拟杆菌门数量的检测及其相对丰度与脂肪沉积的相关性研究[D].博十学位论文,四川雅安:四川农业大学2009.
    [49]李霞.饲用抗生素和银耳孢子发酵物对猪肠道菌群和体脂沉积的影响及其作用机理[D].雅安:四川农大学动物营养研究所2011.
    [50]Duncan, S. H.,Lobley, G. E.,Holtrop, G., etc. Human colonic microbiota associated with diet, obesity and weight loss[J]. Int J Obes (Lond), Nov,2008,32 (11):1720-4.
    [51]Ott, S. J.,Musfeldt, M.,Timmis, K. N., etc. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage[J]. Diagn Microbiol Infect Dis, Dec,2004,50 (4):237-45.
    [52]Sanchez, E.,Nadal, I.,Donat, E., etc. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children[J]. BMC gastroenterology,2008,850.
    [53]Zhang, H.,DiBaise, J. K.,Zuccolo, A., etc. Human gut microbiota in obesity and after gastric bypass[J]. Proceedings of the National Academy of Sciences, February 17,2009,2009,106 (7):2365-2370.
    [54]Santacruz, A.,Marcos, A.,Warnberg, J., etc. Interplay between weight loss and gut microbiota composition in overweight adolescents[J]. Obesity (Silver Spring), Oct,2009,17 (10): 1906-15.
    [55]Santacruz, A.,Collado, M. C.,Garcia-Valdes, L., etc. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. Br J Nutr, Jul,2010,104(1):83-92.
    [56]Adeola, O.,King, D. E. Developmental changes in morphometry of the small intestine and jejunal sucrase activity during the first nine weeks of postnatal growth in pigs[J]. J Anim Sci, Jan,2006,84(1):112-8.
    [57]张书松.杜洛克猪部分内脏器官解剖常数的测定[J].河南农业科学,1995,(6):31-32.
    [58]Madara, J. L.,Nash, S.,Moore, R., etc. Structure and function of the intestinal epithelial barrier in health and disease[J]. Monogr Pathol,1990, (31):306-24.
    [59]Corfield, A. P.,Myerscough, N.,Longman, R., etc. Mucins and mucosal protection in the gastrointestinal tract:new prospects for mucins in the pathology of gastrointestinal disease[J]. Gut, Oct,2000,47 (4):589-94.
    [60]O'Neil, D. A.,Porter, E. M.,Elewaut, D., etc. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium[J]. J Immunol, Dec 15,1999,163 (12):6718-24.
    [61]Ayabe, T.,Satchell, D. P.,Wilson, C. L., etc. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria[J]. Nat Immunol, Aug,2000,1 (2):113-8.
    [62]Boman, H. G. Innate immunity and the normal microflora[J]. Immunol Rev, Feb,2000,173 5-16.
    [63]Plaut, A. G.,Gorbach, S. L.,Nahas, L., etc. Studies of intestinal microflora.3. The microbial flora of human small intestinal mucosa and fluids[J]. Gastroenterology, Dec,1967,53 (6): 868-73.
    [64]Jarumilinta, R.,Miranda, M.,Villarejos, V. M. A bacteriological study of the intestinal mucosa and luminal fluid of adults with acute diarrhoea[J]. Ann Trop Med Parasitol, Jun,1976,70 (2): 165-79.
    [65]Marteau, P.,Pochart, P.,Dore, J., etc. Comparative study of bacterial groups within the human cecal and fecal microbiota[J]. Appl Environ Microbiol, Oct,2001,67 (10):4939-42.
    [66]Kerckhoffs, A. P.,Samsom, M.,van der Rest, M. E., etc. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients[J]. World J Gastroenterol, Jun 21,2009,15 (23):2887-92.
    [67]Perez, P. F.,Minnaard, Y.,Disalvo, E. A., etc. Surface properties of bifidobacterial strains of human origin[J]. Appl Environ Microbiol, Jan,1998,64 (1):21-6.
    [68]Matto, J.,Malinen, E.,Suihko, M. L., etc. Genetic heterogeneity and functional properties of intestinal bifidobacteria[J]. J Appl Microbiol,2004,97 (3):459-70.
    [69]Wang, M.,Ahrne,S.,Jeppsson, B., etc. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes[J]. FEMS Microbiology Ecology,2005,54 (2):219-231.
    [70]Ahmed, S.,Macfarlane, G. T.,Fite, A., etc. Mucosa-Associated Bacterial Diversity in Relation to Human Terminal Ileum and Colonic Biopsy Samples[J]. Applied and Environmental Microbiology, November 15,2007,2007,73 (22):7435-7442.
    [71]Johansson, M. E.,Phillipson, M.,Petersson, J., etc. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J]. Proc Natl Acad Sci U S A, Sep 30,2008,105 (39):15064-9.
    [72]Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut[J]. Nat Rev Immunol, Jun,2008,8 (6):411-20.
    [73]Duerkop, B. A.,Vaishnava, S.,Hooper, L. V. Immune Responses to the Microbiota at the Intestinal Mucosal Surface[J]. Immunity,2009,31 (3):368-376.
    [74]Gordon, H. A. A morphological and biochemical approach. In a colloquim:Studies on the grow the fect of antibiotics in germ-free animals[J]. Loband Inst.Univ.,1952, (13):7.
    [75]Henry, P. R.,Ammerman, C. B.,Miles, R. D. Influence of virginiamycin and dietary manganese on performance, manganese utilization, and intestinal tract weight of broilers[J]. Poult Sci, Feb,1986,65 (2):321-4.
    [76]Hays, V. W.,Lexington., K.. Antibiotics in swine production:benefits and concerns[J]. Feedstufs,1987, (6):4.
    [77]韩正康.家畜营养生理学[M].北京:农业出版社,1991;16.
    [78]Edens, F. W.,Parkhurst, C. R.,Casas, I. A., etc. Principles of ex ovo competitive exclusion and in ovo administration of Lactobacillus reuteri[J]. Poult Sci, Jan,1997,76 (1):179-96.
    [79]Smith, K.,McCoy, K. D.,Macpherson, A. J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota[J]. Semin Immunol, Apr,2007,19 (2): 59-69.
    [80]Reikvam, D. H.,Erofeev, A.,Sandvik, A., etc. Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression[J]. PLoS ONE,2011,6 (3):e17996.
    [81]Bird, A. R.,Brown, I. L.,Topping, D. L. Starches, resistant starches, the gut microflora and human health[J]. Curr Issues Intest Microbiol, Mar,2000,1(1):25-37.
    [82]Topping, D. L.,Clifton, P. M. Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J]. Physiol Rev, Jul,2001,81 (3):1031-64.
    [83]Sonnenburg, J. L.,Xu, J.,Leip, D. D., etc. Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont[J]. Science, March 25,2005,2005,307 (5717):1955-1959.
    [84]Macfarlane, G.,Gibson, G. Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In Gastrointestinal Microbiology, RI, M.,BA, W., Eds. Chapman & Hall:New York, USA,1997; 268-317.
    [85]Wolever, T.,F, B.,D, R., etc. Effect of rectal infusion of short chain fatty acids in human subjects[J]. Am J Gastroenterol,1989,84 (9):1027-1033.
    [86]Cummings, J. H. Short chain fatty acids in the human colon[J]. Gut, Sep,1981,22 (9): 763-79.
    [87]Roberfroid, M. B. Introducing inulin-type fructans[J]. Br J Nutr, Apr,2005,93 Suppl 1 S13-25.
    [88]Argenzio, R. A.,Southworth, M.,Stevens, C. E. Sites of organic acid production and absorption in the equine gastrointestinal tract[J]. Am J Physiol, May,1974,226 (5):1043-50.
    [89]Owens, F. N.,Isaacson, H. R. Ruminal microbial yields:factors influencing synthesis and bypass[J]. Fed Proc, Feb,1977,36 (2):198-202.
    [90]Cook, S. I.,Sellin, J. H. Review article:short chain fatty acids in health and disease[J]. Aliment Pharmacol Ther, Jun,1998,12 (6):499-507.
    [91]Jorgensen, H.,Zhao, X. Q.,Eggum, B. O. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs[J]. Br J Nutr, Mar,1996,75 (3): 365-78.
    [92]McNeil, N. I. The contribution of the large intestine to energy supplies in man[J]. Am J Clin Nutr, Feb,1984,39 (2):338-42.
    [93]Hoverstad, T. Studies of short-chain fatty acid absorption in man[J]. Scand J Gastroenterol, Apr,1986,21 (3):257-60.
    [94]Hollander, D.,Gerard, E. M.,Boyd, C. A. Transport of butyric acid in vascularly perfused anuran small intestine:importance of pH and anion transport[J]. Am J Physiol, Apr,1986,250 (4 Pt 1):G469-74.
    [95]Argenzio, R. A.,Southworth, M. Sites of organic acid production and absorption in gastrointestinal tract of the pig[J]. Am J Physiol, Feb,1975,228 (2):454-60.
    [96]Rerat, A.,Fiszlewicz, M.,Giusi, A., etc. Influence of meal frequency on postprandial variations in the production and absorption of volatile fatty acids in the digestive tract of conscious pigs[J]. J Anim Sci, Feb,1987,64 (2):448-56.
    [97]McNeil, N. I.,Cummings, J. H.,James, W. P. Short chain fatty acid absorption by the human large intestine[J]. Gut, Sep,1978,19 (9):819-22.
    [98]Ruppin, H.,Bar-Meir, S.,Soergel, K. H., etc. Absorption of short-chain fatty acids by the colon[J]. Gastroenterology, Jun,1980,78 (6):1500-7.
    [99]Roediger, W. E.,Moore, A. Effect of short-chaim fatty acid on sodium absorption in isolated human colon perfused through the vascular bed[J]. Dig Dis Sci, Feb,1981,26 (2):100-6.
    [100]Schwiertz, A.,Taras, D.,Schafer, K., etc. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity (Silver Spring), Jan,2010,18 (1):190-5.
    [101]Murphy, E. F.,Cotter, P. D.,Healy, S., etc. Composition and energy harvesting capacity of the gut microbiota:relationship to diet, obesity and time in mouse models[J]. Gut, December 1, 2010,2010,59 (12):1635-1642.
    [102]Fleissner, C. K.,Huebel, N.,Abd El-Bary, M. M., etc. Absence of intestinal microbiota does not protect mice from diet-induced obesity[J]. Br J Nutr, Sep,2010,104 (6):919-29.
    [103]Kern, P. A.,Ranganathan, S.,Li, C, etc. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance[J]. Am J Physiol Endocrinol Metab, May, 2001,280(5):E745-51.
    [104]Panagiotakos, D. B.,Pitsavos, C.,Yannakoulia, M., etc. The implication of obesity and central fat on markers of chronic inflammation:The ATTICA study[J]. Atherosclerosis, Dec,2005, 183 (2):308-15.
    [105]Syrenicz, A.,Garanty-Bogacka, B.,Syrenicz, M., etc. Low-grade systemic inflammation and the risk of type 2 diabetes in obese children and adolescents[J]. Neuro Endocrinol Lett, Aug, 2006,27 (4):453-8.
    [106]Dandona, P.,Weinstock, R.,Thusu, K., etc. Tumor necrosis factor-alpha in sera of obese patients:fall with weight loss[J]. J Clin Endocrinol Metab, Aug,1998,83 (8):2907-10.
    [107]Shi, H.,Kokoeva, M. V.,Inouye, K., etc. TLR4 links innate immunity and fatty acid-induced insulin resistance[J]. J Clin Invest, Nov,2006,116 (11):3015-25.
    [108]Cani, P. D.,M., N. A.,F., F., etc. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[M]. Heidelberg, ALLEMAGNE:Springer,2007; 10.
    [109]Lichtman, S. N.,Sartor, R. B.,Keku, J., etc. Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth[J]. Gastroenterology, Feb,1990,98 (2):414-23.
    [110]Adachi, Y.,Moore, L. E.,Bradford, B. U., etc. Antibiotics prevent liver injury in rats following long-term exposure to ethanol[J]. Gastroenterology, Jan,1995,108 (1):218-24.
    [111]Rivera, C. A.,Tcharmtchi, M. H.,Mendoza, L., etc. Endotoxemia and hepatic injury in a rodent model of hindlimb unloading[J]. J Appl Physiol, Oct,2003,95 (4):1656-63.
    [112]Cani, P. D.,Bibiloni, R.,Knauf, C., etc. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice[J]. Diabetes, June 2008,2008,57 (6):1470-1481.
    [113]Wang, Z.,Xiao, G.,Yao, Y., etc. The role of bifidobacteria in gut barrier function after thermal injury in rats[J]. The Journal of trauma, Sep,2006,61 (3):650-7.
    [114]Kreeft, A. J.,Moen, C. J.,Porter, G., etc. Genomic analysis of the response of mouse models to high-fat feeding shows a major role of nuclear receptors in the simultaneous regulation of lipid and inflammatory genes[J]. Atherosclerosis, Oct,2005,182 (2):249-57.
    [115]Sparks, L. M.,Xie, H.,Koza, R. A., etc. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle[J]. Diabetes, Jul, 2005,54(7):1926-33.
    [116]Campion, J.,Milagro, F. I.,Fernandez, D., etc. Diferential gene expression and adiposity reduction induced by ascorbic acid supplementation in a cafeteria model of obesity[J]. J Physiol Biochem, Jun,2006,62 (2):71-80.
    [117]Ding, S.,Chi, M. M.,Scull, B. P., etc. High-Fat Diet:Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse[J]. PLoS ONE,2010,5 (8):e12191.
    [118]de Wit, N.,Bosch-Vermeulen, H.,de Groot, P., etc. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice[J]. BMC Medical Genomics,2008,1 (1):14.
    [119]Sansonetti, P. J.,Di Santo, J. P. Debugging how bacteria manipulate the immune response[J]. Immunity, Feb,2007,26 (2):149-61.
    [120]Neal, M. D.,Leaphart, C.,Levy, R., etc. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier[J]. J Immunol, Mar 1,2006,176 (5): 3070-9.
    [121]Keita, A. V.,Salim, S. Y.,Jiang, T., etc. Increased uptake of non-pathogenic E. coli via the follicle-associated epithelium in longstanding ileal Crohn's disease[J]. J Pathol, Jun,2008,215 (2):135-44.
    [122]Kufer, T. A.,Kremmer, E.,Adam, A. C., etc. The pattern-recognition molecule Nodl is localized at the plasma membrane at sites of bacterial interaction[J]. Cell Microbiol, Feb,2008, 10 (2):477-86.
    [123]Moore, F. A.,Moore, E. E.,Poggetti, R., etc. Gut bacterial translocation via the portal vein:a clinical perspective with major torso trauma[J]. The Journal of trauma, May,1991,31 (5): 629-36; discussion 636-8.
    [124]Tomita, M.,Ohkubo, R.,Hayashi, M. Lipopolysaccharide transport system across colonic epithelial cells in normal and infective rat[J]. Drug metabolism and pharmacokinetics, Feb, 2004,19(1):33-40.
    [125]Wright, S. D.,Ramos, R. A.,Tobias, P. S., etc. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein[J]. Science, Sep 21,1990,249 (4975): 1431-3.
    [126]Vreugdenhil, A. C.,Rousseau, C. H.,Hartung, T., etc. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons[J]. J Immunol, Feb 1,2003,170 (3): 1399-405.
    [127]Gewirtz, A. T.,Rao, A. S.,Simon, P. O., Jr., etc. Salmonella typhimurium induces epithelial IL-8 expression via Ca(2+)-mediated activation of the NF-kappaB pathway[J]. J Clin Invest, Jan,2000,105 (1):79-92.
    [128]Gewirtz, A. T.,Navas, T. A.,Lyons, S., etc. Cutting edge:bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression[J]. J Immunol, Aug 15,2001,167 (4):1882-5.
    [129]Hayashi, F.,Smith, K. D.,Ozinsky, A., etc. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature, Apr 26,2001,410 (6832):1099-103.
    [130]Vijay-Kumar, M.,Aitken, J. D.,Carvalho, F. A., etc. Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5[J]. Science, April 9,2010,2010,328 (5975): 228-231.
    [131]Lozupone, C.,Knight, R. UniFrac:a new phylogenetic method for comparing microbial communities[J]. Appl Environ Microbiol, Dec,2005,71 (12):8228-35.
    [132]Zhang, C.,Zhang, M.,Wang, S., etc. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice[J]. ISME J, Feb,2010,4 (2): 232-41.
    [133]Duncan, S. H.,Belenguer, A.,Holtrop, G., etc. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Appl Environ Microbiol, Feb,2007,73 (4):1073-8.
    [134]De Filippo, C.Cavalieri, D.,Di Paola, M., etc. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci U S A, Aug 17,2010,107(33):14691-6.
    [135]Sonnenburg, J. L.,Xu, J.,Leip, D. D., etc. Glycan foraging in vivo by an intestine-adapted bacterial symbiont[J]. Science, Mar 25,2005,307 (5717):1955-9.
    [136]Hehemann, J. H.,Correc, G.,Barbeyron, T., etc. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota[J]. Nature, Apr 8,2010,464 (7290):908-12.
    [137]Orwa, J. A.,Govaerts, C.,Busson, R., etc. Isolation and structural characterization of colistin components[J]. J Antibiot (Tokyo), Jul,2001,54 (7):595-9.
    [138]李德培.抗革兰氏阴性菌促生长剂一粘杆菌素[J].兽药与饲料添加剂,1999,4(1):3.
    [139]蔡辉益,王俐.金霉素、粘杆菌素对肉鸡肠道微生物的影响及其与肉鸡核黄素营养的关系研究[J].动物科学与动物医学,2001,18(1):3.
    [140]Leiva, M.,Moreno, E.,Ruiz-Bravo, A., etc. Immunomodulation by non-absorbable antibiotics given by the intragastric route[J]. International journal of antimicrobial agents, Mar,2005,25 (3):252-5.
    [141]周向东,阳涛.抗生素杀菌过程致内毒素释放的比较性研究[J].中华内科杂志,1998,37(10):3.
    [142]王彩铃,郭效中.黄霉素、硫酸粘杆菌素对生长猪生产性能的影响[J].饲料工业,2002,23(8):2.
    [143]王斌,刘建军.硫酸粘杆菌素、活菌制剂及酶制剂对仔猪生长的影响[J].动物科学与动物医学,2003,20(8):2.
    [144]Pappo, I.,Becovier, H.,Berry, E. M., etc. Polymyxin B reduces cecal flora, TNF production and hepatic steatosis during total parenteral nutrition in the rat[J]. The Journal of surgical research, Aug,1991,51 (2):106-12.
    [145]Guo, F. C, Williams, B. A.,Kwakkel, R. P., etc. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens[J]. Poult Sci, Feb,2004,83 (2):175-82.
    [146]邹建.银耳多糖对断奶仔猪生产性能和肠道菌群及免疫功能的影响[D].硕十学位论文,四川雅安:四川农业大学2006.
    [147]傅祖良.银耳多糖及补充pGRF基因质粒和酵母硒对断奶仔猪生产性能和免疫功能的影响[D].四川雅安:四川农业大学2009.
    [148]李万坤,郭福存,赵兴绪.多糖和寡糖的体外发酵特性及其对鸡盲肠微生物茵群的影响[J].动物营养学报,2007,19(3):5.
    [149]吴子健,陈庆森,闫亚丽.银耳多糖对嗜酸乳杆菌L101发酵生长影响的研究[J].食品研究与开发,2008,29(11):4.
    [150]侯建明,陈刚,蓝进.银耳多糖对脂类代谢影响的实验报告[J].中国疗养医学,2008,17(4):3.
    [151]薛惟建,鞠彪.银耳多糖和木耳多糖对四氧嘧啶糖尿病小鼠高血糖的防治作用[J].中国药科大学学报,1989,20(3):3.
    [152]Ewing, W. N. The living guts[M]. Nottingham:University of Nottingham,1994.
    [153]Scholz-Ahrens, K. E.,Ade, P.,Marten, B., etc. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure[J]. J Nutr, Mar,2007,137 (3 Suppl 2):838S-46S.
    [154]Isolauri, E.,Y, S.,P, K. Probiotics:effect on immunity[J]. Am J Clin Nutr,2001,736.
    [155]Takemura, N.,Okubo, T.,Sonoyama, K. Lactobacillus plantarum strain No.14 reduces adipocyte size in mice fed high-fat diet[J]. Experimental Biology and Medicine, July 1,2010, 2010,235 (7):849-856.
    [156]Ohnuki, K.,Haramizu, S.,Ishihara, K., etc. Increased energy metabolism and suppressed body fat accumulation in mice by a low concentration of conjugated linoleic acid[J]. Biosci Biotechnol Biochem, Oct,2001,65 (10):2200-4.
    [157]Park, Y.,Albright, K. J.,Liu, W., etc. Effect of conjugated linoleic acid on body composition in mice[J]. Lipids, Aug,1997,32 (8):853-8.
    [158]Sato, M.,Uzu, K.,Yoshida, T., etc. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats[J]. Br J Nutr, May,2008,99 (5):1013-7.
    [159]Hamad, E. M.,Sato, M.,Uzu, K., etc. Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats[J]. Br J Nutr, Mar,2009,101 (5):716-24.
    [160]Ma, X.,Hua, J.,Li, Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells[J]. J Hepatol, Nov,2008,49 (5):821-30.
    [161]Tanida, M.,Shen, J.,Maeda, K., etc. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats[J]. Obesity Research& Clinical Practice,2008,2 (3):159-169.
    [163]Kadooka, Y.,Sato, M.,Imaizumi, K., etc. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial[J]. Eur J Clin Nutr,2010,64 (6):636-643.
    [164]Mahdavi, A. H.,Rahmani, H. R.,Pourreza, J. Effect of Probiotic Supplements on Egg Quality and Laying Hen's Performance[J]. International Journal of Poultry Science 2005,4 (5): 488-492.
    [165]Abdulrahim, S. M.,Haddadin, M. S. Y.Hashlamoun, E. A. The influence of Lactobacillus acidophilusand bacitracin on layer performance andcholesterol of plasma and egg yolk[J]. Br. Poult.Sci. Transl. Med.,1996,37341-346.
    [166]Haddadin, M. S. Y.,Abdulrahim, S. M.,Hashlamoun, E. A. R., etc. The effects of Lactobacillusacidophiluson the production and chemicalcomposition of hen's eggs. [J]. Poult. Sci.,1996,75 491-494.
    [167]Mohan, B.,Kadirvel, R.,Bhaskaran, M., etc. Effect of probiotic supplementation on serum/yolk cholesterol and on egg shell thickness in layers[J]. British poultry science, Dec,1995,36 (5): 799-803.
    [168]Sutton, C. D.,Muir, W. M.,Mitchell, G. E., Jr. Cholesterol metabolism in the laying hen as influenced by dietary cholesterol, caloric intake, and genotype[J]. Poult Sci, May,1984,63 (5): 972-80.
    [169]Marks, H. L.,Washburn, K. W. Plasma and yolk cholesterol levels in Japanese quail divergently selected for plasma cholesterol response to adrenocorticotropin[J]. Poult Sci, Mar, 1991,70 (3):429-33.
    [170]Gilliland, S. E.,Nelson, C. R.,Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus[J]. Appl Environ Microbiol, Feb,1985,49 (2):377-81.
    [171]Zacconi, C.,Bottazzi, V.,Rebecchi, A., etc. Serum cholesterol levels in axenic mice colonized with Enterococcus faecium and Lactobacillus acidophilus[J]. Microbiologica, Oct,1992,15 (4):413-7.
    [172]Fukushima, M.,Yamada, A.,Endo, T., etc. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on 86-desaturase activity in the livers of rats fed a fat-and cholesterol-enriched diet[J]. Nutrition (Burbank, Los Angeles County, Calif.),1999,15 (5):373-378.
    [173]Zhou, J. S.,Shu, Q.,Rutherfurd, K. J., etc. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb. acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice[J]. Int J Food Microbiol, May 25,2000,56 (1): 87-96.
    [174]Oda, T.,Hashiba, H. Effects of skim milk and its fermented product by Lactobacillus acidophilus on plasma and liver lipid levels in diet-induced hypertriglyceridemic rats[J]. J Nutr Sci Vitaminol (Tokyo), Dec,1994,40 (6):617-21.
    [175]Richelsen, B.,Kristensen, K.,Pedersen, S. B. Long-term (6 months) effect of a new fermented milk product on the level of plasma lipoproteins--a placebo-controlled and double blind study[J]. Eur J Clin Nutr, Dec,1996,50 (12):811-5.
    [176]Soggard, H. Microbials for feed beyond lactic acid bacteria[J]. Feed international,1990,11 (4): 6.
    [177]Jin, L. Z.,Ho, Y. W.,Abdullah, N., etc. Influence of dried bacillus subtilis and Lactobacilli cultures on intestinal microflora and performance in broilers[J]. Asian-Australasian journal of animal sciences,1996,9 (4):397-403.
    [178]de Valdez, G. F.,Martos, G.,Taranto, M. P., etc. Influence of bile on beta-galactosidase activity and cell viability of Lactobacillus reuteri when subjected to freeze-drying[J]. J Dairy Sci, Sep, 1997,80(9):1955-8.
    [179]Lye, H. S.,Rusul, G.,Liong, M. T. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol[J]. J Dairy Sci, Apr,2010,93 (4):1383-92.
    [180]Tok, E.,Aslim, B. Cholesterol removal by some lactic acid bacteria that can be used as probiotic[J]. Microbiol Immunol, May,2010,54 (5):257-64.
    [181]Tahri, K.,Crociani, J.,Ballongue, J., etc. Effects of three strains of bifidobacteria on cholesterol[J]. Lett Appl Microbiol, Sep,1995,21 (3):149-51.
    [182]Kurdi, P.,Tanaka, H.,Van Veen, H. W., etc. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria[J]. Microbiology, Aug,2003,149 (Pt 8):2031-7.
    [183]Sanders, M. E. Considerations for use of probiotic bacteria to modulate human health[J]. J Nutr, Feb,2000,130 (2S Suppl):384S-390S.
    [184]Pereira, D. I.,McCartney, A. L.,Gibson, G. R. An in vitro study of the probiotic potential of a bile-salt-hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties[J]. Appl Environ Microbiol, Aug,2003,69 (8):4743-52.
    [185]Kobayashi, C.,Yokoyama, H.,Nguyen, S. V., etc. Enhancement of chicken resistance against Escherichia coli infection by oral administration of Bifidobacterium thermophilum preparations[J]. Avian Dis, Jul-Sep,2002,46 (3):542-6.
    [186]Kornegay, E. T.,Risley, C. R. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine[J]. Journal of Animal Science, April 1,1996,1996, 74 (4):799-805.
    [187]高录贵.益生菌对鸡小肠主要菌群与粘膜组织结构的影响[D].硕士学位论文,广州:华南农业大学2007.
    [188]马治宇,赵献军,张晓庆.乳酸菌及其培养液对肉鸡盲肠菌群的影响[J].西北农业学报,2008,17(3):4.
    [189]D'Souza, A. L.,Rajkumar, C.,Cooke, J., etc. Probiotics in prevention of antibiotic associated diarrhoea:meta-analysis[J]. BMJ, Jun 8,2002,324 (7350):1361.
    [190]McFarland, L. V. Meta-analysis of probiotics for the prevention of traveler's diarrhea[J]. Travel Med Infect Dis, Mar,2007,5 (2):97-105.
    [191]B ckhed, F.,Ley, R. E.,Sonnenburg, J. L., etc. The human intestinal microbiota and its relationship to energy balance[J]. Scandinavian Journal of Food & Nutrition,2006,50 121-123.
    [192]Fierer, N.,Jackson, J. A.,Vilgalys, R., etc. Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR AssaysfJ]. Applied and Environmental Microbiology, July 2005,2005,71 (7):4117-4120.
    [193]Wang, X.,Heazlewood, S. P.,Krause, D. O., etc. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis[J]. Journal of Applied Microbiology,2003,95 (3):508-520.
    [194]Kallus, S. J.,Brandt, L. J. The Intestinal Microbiota and Obesity[J]. Journal of Clinical Gastroenterology,2012,46(1):16-2410.1097/MCG.0b013e31823711fd.
    [195]Lu, Y.-C.,Yeh, W.-C.,Ohashi, P. S. LPS/TLR4 signal transduction pathway[J]. Cytokine,5//, 2008,42(2):145-151.
    [196]Manco, M.,Putignani, L.,Bottazzo, G. F. Gut Microbiota, Lipopolysaccharides, and Innate Immunity in the Pathogenesis of Obesity and Cardiovascular Risk[J]. Endocr Rev, December 1,2010,2010,31 (6):817-844.
    [197]Earl, T.,Nicoud, I.,Pierce, J., etc. Silencing of TLR4 Decreases Liver Tumor Burden in a Murine Model of Colorectal Metastasis and Hepatic Steatosis[J]. Annals of Surgical Oncology, 2009,16(4):1043-1050.
    [198]Livak, K. J.,Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, Dec,2001,25 (4):402-8.
    [199]张红梅.武汉汉族人群TLR4.RAGE基因多态性与糖尿病相关性研究及人体白色脂肪组织TLR4表达与肥胖相关性研究[D].湖北武汉:华中科技大学2008.
    [200]Brun, P.,Castagliuolo, I.,Di Leo, V., etc. Increased intestinal permeability in obese mice:new evidence in the pathogenesis of nonalcoholic steatohepatitis[J]. Am J Physiol Gastrointest Liver Physiol, Feb,2007,292 (2):G518-25.
    [201]Cani, P. D.,Bibiloni, R.,Knauf, C., etc. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, Jun,2008,57 (6):1470-81.
    [202]Chavakis, T.,Bierhaus, A.,Al-Fakhri, N., etc. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins:a novel pathway for inflammatory cell recruitment[J]. J Exp Med, Nov 17,2003,198 (10):1507-15.
    [203]Liu, L.,Xiang, K. RAGE Gly82Ser polymorphism in diabetic microangiopathy[J]. Diabetes Care, Apr,1999,22 (4):646.
    [204]Poirier, O.,Nicaud, V.,Vionnet, N., etc. Polymorphism screening of four genes encoding advanced glycation end-product putative receptors. Association study with nephropathy in type 1 diabetic patients[J]. Diabetes, May,2001,50 (5):1214-8.
    [205]Ley, R. E.,Hamady, M.,Lozupone, C., etc. Evolution of Mammals and Their Gut Microbes[J]. Science, June 20,2008,2008,320 (5883):1647-1651.
    [206]Haddadin, M. S.,Abdulrahim, S. M.,Hashlamoun, E. A., etc. The effect of Lactobacillus acidophilus on the production and chemical composition of hen's eggs[J]. Poult Sci, Apr,1996, 75 (4):491-4.
    [207]Mohan, B.,Kadirvel, R.,Natarajan, A., etc. Effect of probiotic supplementation on growth, nitrogen utilisation and serum cholesterol in broilers[J]. British poultry science, May,1996,37 (2):395-401.
    [208]Jin, L. Z.,Ho, Y. W.,Abdullah, N., etc. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures[J]. Poult Sci, Jun,2000,79 (6):886-91.
    [209]何明清.猪微生态饲料添加剂8701对生长肥猪抗病及增重提高饲料利用率研究[J].中国微生态学杂志,1999,2(4):22-23.
    [210]崔西勇,李维炯,倪永珍.微生态制剂对商品蛋鸡应用效果的研究[J].畜牧与兽医,2004,36(12):2.
    [211]胥清富,王金洛,李猛.K94复合活菌剂对蛋鸡产蛋性能、饲料消化率和盲肠菌群的影响[J].畜牧与兽医,1999,(2):3.
    [212]Yeo, J.,Kim, K. I. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicksfJ]. Poult Sci, Feb,1997,76 (2): 381-5.
    [213]杨利,黄仁录.益生康取代抗生素对肉仔鸡生产性能的影响[J].河北畜牧兽医,2005,21(1):2.
    [214]黄沧海.仔猪复合益生乳酸杆菌制剂及其作用机理的研究[D].博士毕业论文,北京:中国农业大学2003.
    [215]张金辉.饲料添加芽孢杆菌和山姜对小鼠生长的影响及其作用机理研究[D].四川雅安:四川农业大学基础兽医学2007.
    [216]Kirchgessner, M.,Roth, F. X.,Eidelsburger, U., etc. [The nutritive efficiency of Bacillus cereus as a probiotic in the raising of piglets.1. Effect on the growth parameters and gastrointestinal environment][J]. Arch Tierernahr,1993,44 (2):111-21.
    [217]Kyriakis, S. C.,Bourtzi-Hatzopoulou, E.,Alexopoulos, C., etc. Field evaluation of the effect of in-feed doxycycline for the control of ileitis in weaned piglets[J]. J Vet Med B Infect Dis Vet Public Health, Sep,2002,49 (7):317-21.
    [218]Membrez, M.,Blancher, F.,Jaquet, M., etc. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice[J]. FASEB J, Jul,2008,22 (7):2416-26.
    [219]Raoult, D. No link between probiotics and obesity? Author reply[J]. Nat Rev Micro,2009,7 (12):901-901.
    [220]王俐,蔡辉益,刘国华.不同抗生素对肉鸡肠道微生物的影响[J].中国饲料,2003,(6):2.
    [221]张敏,苗晓微,段渴慧.合生泰替代金霉泰对肉鸡肠道菌群的影响[J].2007,(4):3.
    [222]汪洋,易力,王淑芳.不同类型吉他霉素对断奶仔猪肠道菌群的影响[J].黑龙江畜牧兽医,2006,(11).
    [223]Tzortzis, G.,Goulas, A. K.,Gee, J. M., etc. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo[J]. J Nutr, Jul,2005,135 (7):1726-31.
    [224]Whelan, K.Judd, P. A.,Preedy, V. R., etc. Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans[J]. J Nutr, Aug,2005,135 (8):1896-902.
    [225]Rao, V.,Ivanov, J.,Weisel, R. D., etc. Lactate release during reperfusion predicts low cardiac output syndrome after coronary bypass surgery[J]. Ann Thorac Surg, Jun,2001,71 (6): 1925-30.
    [226]Nakanishi, Y.,Murashima, K.,Ohara, H., etc. Increase in terminal restriction fragments of Bacteroidetes-derived 16S rRNA genes after administration of short-chain fructooligosaccharides[J]. Appl Environ Microbiol, Sep,2006,72 (9):6271-6.
    [227]Parnell, J. A.,Reimer, R. A. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats[J]. British Journal of Nutrition,2012,107 (04):601-613.
    [228]Ortega-Cava, C. F.,Ishihara, S.,Rumi, M. A. K.., etc. Strategic Compartmentalization of Toll-Like Receptor 4 in the Mouse Gut[J]. The Journal of Immunology, April 15,2003,2003, 170 (8):3977-3985.
    [229]Ghoshal, S.,Witta, J.,Zhong, J., etc. Chylomicrons promote intestinal absorption of lipopolysaccharides[J]. Journal of Lipid Research, January 1,2009,2009,50 (1):90-97.
    [230]Nadhazi, Z.,Takats, A.,Offenmuller, K., etc. Plasma endotoxin level of healthy donors[J]. Acta Microbiol Immunol Hung,2002,49 (1):151-7.
    [231]Brenchley, J. M.,Price, D. A.,Schacker, T. W., etc. Microbial translocation is a cause of systemic immune activation in chronic HIV infection[J]. Nat Med, Dec,2006,12 (12): 1365-71.
    [232]Erridge, C.,Attina, T.,Spickett, C. M., etc. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial infiammation[J]. Am J Clin Nutr, Nov,2007, 86(5):1286-92.
    [233]Kvietys, P. R.,Specian, R. D.,Grisham, M. B., etc. Jejunal mucosal injury and restitution:role of hydrolytic products of food digestion[J]. Am J Physiol, Sep,1991,261 (3 Pt 1):G384-91.
    [234]Velasquez, O. R.,Henninger, K., Fowler, M., etc. Oleic acid-induced mucosal injury in developing piglet intestine[J]. Am J Physiol, Mar,1993,264 (3 Pt 1):G576-82.
    [235]Hathaway, L. J.,Kraehenbuhl, J. P. The role of M cells in mucosal immunity[J]. Cell Mol Life Sci, Feb,2000,57 (2):323-32.
    [236]Catron, D. V.,Bennison, R. W.,Maddock, H. M. Effects of certain antibiotics and vitamin B12 on pantothenic acid requirements of growing-fattening swin[J]. J Anim Sci,1953, (12):10.
    [237]姚浪群,萨仁娜,佟建明.安普霉素对仔猪内分泌的调控作用及血液生化指示的影响[J].动物营养学报,2003,(15):6.
    [238]陈旭东,胥传来,马秋刚.金霉素、果寡糖和芽孢杆菌对断奶仔猪生产性能和血清学指标的影响[J].中国畜牧杂志,2005,413.
    [239]尹富贵,孔祥峰,刘合军.中草药对仔猪生长性能和血清生化参数的影响[J].中国科学院研究生院学报,2007,246.
    [240]王文杰,刘洋,彭珊瑛.凝结芽孢杆菌对小鼠免疫功能和粪便胺含量及肠道中氨含量的影响[J].中国微生态学杂志,2006,18(1):3.
    [241]Yadav, H.,Jain, S.,Sinha, P. R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats[J]. Nutrition, Jan,2007,23 (1): 62-8.
    [242]Yun, S. I.,Park, H. O.,Kang, J. H. Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes[J]. J Appl Microbiol, Nov,2009, 107(5):1681-6.
    [243]刘春卉,俞建国.发酵型金耳多糖的分离纯化及其降血糖活性研究[J].中国农学通报,2009,25(5):5.
    [244]Kiho, T.,Kochi, M.,Usui, S., etc. Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H)[J]. Biol Pharm Bull, Dec,2001,24 (12):1400-3.
    [245]王慧铭,黄素霞,孙炜.香菇多糖对小鼠降血糖作用及其机理的研究[J].中国自然医学杂志,2005,7(3):4.
    [246]M., E.-H. O.,Abdallah, A. G.,Abdel-Latif., K. O. The Influence of biological feed additives on broiler performance[J]. International Journal of Poultry Science,2008,7 (9):9.
    [247]C., R.,Powell, M. D.,William, T. The Influence of nonabsorbable antibioticson serum lipids and the excretion of neutral sterols and bile Acids[J]. Journal of Clinical Nutrition,1962,11 12.
    [248]W., P. T.,Beeson, W. M.,Vosteen, B. W. The Effect of an Antibiotic or a Surfactant on the Growth and Carcass Composition of Swine[J]. J Anim Sci,1953, (12):6.
    [249]Sedaghat, A.,Samuel, P.,Crouse, J. R., etc. Effects of neomycin on absorption, synthesis, and/or flux of cholesterol in man[J]. J Clin Invest, Jan,1975,55 (1):12-21.
    [250]田允波,周家容,李琦华.白术多糖对仔猪生产性能和血清生化参数的影响[J].中国畜牧杂志,2009,45(9):4.
    [251]杭苏琴,黄瑞华,朱伟云.甘露寡糖对断奶仔猪生产性能和血液生化指标的影响[J].中国兽医学报,2009,29(2):4.
    [252]伍淳操,王建华.乳酸菌和甘露寡糖对断奶仔猪生长及血清生化指标的影响[J].江苏农业学报,2011,27(1):94.
    [253]谭聪灵,夏中生,李永民.饲粮中添加果寡糖对生长猪生产性能和免疫机能的影响[J].粮食与饲料工业,2010,(4):4.
    [254]文虹,邹志恒,宋琼莉.果寡糖与甘露寡糖替代抗生素对仔猪血液生化指标的影响[J].饲料研究,2004,(11):3.
    [255]Jenkins, D. J.,Kendall, C. W.,Hamidi, M., etc. Effect of antibiotics as cholesterol-lowering agents[J]. Metabolism, Jan,2005,54 (1):103-12.
    [256]Samuel, P.,Whithe, W. I. Reduction of serum cholesterol concentrations by neomycin, para-aminosalicylic acid, and other antibacterial drugs in man[J]. Circulation, Sep,1961,24 578-91.
    [257]Steiner, A.,Howard, E.,Akgun, S. Effect of antibiotics on the serum cholesterol concentration of patients with astherosclerosis[J]. Circulation, Oct,1961,24729-35.
    [258]Eyssen, H.,Sacquet, E.,Evrard, E., etc. Effect of neomycin on cholesterol levels and bile acid excretion in germfree and conventional rats[J]. Life Sci, Nov 1,1968,7 (21):1155-62.
    [259]Howe, E. E.,Bosshardt, D. K. Antibiotics and plasma cholesterol in the mouse[J]. J Nutr, Nov, 1960,72368-74.
    [260]Samuel, P. Treatment of hypercholesterolemia with neomycin--a time for reappraisal [J]. N Engl J Med, Sep 13,1979,301 (11):595-7.
    [261]Park, Y. H.,Kim, J. G.,Shin, Y. W., etc. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats[J]. J Microbiol Biotechnol, Apr,2007,17 (4): 655-62.
    [262]邱小田,李玉华,李何君,etc.猪Tool—like Receptor 4 (TLR4)的定位和组织表达[J].农业生物技术学报,2007,(1):4.
    [263]刘崇海,杨锡强,刘恩梅,etc.抗生素诱导小鼠肠道菌群失调对免疫功能和Toll样受体2、4基因表达的影响[J].重庆医科大学学报,2007,(8):4.
    [264]Keita, A. V.,Soderholm, J. D. The intestinal barrier and its regulation by neuroimmune factors[J]. Neurogastroenterol Motil, Jul,2010,22 (7):718-33.
    [265]Weber, A.,Wasiliew, P.,Kracht, M. Interleukin-1 (IL-1) pathway[J]. Sci Signal,2010,3 (105): cml.
    [266]张锦华.猪源乳酸杆菌的筛选及其对仃猪肠道黏膜免疫影响的研究[D].南京农业大学预防兽医学2011.
    [267]Dinarello, C. A. Interleukin-1 and its biologically related cytokines[J]. Adv Immunol,1989, 44153-205.
    [268]Ohsaki, Y.,Shirakawa, H.,Hiwatashi, K., etc. Vitamin K Suppresses Lipopolysaccharide-Induced Inflammation in the Rat[J]. Bioscience, Biotechnology, and Biochemistry,2006,70 (4):926-932.
    [269]Delzenne, N. M.,Kok, N. N. Biochemical basis of oligofructose-induced hypolipidemia in animal models[J]. J Nutr, Jul,1999,129 (7 Suppl):1467S-70S.
    [270]Kang, S. A.,Hong, K.,Jang, K. H., etc. Altered mRNA expression of hepatic lipogenic enzyme and PPARalpha in rats fed dietary levan from Zymomonas mobilis[J]. J Nutr Biochem, Jun, 2006,17 (6):419-26.
    [271]文敏,贾刚,李霞,王康宁.银耳多糖对生长肥育猪生产性能、免疫功能及肉质的影响[J].动物营养学报,2010,22(06):6.
    [272]丁文强,贾刚,王康宁.银耳孢子发酵物与益生素对生长肥育猪生长性能及肉品质的影响[J].动物营养学报,2012,24(10):8.
    [273]Turnbaugh, P. J.,Hamady, M.,Yatsunenko, T., etc. A core gut microbiome in obese and lean twins[J]. Nature,2009,457 (7228):480-4.
    [274]Shah, H. N.,Collins, D. M. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides[J]. Int J Syst Bacteriol, Apr, 1990,40 (2):205-8.
    [275]Cani, P. D.,Dewever, C.,Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats[J]. Br J Nutr, Sep,2004,92 (3):521-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700