用户名: 密码: 验证码:
高速全光信号处理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信系统从诞生之日开始就一直飞速发展着,新技术不断涌现。近年来,随着长距离传输技术的不断成熟,光纤通信系统的瓶颈已经从传输环节转移到交换环节,人们开始越来越多的重视未来光网络技术的发展。全光高速信号处理是未来光网络的重要支撑性技术,主要包括全光波长转换、全光逻辑门、全光缓存等,为未来光网络中全光交换、路由、冲突解决等关键问题提供有效的解决方案。
     高速光信号处理的各类方案主要运用光纤或其他波导介质中的非线性效应,多采用基于各类干涉仪的结构。其中,半导体光放大器(SOA)作为一种高速非线性增益材料具有体积小、非线性效应强等优点,波导型马赫曾德尔干涉仪(MZI)具有结构紧凑、易于集成、稳定性高等特点,因此辅以SOA的MZI结构(SOA-MZI)在高速光信号处理中被广泛使用。
     本论文对高速全光信号处理的关键技术进行了探索性的理论和实验研究,内容主要集中在最受关注的各类基于SOA-MZI结构的方案上,分别对高速光时分复用,SOA-MZI的参数优化及偏振分析、信头净荷分离技术等进行了研究。主要工作为:
     阐述了利用SOA中非线性效应进行全光信号处理的理论基础,比较分析了SOA中交叉增益调制,交叉相位调制,四波混频和非线性偏振旋转等非线性效应。概括分析了光逻辑、全光波长转换、全光信号再生和光缓存等高速全光信号处理技术的研究现状。
     针对当前光时分复用结构存在的问题,提出并实现了基于镀膜自聚焦透镜的光纤和波导混合结构的高速光时分复用方案,制成了四级级联结构的时分复用器,完成了16×10Gbit/s速率下的光时分复用实验,结果表明所提出方案在时延精度、损耗、偏振、温度稳定性和波长稳定性等方面有明显优势。
     全光信号处理单元因为参数众多而难于寻找最优工作点。针对这一难题,论文提出了使用“功率对比度积”来快速寻找基于SOA-MZI结构的全光信号处理单元最优工作范围的方法,并运用该方法实现了80Gbit/s自同步时钟提取实验。
     建立了SOA-MZI中偏振效应的理论分析模型,从多信号不同偏振方向间的相互影响和单一信号自身偏振抖动影响两个方面深入分析了SOA-MZI的相关性能,提出了解决偏振影响的方法。
     提出了一种信头净荷分离方案,通过仿真分析了2.5Gbit/s信头和80Gbit/s净荷的分离,结果表明该方案在功率分配、同步控制等方面具有灵活性。
The optical communication system has advanced dramatically during these years. So far, extensive research and development have been done to realize ultra-fast transmission in optical fiber long-haul links and the single channel of 40Gbit/s became available commercially. Further development of the optical communication system is limited by the bottleneck between high transporting speed in the fiber link and low processing speed inside the network node. As a result, future optical network has been studied by many scientific communities. Ultrafast all-optical signal processings are significant enabling technologies for future optical networks, including all-optical wavelength conversion, optical logics, optical buffering and so on. Optical signal processings aim to resolve several critical problems in the future optical networks, such as all-optical switching, routing, and conflict settling.
     This dissertation focused on the key technologies of ultrafast all-optical signal processings based on semiconductor optical amplifier assisted Mach-Zehnder interferometer (SOA-MZI), such as ultrafast optical time division multiplexing, parameter optimization and polarization analysis of the SOA-MZI, separation of the header and pay load and so on.
     In Chapter 1, nonlinear effects of SO A are illustrated, which includes cross gain modulation (XGM), cross phase modulation (XPM), four wave mixing (FWM), and nonlinear polarization rotation (NPLR). The practical applications of all-optical signal processing such as all-optical logical gate, all-optical wavelength conversion, all-optical 3R, all-optical demultiplexing and all-optical buffer are also introduced.
     A novel optical time domain multiplexer (OMUX) based on graded index (GRIN) lens is proposed and experimentally demonstrated in Chapter 2. A 10Gbit/s return-to-zero (RZ) signal is upgraded to 160Gbit/s. The time-domain accuracy of the multiplexer is evaluated by analyzing the multiplexed 160Gbit/s signal. Experimental results validate the stability of the optical multiplexing behavior and the polarization insensitivity of the proposed multiplexer. The results also show the advantages of the OTDM multiplexer such as the flexible output signal speeds at output of different stages, the low insertion loss and the temperature and wavelength stability.
     Because there are many parameters in the all-optical signal processing unit, it is not easy to pinpoint the best operating point. A novel characterization method of parameter optimization is proposed in Chapter 3. "P·CR" is used to pinpoint the best operating point of the 80Gbit/s SOA-MZI self-synchronous clock extraction scheme.
     The influence of polarization effects is analyzed in Chapter 4. There are two situations of polarization influence. One is different polarization directions of different input signals and the other one is the polarization fluctuation of the input signal itself. The method of solving polarization-related problem is also proposed.
     In Chapter 5, a novel method of header and payload separation based on SOA-MZI scheme is proposed. Through numerical simulations, the validation and the operating characteristics of the proposal are investigated.
引文
[01]Govind P. Agrawal, "Fiber-Optic Communication Systems (Third Edition)," Chapter 1, Historical Perspective, John Wiley and Sons Press,2002, pp.1-8.
    [02]Mohammad Ilyas, Hussein T. Mouftah, "The Handbook of Optical Communication Networks," Chapter 1, Enabling WDM Technologies, CRC Press,2003, pp.2-8.
    [03]T. Touge, H. Nishimto, T. Okiyama, et al., "Key technology for multi-gigabit optical transmission systems," ICC 88 Communications,1988.
    [04]H. J. A. Da Silva, M. M. Freire, "Multi-quantum well laser parameters for simulation of optical transmission systems up to 40Gbit/s," Global Telecommunications Conference,1998, pp. 1467-1472.
    [05]M. Nakazawa, T. Yamamoto, and K. R. Tamura, "1.28Tbits/s-70km OTDM transmission using third and fourth order simultaneous dispersion compensation with a phase modulator," Electron. Letters,36,2000, pp.2027-2029.
    [06]T. Buerner, R. Dohmen, A. Zottmann, et al., "On a high-speed Reed-Solomon Codec architecture for 43Gb/s optical transmission systems," Microelectronics,2004.
    [07]Prati G., Bogoni A., and Poti L., "Future optical communication networks beyond 160Gbit/s based on OTDM", APOC 04 (Invited paper), Beijin, China,2004.
    [08]M. Ivkovic, I. Djordevic, B. Vasic, "Calculation of Achievable Information Rates of Long-Haul Optical Transmission Systems Using Instanton Approach," J. of Lightwave Technology, Vol.25, Issue 5,2007, pp.1163-1168.
    [09]Bogoni A.,Berrettini G., Malacarne A., et al., "OTDM-based optical communications networks at 160 Gbit/s and beyond", Optical Fiber Technology, Materials, Devices and Systems, Academic Press, Vol.13, N.1,2007, pp.1-12.
    [10]Y. Fujita, "Future network broadcasting systems with ultrahigh-speed optic transmission technologies," The Third International Symposium on Ultrafast Photonic Technologies, Boston, 2007.
    [11]A. R. Modarressi and S. Mohan, "Control and management in next-generation networks: challenges and opportunities," IEEE Communication Magazine,43(10),2000, pp.94-102.
    [12]Hiroshi Ishikawa, "Ultrafast All-Optical Signal Processing Devices," Wiley Press, Chapter 1, Increasing Communication Traffic and Power Consumption,2008, pp.2-4.
    [13]A. Jagatia, R. Muralidharan, S. Pillai, "Trends and issues in data transport over optical networks," TENCON, Proceedings of IEEE Region 10 International Converence on Electrical and Electronic Technology, Vol.2,2001, pp.580-583.
    [14]R. Median, "Photons vs electrons (all optical network)," IEEE Potentials, Vol.21, Issue 2.2002, pp.9-11.
    [15]M. D. Swaminathan, K. N. Sivarajan, "Practical routing and wavelength assignment algorithms for all optical networks with limited wavelength conversion," Communications ICC,2002.
    [16]X. C. Chi, D. W. Huang, D. Lee, et al., "Lazy flooding:a new technique for signaling in all optical network," Optical Fiber Communication Conference and Exhibit,2002.
    [17]Qu Yingzhen, P. K. Verma, "Limits on the traffic carrying capacity of all optical networks with ring topology," High Performance Switching and Routing,2005.
    [18]T. De, S. Sen, "Multicast routing and wavelength assignment in sparse splitting all optical networks," Wireless and Optical Communications Network,2006.
    [19]B. Nleya, E. Nyakwende, "Survivability:Wavelength Recovery for Node and Link Failure in All Optical Networks," Broadband Communications, Information Technology and Biomedical Applications,2008.
    [20]A. D. Ellis, D. G. Moodie, R. J. Manning, et al., "Ultra fast optical processing for network applications," Laser and Electro-Optics Society 12th Annual Meeting,1999.
    [21]G. D. Maxwell, "Hybrid integration technology for high speed optical processing devices," COIN 7th International Converence on Optical Internet,2008.
    [22]K. E. Stubkjaer, "Technologies for Optical Processing," Optical Fiber Communication OFC, 2002, pp.1-36.
    [23]Michael J. Connelly, "Semiconductor Optical Amplifier", Kluwer Academic Publishers,2002, pp.127-145.
    [24]H. Soto, D. Erasme and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett.,11,1999, pp.970-972.
    [25]Alistair Poustie, "SOA-based All-optical Processing," Centre for Integrated Photonics, Tutoriall, 2007, pp.1-75.
    [26]A. J. Poustie, "Semiconductor devices for optical processing," paper We3.5.1, ECOC,2005.
    [27]K. E. Stubkjaer, "Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing," IEEE J. on Sel. Top. in Quant. Electron.,6,1428,2000.
    [28]T. Durhuus, C. Joergensen, B. Mikkelsen, et al., "All optical wavelength conversion by SOA's in a Mach-Zehnderconfiguration," IEEE Photonics Technology Letters, Vol.6, Issue.1,1994, pp.53-55.
    [29]Hae Young Choi, Myoung Jin Kim, and Byeong Ha Lee, "Compact all-fiber Mach-Zehnder interferometers formed in photonic crystal fiber," OFC 2007.
    [30]H. Dong, N. K. Dutta, J. Jacques et al., "80Gb/s All-Optical Logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun.265,2006, pp.79-83.
    [31]Hongzhi Sun, Qiang Wang, Hao Dong, and et al., "All-Optical Logic XOR Gate at 80Gb/s Using SOA-MZI-DI," IEEE Journal of Quantum Electronics, Vol.42, No.8,2006, pp. 747-751.
    [32]Sebastian Randel, Alessandro Marques de Melo, Klaus Petermann, et al., "Novel Scheme for Ultrafast All-Optical XOR Operation," Journal of Lightwave Technology, Vol.22, No.12,2004, pp.2808-2815.
    [33]Qiang Wang, Guanghao Zhu, Hongmin Chen, et al., "Study of All-Optical XOR Using Mach-Zehnder Interferometer and Differential Scheme," IEEE Journal of Quantum Electronics, Vol.40, No.6,2004, pp.703-710.
    [34]R. P. Webb, R. J. Manning, G. D. Maxwell et al., "40Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electronics Letters, Vol.39, No.1,2003, pp. 79-80.
    [35]Min Zhang, Yongpeng Zhao, Peida Ye et al., "Design and Analysis of All-Optical XOR Gate Using SOA-based Mach-Zehnder Interferometer", Optics Communications,2006.
    [36]Min Zhang, Ling Wang, Peida Ye, "All-Optical XOR Logic Gates-Technologies and Experiment Demonstrations", IEEE Communication Mag,2006.
    [37]Xuetian Huang, Min Zhang, Peida Ye et al., "Novel scheme of 40 Gb/s all-optical NOT gate based on SOA-assisted Sagnac interferometer", ICCCAS 2004, vol.1,2004, pp.27-29.
    [38]Xiaohua Ye, Peida Ye, and Min Zhang, "All-Optical NAND gate Using Integrated SOA-based Mach-Zehnder Interferometer", Optical Fiber Technology,2006..
    [39]Ying-Hao Kuo, Haisheng Rong, Vanessa Sih, et al., "All-Optical Wavelength Conversion at 40Gb/s Data Rate in Silicon Waveguides," OFC 2007.
    [40]Marek Chacinski, Mats Isaksson, and Richad Schatz, "Widely Tunable Wavelength Conversion lOGb/s Using a Modulated Grating Y-branch Laser Integraged with an Optical Amplifier," OFC 2007.
    [41]He Wen, Xiaoping Zheng, Hanyi Zhang et al., "Synchronoous Clock Pumping to Improve Performance of All-Optical Wavelength Conversion for RZ-DPSK Based on Four-Wave Mixing in SOA," OFC 2007.
    [42]K. Tajima, S. Nakamura, H. Hatakeyama, et al., "Hybrid integrated symmetric Mach-Zehnder all-optical switch and its ultrafast high extinction switching," Electron. Lett,35,1999, pp. 2030-2031.
    [43]K. Suzuki, S. Nakamura, M. Takahash et al., "Hybrid integrated symmetric Mach-Zehnder all-optical switch with phase controllers," Photonics in Switching,MoB4,2002.
    [44]R. Sato, R. Kasahara, M. Okamoto, et al., "10-Gb/s low-input-power SOA-PLC hybrid integrated wavelength converter and its 8-slot unit," J. Lightwave Technol.,22,2004, pp. 1331-1337.
    [45]I. Armstrong, I. Andonovic, A. E. Kelly, et al., "Hybridization platform assembly and demonstration of all-optical wavelength conversion at lOGb/s," J. Lightwave Technol.,23,2005, pp.1852-1859.
    [46]M. Hattori, K. Nishimura, R. Inohara, et al., "Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter," J. lightwaveTechnol,25,2007, pp. 512-519.
    [47]M. L. Masanovic, J. A. Summers, J. S. Barton, et al., "Widely tunable monolithically integrated all-optical wavelength converters in InP,"J. Lightwave, Technol.,23,2005, pp.1350-1362.
    [48]X. Song, Z. Zhang, and Y. Nakano, "Monolithically integrated SOA-MZI all-optical switch with high-yield regrowth-free selective area MOVPE," ECOC 2004.
    [49]R. J. Manning, A. D. Ellis, A. J. Poustie, et al., "Semiconductor laser amplifiers for ultrafast all-optical signal processing,"J. Opt. Soc.Am., B14,1997, pp.3204-3216.
    [50]M. Usami, M. Tsurusawa, and Y. Matsushima, "Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier," Appl. Phys. Lett.,72,1998, pp. 2657-2659.
    [51]S. Nakamura, Y. Ueno, and K. Tajima, "Error-free all-optical demultiplexing at 336Gb/s with a hybrid-integrated symmetric-Mach-Zehnder switch," OFC 2002.
    [52]卢超,毛幼菊,“慢光缓存器及其在光分组交换中的应用,”半导体光电,Vol.28,No.3,2007.pp.420-422.
    [53]Fengnian Xia, Lidija Sekaric and Yurii Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics, Vol.1,2007.
    [54]吴重庆,袁保忠,“光速减慢和光缓存技术”,物理学与信息科学技术专题,中国学术期刊电子版,Vol.34,No.13,2005.
    [55]吴重庆,“全光缓存器研究的新进展,” 半导体光电,Vol.26,No.5,2005,pp.369-373.
    [56]Lene Vestergaard Hau, Zachary Dutton, Cyrus H. Behroozi et al., "Slow light in cool atoms," Nature,397,1999, pp.559-560.
    [57]Lene Vestergaard Hau, "Optical information processing in Bose-Einstein condensates," Nature Photonics, Vol.2,2008, pp.451-453.
    [58]Aytug O. Karalar, Stevan S. Djordjevic, Nicolas K. Fontaine, et al., "Variable Slowlight Buffers in All-Optical Packet Switching Routers," OFC,2008
    [59]Landobasa Yosef Mario, Mee Koy Chin, "Optical buffer with higher delay-bandwidth product in a two-ring system," Optics Express Vol.16, No.3,2008, pp.1976-1807.
    [60]S. E. Harris. "Electromagnetically induced transparency," Physics Today 50,1997, pp.36-42.
    [61]Joe T. Mok, C. Martijin de Sterke, Benjamin J. Eggleton, et al., "Dispersionless Slow Light with 5-Pulse-Width Delay in a Long Fibre Bragg Grating," ECOC 2007.
    [62]刘外喜,高鹰,刘文喜,“基于光栅的全光缓存器的研究”,广州大学学报(自然版),Vol.6,No.4,2007.
    [63]Zhang Min, Wen Feng, Ye Peida et al., "Performance of Optical Feedback Buffering with Implementation of QoS", the 7th OptoElectronics and Communications Conference (OECC'2002), Japan,2002, pp.420-421.
    [64]Zhaoyang Hu, Daniel J. Blumenthal, "SPM-Based 2R Regenerative lOGbps Optically Linearly Controlled Delay Line with Ops to 170ps Tuning Range," OFC 2007.
    [65]K. M. Feng, C. Y. Wu, D. H. Hsueh, et al., "Demonstration of an Optical FIFO Multiplexer," OFC,2008
    [66]李志平,方念,黄肇明等,“可编程光缓存器在OBS中的应用”,光器件,Vol.3,2007,pp.45-47.
    [67]Xinwan Li, Limei Peng, Young-Chon Kim, et al., "A Novel Fast Programmable Optical Buffer with Variable Delays," OFC 2008.
    [68]Hitoshi Kawaguchi, "Bistable Laser Diodes and Their Applications for Optical Networks," ICTON 1999.
    [69]Takashi Mori, Yuuki Sato, and Hitoshi Kawaguchi, "10Gb/s Optical Buffer Memory Using a Polarization Bistable VCSEL,"ECOC,2007.
    [70]C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in Semiconductor Nanostructure," Proc. IEEE 9,2003, pp.1884-1897.
    [71]B. Pesala, A. V. Uskov, C. Chang-Hasnain, et al., "Slow and superluminal light based on four-wave mixing in semiconductor optical ampliers," in CLEO 2006.
    [72]H. Su, and S. L. Chuang, "Room-temperature slow light with semiconductor quantum dotdevieces," Opt. Lett.21,2006, pp.271-273.
    [73]S. Sarkar, Y. Guo, and Hailin Wang, "Tunable optical delay via carrier induced excition dephasing in semiconductor quantum wells," Opt. Express 14,2006, pp.2845-2850.
    [74]A.V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett,18,2006. pp.731-733.
    [75]J. Mork, R. Kjaer, M. van der Poel, and K. Yvind, "Slow light in a Semiconductor Waveguide at GHz frequencies," Opt. Express 13,2005, pp.8032-8037.
    [76]M. van der Poel, J. Mork, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifiers," Opt. Express 13 88032-8037,2005
    [77]F. G. Sedgwick, Xiaoxue Zhao, C. J. Chang-Hasnain, et al., "Thz-bandwidth tunable slow light in semiconductor optical amplifiers", Opt. Express 15,2007, pp.747-753.
    [78]C. Y. Li and P. K. A. Wai, "A hybrid optical buffer," OFC 2008.
    [79]Tiago Silveira, Antonio Teixeira, Paulo Moteiro et al., "40Gb/s Multichannel NRZ to CSRZ Format Conversion Using an SOA," IEEE Photonics Technology Letters, Vol.20, No.19,2008, pp.1597-1599.
    [80]Masamichi Fujiwara, Hideaki Kimura, Makoto Tsubokawa et al., "Centralized Frequency Stabilization With Wide Capture Range Using MZI-AWG in DWDM-PON," IEEE Photonics Technology Letters, Vol.20, No.19,2008, pp.1612-1614.
    [81]S. Kumar, and A. E. Willner, "High-Speed Phase-Correlated Signal Generation by Phase Reconstruction of OTDM Signals through Differential Cross-Phase Modulation in an SOA-MZI,"OFC 2007.
    [82]T. W. Berg, S. Bischoff, I. Magnusdotir, et al., "Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices," IEEE Phot. Technol. Lett.13,541,2002.
    [83]R. Nagarajan, C. H. Joyner, R. P. Schneider, et al., "Large-scale photonic integrated circuits," IEEE J. of Sel. Topics in Quantum Electron.,11,50,2005.
    [84]R. McDougall, G. Maxwell, R. Harmon, et al., "40Gb/s hybrid integrated all-optical SOA-MZI regenerator incorporating separately optimized SOAs, on-chirp time delays and WDM combiners," paper Th3.4.6, ECOC,2006.
    [85]G. Maxwell, "Low-cost hybrid photonic integrated circuits using passive alignment techniques," paper MJ2, IEEE LEOS Annual Meeting,2006.
    [01]Libo Cai, Min Zhang, Peida Ye, and Tangjun Li, "Polarization independent 4-stage OTDM multiplexer using plated GRIN lens," Optics Express, Vol.16, No.17,2008, pp. 12544-12549. (Indexed by SCI & EI)
    [02]H. Takara, K. Uchiyama, T. Morioka et al., "Ultra-high speed OTDM transmission systems and sub-systems," Technical Digest Summaries of papers presented at the Conference on Lasers and Electro-Optics,2001, pp.526-527.
    [03]1. Morita, and N. Edagawa, "Study on optimum OTDM signals for long-distance 40Gbit/s transmission," Optical Fiber Communication Conference and Exhibit, OFC 2002.
    [04]M. Nakazawa, T. Yamamoto, K. Tamura, "Ultra high speed OTDM transmission using femtosecond pulses," The 4th Pacific Rim Conference on Lasers and Electro-Optics, Vol.12001, pp.618-619.
    [05]H. Takara, "High-speed optical time-division-multiplexed signal generation," Conference on Lasers and Electro-Optics,2000, pp.234-235.
    [06]A. Chen, C. T. Lea, and A. K. S. Wong, "A new optical TDM Ring Architecture," IEEE Trans. Commun.55,2134-2141 (2007).
    [07]K. M. Feng, C. Y. Wu, D. H. Hsueh, et al., "Demonstration of an optical FIFO multiplexer," in Optical Fiber Communication Conference and Exposition and National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America,2008), paper OMN5,2008.
    [08]C. Li, G. M. Li, P. Wai et al.., "Performance analysis of realistic optical time division multiplexed wavelength routed networks," IEEE 18th Annual Workshop on Computer Communications,2003, pp.134-138.
    [09]B. Zhang, L. S. Yan, J. Y. Yang, et al., "Continuously tunable, bit rate variable OTDM using broadband SBS slow light delay line," Opt. Express 15,2007, pp.8317-8322.
    [10]Ning Deng, C. K. Chan, and L. K. Chen, "A Hybrid OTDM Scheme with enhanced demultiplexing performance," IEEE Photon. Technol. Lett.19,2007, pp.1454-1456.
    [11]Hitoshi Murai, Masatoshi Kagawa, Hiromi Tsuji, et al., "EA-modulator-based optical time division multiplexing/demultiplexing techniques for 160-Gb/s optical signal transmission," IEEE J. Quantum Electronics,13,2007, pp.70-78.
    [12]Takuya Ohara, Hidehiko Takara, Takashi Yamada, Motohaya Ishii, Ikuo Ogawa, et al., "Highly stable 160-Gb/s OTDM technologies based on integrated MUX/DEMUX and drift-free PLL-type clock recovery," IEEE J. Quantum Electronics,13,2007, pp.40-48.
    [13]S. Arahira, Y. Ogawa, "160Gb/s OTDM signal source with 3R function utilizing ultrafast mode-locked laser diodes and modified NOLM," IEEE Photonics Technology Letters, Vol.17, Issue 5,2005, pp.992-994.
    [14]K. Merzouk, Y. Le Guennec, and B. Cabon, "Low cost lOGb/s OTDM System," International Symposium on Signals, Systems and Electronics,2007, pp.279-282.
    [15]G Katz, and D. Sadot, "Time-Division Multilevel Multiplexing Communication Method," IEEE Photonics Technology Letters, Vol.19, No.20,2007, pp.1619-1621.
    [16]Masatoshi Kagawa, Hitsshi Murai Hiromi Tsunji, et al., "Control and stabilization of bit-wise phase correlation in 160(4x40)Gbit/s OTDM signal and its impact on transmission," Optics Express, Vol.16, Issue 14,2008, pp.10039-10052.
    [17]Z. Ghassemlooy, and R. Ngah, "Simulation of 1x2 OTDM router employing symmetric Mach-Zehnder switches," IEE Proceedings Circuits, Devices and Systems, Vol.152, Issue 2, 2005, pp.171-177.
    [18]Zhao Yongpeng, and Ye Peida, "Simple self-synchronization scheme for OTDM packet networks," The 15th Annual Meeting of the IEEE Lasers and Electro-optics Society, Vol.2, 2002, pp.373-374.
    [19]K. Morishita and K. Takashina, "Polarization properties of fused fiber couplers and polarizing beamsplitters," J. Lightwave Technol.9,1991, pp.1503-1507.
    [20]Zhao Jing, Libo Cai and Tangjun Li, "Experimental demonstration on 4×10Gb/s optical time domain multiplexing signal,"J. Photon Technology.8,2005, pp.18-21.
    [21]Zhao Jing, Libo Cai and Tangjun Li, "Experimental investigation in polarization sensitivity of a novel 40-Gbit/s OTDM system," Proc. SPIE 6019,2005, pp.1-7.
    [22]Libo Cai, Z.Jing and Tangjun Li, "Function of polarization scrambler in 410Gb/s optical time division multiplexing signal generating system," J. Optical Communication Technology 29,2005, pp.32-33.
    [23]Selina G. Farwell, Michalis N. Zervas, and Richard I. Laming, "2x2 fused fiber null couplers with asymmetric waist cross sections for polarization independent (<0.01dB) switching," J.Lightwave Technol.16,2006, pp.1671-1680.
    [24]C. R. Doerr, L. L. Buhl, and W. Lin, "Simple method for mitigation of polarization crosstalk in silica planar lightwave circuit directional couplers," IEEE Photon. Technol. Lett.18,2006, pp. 1816-1818.
    [25]Andreas Umbach, "4-stage OTDM multiplexer," http://www.u2t.de/fileadmin/redakteure/Products/Datasheets/DS_OMUX-4.pdf
    [26]Cheng Kehua, "Propagation analysis of light rays in combinative optical system of SaFoc lens," J. ACTA. Photonica Sinica 21,1992, pp.323-329.
    [27]Lu Mei Hong, Wang Zhi Jun, and Zhao Yu lian, "The measurement of ultrashot pulse width using a simple autocorrelator", Colle. Physic. Vol.27, No.4,2008, pp.37-42.
    [28]M. Born and E. Wolf, Principles of Optics, Pergamon Press,1986.
    [01]H. Dong, N. K. Dutta, J. Jacques, et al., "80Gb/s All-Optical Logic AND operation using Mach-Zehnder interferometer with differential scheme," Opt. Commun.2006, pp.265,79-83.
    [02]Hongzhi Sun, Qiang Wang, Hao Dong, et al.., "All-Optical Logic XOR Gate at 80Gb/s Using SOA-MZI-DI," IEEE Journal of Quantum Electronics, Vol.42, No.8,2006, pp.747-751.
    [03]Sebastian Randel, Alessandro Marques de Melo, Klaus Petermann,et al., "Novel Scheme for Ultrafast All-Optical XOR Operation," Journal of Lightwave Technology, Vol.22, No.12,2004, pp.2808-2815.
    [04]Qiang Wang, Guanghao Zhu, Hongmin Chen, et al., "Study of All-Optical XOR Using Mach-Zehnder Interferometer and Differential Scheme," IEEE Journal of Quantum Electronics, Vol.40, No.6,2004, pp.703-710.
    [05]R. P. Webb, R. J. Manning, G. D. Maxwell et al., "40Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electronics Letters, Vol.39, No.1,2003, pp. 79-80.
    [06]D. Wolfson, A. Kloch, T. Fjelde, et al., "40Gb/s All-Optical Wavelength Conversion, Regeneration, and Demultiplexing in an SOA-Based All-Active Mach-Zehnder Interferometer," IEEE Photonics Technology Letters, Vol.12, No.3,2000, pp.332-334.
    [07]M. Hattori, K. Nishimura, R. Inohara, et al., "Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter," J. lightwaveTechnol,25,2007, pp. 512-519.
    [08]S. Nakamura, Y. Ueno, and K. Tajima, "Error-Free all-optical demultiplexing at 336Gb/s with a hybrid-integrated Symmetric-Mach-Zehnder switch," in Optical Fiber Communications Conference (OFC'02), Postdeadline Papers, FD3,2000.
    [09]M. Heid, S. L. Jansen, H. Melchior, et al., "160-Gbit/s demultiplexing to base rate of 10 and 40Gbit/s with a monolithically integrated SOA-Mach-Zehnder interferometer," in 28th European Conference on Optical Communication (ECOC'02), Vol.3,1-2,2002.
    [10]B. Lavigne, P. Guerber, P. Brindel, et al., "Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach-Zehnder interferometers," in 27th European Conference on Optical Communication(ECOC'01),3,2001, pp.290-291.
    [11]J. P. Wang, S. J. Savage, B. S. Robinson, et al., "Regeneration using an SOA-MZI in a 100-pass 10,000-km Recirculating Fiber Loop," in Conference on Laser and Electro-optics (CLEO 2007), CMZ1,2007.
    [12]Min Yong Jeon, Zhong Pan, Jing Cao, et al., "Demonstration of All-Optical Packet Switching Routers With Optical Label Swapping and 2R Regeneration for Scalable Optical Label Switching Network Applications," Journal of Lightwave Technology, Vol.21, No.ll,2003, pp.2723-2433.
    [13]J.Leuthold, B. Mikkelsen, R. E. Behringer, et al., "Novel 3R Regenerator Based on Semiconductor Optical Amplifier Delayed-Interference Configuration," IEEE Photonics Technology Letters, Vol.13, No.8,2001, pp.860-862.
    [14]Michael J. Connelly, "Semiconductor Optical Amplifier", Kluwer Academic Publishers,2002, pp.127-145.
    [15]A. Bilenca, and G. Eienstein, "Statistical noise properties of an optical pulse propagating in a nonlieanr semiconductor optical amplifier," IEEE Journal of Quantum Electronics, Vol.41, Issue 1,2005, pp.36-44.
    [16]Huining Han, Min Zhang, Peida Ye, et al.., "Performance Analysis of All Optical XOR Gate Using Quantum Dot Semiconductor Optical Amplifier-based Mach-Zehnder Interferometer," Proc. SPIE APOC'07, Wuhan China,2007.
    [17]Huining Han, Min Zhang, Peida Ye, et al., "High Efficient 160 Gb/s All-Optical Wavelength Converter Based on Terahertz Optical Asymmetric Demultiplexer with Quantum Dot Semiconductor Optical Amplifier," Proc. SPIE APOC'07, Wuhan China,2007.
    [18]Huining Han, Min Zhang, Peida Ye, et al., "Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear mach-zehnder interferometer," Optics Communications, Vol.281, no.20,2008, pp. 5140-5145.
    [19]T. Akiyama, M. Sugawara, and Y. Arakawa, "Quantum-Dot Semiconductor Optical Amplifiers," Proceedings of the IEEE, Vol.95, Issue 9,2007, pp.1757-1766.
    [20]N. K. Dutta, J. Jaques, and I. Kang, "Pseudo random word generation using regular and quantum dot semiconductor optical amplifiers," Military Communications Conference,2008, pp.1-4.
    [21]M. Spyropoulou, S. Sygletos, and I. Tomkos, "Simulation of Multiwavelength Regeneration Based on QD Semiconductor Optical Amplifiers," IEEE Photonics Technology Letters, Vol. 19, Issue 20,2007, pp.1577-1579.
    [22]N. Yasuoka, K. Kawaguchi, and T. Akiyama, "Quantum-Dot Semiconductor Optical Amplifiers With Polarization-Independent Gains in 1.5-μm Wavelength Bands," IEEE Photonics Technology Letters, Vol.20, Issue 23,2008, pp.1908-1910.
    [23]Y. Ben Ezra, B. I. Lembrikov, and M. Haridim, "Ultrafast All-Optical Processor Based on Quantum-Dot Semiconductor Optical Amplifiers," IEEE Journal of Quantum Electronics, Vol. 45, Issue 1,2009, pp.34-41.
    [24]H.C. Wong, G B. Ren, and J. M. Rorison, "The Constraints on Quantum-Dot Semiconductor Optical Amplifiers for Multichannel Amplification," IEEE Photonics Technology Letters, Vol. 18, Issue 20,2006, pp.2075-2077.
    [25]A. L. R. Cavalcante, N. S. Ribeiro, E. Conforti et al., "Spectral gain parameters extraction with noise measurements in semiconductor optical amplifiers," Microwave and Optoelectronics Conference,2007, pp.207-210.
    [26]C. M. Gallep, and E. Conforti, "Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique," IEEE Photonics Technology Letters, Vol.14, Issue 7,2002, pp.902-904.
    [27]Narottam Kumar Das, Y. Yamayoshi, and H. Kawaguchi, "Numerical Analysis of All-Optical Demultiplexing Characteristics in Semiconductor Optical Amplifiers Based on Four-Wave Mixing," Conference on Optoelectronic and Microelectronic Materials and Devices,2004, pp. 41-44.
    [28]W. Mathlouthi, P. Lwmieux, L. A. Rusch et al., "Fast and Efficient Dynamic WDM Semiconductor Optical Amplifier Model," Journal of Lightwave Technology, Vol.24, Issue 11, 2006, pp.4353-4365.
    [29]Hyun Soo Kim, Eun Deok Sim, Jong hoi Kim, et al.., "Improvement of the dynamic input power range in a lOGb/s all-optical Mach-Zehnder interferometric wavelength converter module with monolithically integrated SOA preamplifiers and tapered-edge multimode interference couplers," Semiconductor Science and Technology, Vol.21,2006, pp.1478-1483.
    [30]N. Cheng, K. Leung, and J. C. Cartledge, "Impact of the Input Pulse Width on the Performance of a lOGb/s SOA-DI Wavelength Converter," 23rd Biennial Symposium on Communications, 2006, pp.43-46.
    [31]J. P. Wang, B. S. Robinson, B. B. Stefanov et al., "Efficient performance optimization of SOA-MZI devices," Optics Express, Vol.16, No.5 2008.
    [32]Reza Salem and T. E. Murphy, "Broad-Band Optical Clock Recovery System Using Two-Photon Absorption," IEEE Photonics Technology Letters, Vol.16, No.9,2004, pp.2141-2143.
    [33]Reza Salem, G. E. Tudury, T. U. Horton, et al, "Polarization-Insensitive Optical Clock Recovery at 80Gb/s Using a Silicon Photodiode", IEEE Photonics Technology Letters, Vol.17, No.9,2005, pp.1968-1970.
    [34]Wu Chongqing, "Interaction of Two Ligh Beams in Semiconductor Optical Amplifier and Its Applications for All-Optical Signal Processing," Laser and Optoelectronics Progress, Vol.44, No.11,2007, pp.12-17.
    [01]Li Tangjun, Wang Muguang, Cai Libo, et al., "Dynamic Polarization Mode Dispersion for 160Gbit/s OTDM Systems," Chinese Physics Letters, Vol.23, No.4,2006.
    [02]Li Tangjun, Wang Muguang, Jian Shuisheng, et al., "Dynamic adaptive PMD compensation in a 40Gb/s OTDM system," The Ninth International Conference on Communication Systems,2004, pp.547-551.
    [03]F. Buchali, W. Baunert, H. Bulow, et al., "A 40Gb/s eye monitor and its application to adaptive PMD compensation," Optical Fiber Communication Conference and Exhibit,2002, pp. 202-203.
    [04]M. Akbulut, A. M. Weiner, and P. J. Miller, "Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays," Journal of Lightwave Technology, Vol.24, Issue 1,2006, pp.251-261.
    [05]Chen Ming, Zhang Yejin, Chen Hongwei, et al., "Chromatic dispersion and PMD monitoring and compensation techniques studies in optical communication systems with single channel speed 40Gbit/s and CSRZ format," Optics Express, Vol.15, Issue 12,2007.
    [06]G Ducournau, O. Latry, E. Joubert, et al., "Comparison of different feedback signals used in one stage PMD compensators for different modulation formats," IEEE Transactions on Communications, Vol.56, Issue 10,2008, pp.1722-1728.
    [07]J. X. Cai, M. Nissov, A. N. Pilipetskii, et al.., "Automatic PMD Compensation over Transoceanic Distance with Time Varying SOP, PSP, and PMD," Optical Fiber Communication /National Fiber Optic Engineers Conference,2008, pp.1-3.
    [08]Dayan Ban and Edward H. Sargent, "Influence of Nonuniform Carrier Distribution on the Polarization Dependence of Modal Gain in Multiquantum-Well Lasers and Semiconductor Optical Amplifiers," IEEE Journal of Quantum Electronics,Vol.36, No.9,2000, pp. 1081-1088.
    [09]Takaaki Kakitsuka, Yasuo Shibata, Masayuki Itoh, et al., "Numerical Analysis of Polarization Sensitivity in Strained Bulk Semiconductor optical Amplifiers," International Conference on Indium Phosphide and Related Material,2001.
    [10]Takaaki Kakitsuka, Yasuo Shibata, Masayuki Itoh, et al., "Influence of Buried Structure on Polarization Sensitivity in Strained Bulk Semiconductor Optical Amplifiers," IEEE Journal of Quantum Electronics, Vol.38, No.1,2002, pp.85-92.
    [11]K. Morito, M. Ekawa, T. Watanabe and Y. Kotaki, "High output power polarization insensitive semiconductor optical amplifier,"J. Lightwave Technol.21,2003, pp.176-181.
    [12]H. Soto, D. Erasme, and G. Guekos, "Cross-Polarization Modulation in Semiconductor Optical Amplifiers," IEEE Photonics Technology Letters, Vol.11, No.8,1999, pp.970-972.
    [13]H. Soto, D. Erasme, and G. Guekos, "5-Gb/s XOR Optical Gate Based on Cross-Polarization Modulation in Semiconductor Optical Amplifiers," IEEE Photonics Technology Letters, Vol.13, No.4,2001, pp.335-337.
    [14]Y. Liu, M. T. Hill, E. Tangdiongga, et al., "Wavelength Conversion Using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier," IEEE Photonics Technology Letters, Vol.15, No.1,2003, pp.90-92.
    [15]H. J. S. Dorren, Daan Lenstra, Giok-Djan Khoe, et al., "Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers:Theory and Application to All-Optical Flip-Flop Memories," IEEE Journal of Quantum Electronics, Vol.39, No.1,2003, pp.141-148.
    [16]J. J. Vegas Olmos, I. Tafur Monroy, M. Garcia Larrode, et al., "Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier," Optics Express, Vol.12, No.18,2004, pp.4214-4219.
    [17]Yu Yan, Fei Zeng, Jianping Yao et al., "Photonic Microwave Filter with Negative Coefficients Based on Cross Polarization Modulation in a Semiconductor Optical Amplifier," OFC 2007.
    [18]S. Philippe, A. Bradley, R. Basilio, et al., "Polarization dependence of non-linear gain compression factor in semiconductor optical amplifier", Optics Express, Vol.16, No.12,2008.
    [19]S.Philippe, and A.L.Bradley, "Experimental investigation of polarization effects in semiconductor optical amplifiers and implications for all-optical switching," Journal of Lightwave Technology, Vol.26, No.16,2008, pp.2977-2985.
    [20]A. S. Lenihan, R. Salem, T.E. Murphy, et al., "All-Optical 80Gb/s Time-Division Demultiplexing Using Polarization Insensitive Cross-Phase Modulation in Photonic Crystal Fiber," IEEE Photonics Technology Letters, Vol.18, No.12,2006, pp.1329-1331.
    [21]B. Bakhshi, L. Rahman and E. A. Golovchenko, "Impact of Polarization Hole Burning in Lightly Loaded Ultra Long-Haul WDM Systems," OFC 2007.
    [22]Tian Yu, Dong Peng, and Yang Changxi, "Polarization independent wavelength convertion in fiber using incoherent pumps," Optics Express, Vol.16, Issue 8,2008, pp.5493-5498.
    [23]R. Salem, G. E. Tdury, G. M. Carter, et al., "80Gb/s Optical Clock Recovery in the Presence of Polarization Fluctuations". LEOS 2005.
    [24]Reza Salem, G. E. Tudury, T. U. Horton, et al., "Polarization-Insensitive Optical Clock Recovery at 80Gb/s Using a Silicon Photodiode," IEEE Photonics Technology Letters, Vol.17, No.9,2005, pp.1968-1970.
    [25]Reza Salem, Amir Ali Ahmadi, Gaston E. Tudery, et al., "Two-Photon Absorption for Optical Clock Recovery in OTDM Networks," Journal of Lightware Technology, Vol.24, No.9,2006, pp.3353-3362.
    [26]L. M. Augustin, E. J. Geluk, Y. S. Oei, M. K. Smit, "Method for polarization effect suppression in semiconductor optical amplifiers",ECIO,2008.
    [27]F.Bruyere, O.Audouin, V.Letellier, et al., "Demonstration of an Optimal Polarization Scrambler for Long-Haul Optical Amplifier Systems", IEEE Photonics Technology letters, VOL.6, NO.9, 1994, pp1153-1155.
    [28]F.Heismann, R.Smith, "High-Speed Polarization Scrambler with Adjustable Phase Chirp", IEEE J. Selected Topics in Quantum Electronics, VOL.2, NO.2,1996, pp311-318.
    [29]M. Santoro, C. Poole, "Polarization Scrambling Using a Short Piece of High-Birefringence Optical Fiber and a Multifrequency Laser Diode,"J. Lightwave Technology, VOL.12, NO.2, 1994, pp288-293.
    [30]A. Kersey, M. Marrone, and A. Dandridge, "Analysis on Input Polarization Induced Phase Noise in Interferometric Fiber-Optic Sensors and Its Reduction using Polarization Scrambling", J. Lightwave Technology, VOL.8, NO.6,1990, pp.838-845.
    [31]Guodong Zhang, P. Meledina, C. Sknolick, and et al., "Employing slow polarization scrambling to improve performances for ultra-long haul DWDM systems," Optical Fiber Communication Conference, and National Fiber Optic Engineers Conference, OFC 2006.
    [32]C. R. Doerr, M. A. Cappuzzo, S. Chandrasekhar, et al.. "Polarization-Insensitive Planar Lightwave Circuit Dual-Rate Mach-Zehnder Delay-Interferometer," IEEE Photonics Technology Letters, Vol.18, No.16,2006, pp.1708-1710.
    [01]David K. Hunter and Ivan Andonovic, "Approaches to Optical Internet Packet Switching," IEEE Comm. Mag., Vol.38, No.9,2000, pp116-122.
    [02]Shun Yao, S. J. Ben Yoo, and Biswanath Mukherjee, "All-Optical Packet Switching for Metropolitan Area Networks:Opportunities and Challenges," IEEE Commun. Mag., Vol.39, No.3,2001, pp.142-148.
    [03]M. J. Mahony, "The application of optical packet switching in future communication networks," IEEE Commu. Mag. Vol.39,2001, pp.128-135.
    [04]G. Puerto, M. D. Manzanedo, A. Martinez, et al., " Dimensioning of 10Gbit/s all-optical packet switched networks based on optical label swapping routers with multistage 2R regeneration", Optical Express, Vol.14, Issue 22,2006, pp.10298-10306.
    [05]Chen Minghua, Chen Hongwei, and Xie Shizhong, "High spectral efficiency scheme for future all optical label switching network," Optics Express, Vol.14, Issue 5,2006, pp.1731-1736.
    [06]D. J. Blumenthal, B. E. Olsson, T. E. Dimmick, et al., "All-optical label swapping networks and technologies," J. Lightwave Technol.18,2000, pp.2058-2075.
    [07]J. M. Martinez, F. Ramos, R. V. Caenegem, et al., "LASAGNE:All-Optical label Swapping Employing Optical Gates in a Network Node," Proceedings of NOC Eindhoven, The Netherlands,2004, pp.269-276.
    [08]F. Ramos, J. M. Martinez, L. Stampoulidis, et al., "IST-LASAGNE:Towards all-optical label swapping employing optical logic gates and optical flip-flops," J. Lightw. Technol., Vol.23, No. 10,2005, pp.2993-3011.
    [09]A. E. Willner, D. Gurkan, A. B. Sahin, J. E. McGeehan, and M. C. Hauer, "All-optical address recognition for optically-assisted routing in next generation optical networks," IEEE Commu. Mag., Vol.41, No.5,2003, pp.38-44.
    [10]N. Calabretta, G. D. Khoe, H. J. S. Dorren, et al., "Multiple-output all-optical header processing technique based on two-pulse correlation principle," Eletron. Lett., Vol.37, No.20, 2001, pp.1238-1240.
    [11]M. C. Cardakli, "Reconfigurable optical packet header recognition and routing using time to wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett., Vol.12, No.5,2000, pp.552-554.
    [12]K. Chan, F. Tong, C. K. Chan, L. K. Chen, and W. Hung, "An all-optical packet header recognition scheme for self-routing packet networks," Proc OFC,2002, pp.284-285.
    [13]Brian R. Koch, Zhaoyang Hu, Daniel J. Blumenthal, et al., "Integrated Optical payload envelope detection and label recovery device for optical packet switching networks," Optics Express, Vol.14, No.12,2006, pp.5073-5078.
    [14]C. Niu, M. Zhang, L. Wang, and P. Ye, "A Novel approach of header extraction for optical unslotted networks using SOA-MZI with differential modulation scheme," Proc. SPIE, vol. 5625,2004, pp.649-655.
    [15]J. J. Vegas Olmos, I. Tafur Monroy, Y. Liu, M. Garcia Larrode, et al., "Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier," Optics Express, Vol.12, No.18,2004, pp.4214-4219,.
    [16]Wei Ji, Min Zhang, and Peida Ye, "All-Optical-Packet Header and Payload Separation for Unslotted Optical Packet Switched Networks," J. Lightwave Technology, Vol.25, No.3,2007, pp.703-709.
    [17]H. J. Lee, H. G. Kim, J. Y. Choi, K. Kim, and J. Lee, "A simple packet-level clock extraction scheme using a terahertz optical asymmetric demultiplexer," IEEE Photon. Technol. Lett. Vol. 11, No.10,1999, pp.1310-1312.
    [18]Y. Yan, J. Wu, and J. Lin, "Mitigation of pattern dependency of all-optical logic XOR based on TOAD using pulse-position modulation," in Proc. Quantum Electron. Laser Sci Conf., Vol.3, 2005, pp.1705-1707.
    [19]C. Bintjas, N. Pletos, K. Yiannopoulos, G. Theophilopoulos, M. Kalyvas, H. Avramopoulos, and G. Guekos, "All-optical Packet Address and Payload Separation," IEEE Photonics Technology Letters, Vol.14, No.12,2002, pp.1728-1730.
    [20]D. Apostolopoulos, D. Petrantonakis, O. Zouraraki, E. Kehayas, N.:leros, and H. Avramopoulos, "All-Optical Label/Payload Separation at 40Gb/s," IEEE Photonics Technology Letters, Vol.18, No.19,2006, pp.2023-2025.
    [21]C. W. Chow and H. K. Tsang, "Orthogonal label switching using polarization-shift-keying payload and amplitude-shift-keying label," IEEE Photon. Technol. Lett.,Vol.174, No.11,2005, pp.2475-2477.
    [22]Ji Wei, Min Zhang, Peida Ye, et al., "Novel Header Extraction for optical Packet-Switched Networks using a Modified Terahertz Optical Asymmetric demultiplexer with differential modulation scheme," Optics Engineering,2006.
    [23]J. Vegas Olmos, I. Monroy, Y. Liu, et al., "Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier," Optics Express, Vol.12, Issue 18,2004, pp.4214-4219.
    [24]Junya Kurumida, Hiroyuki Uenohara, and Kohroh Kobayashi, "All-optical Label and Payload Separation using a Self-switching Technique of a SOA-MZI," European Conference on Optical Communications,2006.
    [25]O. Zouraraki, D. Petrantonakis, D. Apostolopoulos, et al., "A 40Gbps All-Optical Label/Payload Separation Circuit Using Hybrid Integrated MZI Switches," European Conference on Optical Communications,2006.
    [26]G. Pagrawal and N. A. Olsson, "Self-Pulse Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron., Vol.25,1989, pp. 2297-2306.
    [27]Tang J. M., Spencer P. S. and Shore K. A., "Influence of Fast Gain Depletion on the Dynamic Response of TOAD's", IEEE J. Lightwave Technol., Vol.16, No.1,1998, pp.86-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700