用户名: 密码: 验证码:
多波长光纤激光器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WDM-PON是国际上近年兴起的全光接入网领域前沿热点研究方向。然而,阻碍其快速发展的“绊脚石”主要是WDM-PON成本居高不下,在目前的网络市场情况下运营商很难冒此风险大面积铺设WDM-PON接入网,这无疑对WDM-PON的研究发起了新的挑战。WDM-PON的高昂成本主要源于其中心局端及光网络单元大量光源的成本。为解决这一问题,目前采用的技术主要有宽带光源的光谱分割技术和在此基础上的注入锁定FP-LD(或RSOA)技术,但这两者均采用非相干光源从而引入较大的强度噪声限制了网络运行速度。多波长激光源作为WDM-PON中心化光源取代以上两种非相干光源技术,将有利于实现高速率运转的WDM-PON。
     本论文从理论和实验两方面对多波长光纤激光器及相关技术进行了较为深入细致的研究,并取得了若干创新性成果。主要内容包括:
     (1)对基于悬臂梁结构的多波长可调谐系统进行了理论及实验研究,并首次把多波长光纤叠层布拉格光栅应用于基于悬臂梁结构的多波长可调谐系统,并且得到了自由光谱范围可调谐的多波长滤波器,波长间隔可调谐范围为0.12nm,调制精度达到0.02nm/cm。
     (2)提出了一种新颖的马赫-泽德涉仪(MZI)的隔离器加强双通道结构。然后,通过详细的理论分析,我们对隔离器加强MZI结构与传统单通道MZI结构和直接双通道MZI结构的梳状滤波特性进行了比较研究。特别考察了MZI的耦合器分支耦合比和偏振相位差对三种MZI结构的滤波消光比及透射峰3-dB带宽的影响。利用三种MZI结构作为掺铒光纤激光器的多波长选模器件,我们分别获得三类多波长掺铒光纤激光器(单通道MZI多波长掺铒光纤激光器、直接双通道MZI多波长掺铒光纤激光器和隔离器加强双通道MZI多波长掺铒光纤激光器)。在直接双通道MZI情况下,我们获得了16个波长的稳定激射(波长间隔21.5 GHz)。然而,直接双通道MZI多波长掺铒光纤激光器通常有较低的激光消光比(仅-26 dB)且缩小波长间隔至单通道MZI多波长掺铒激射时的一半。因此,我们进而采用提出的隔离器加强双通道MZI作为多波长选模器件,获得了高激光消光比(>50dB)的多波长激射(10个振荡波长,间隔为43GHz)。特别地,相比单通道MZI多波长振荡的激射线宽0.0581nm,直接双通道MZI和隔离器加强双通道MZI情况能分别窄化激射线宽至0.031nm和0.037nm。而且,两种双通道MZI多波长掺铒光纤激光器都能保持非常好的稳定性。
     (3)对基于保偏光纤的光纤环镜进行了理论及实验研究,利用保偏光纤的双折射效应,并将其加入3dB耦合器中,入射光在光纤环镜内干涉叠加并在输出端会产生梳状滤波谱,因此使得这种特殊的光纤环镜具有了梳状滤波的特性。通过改变保偏光纤的长度,可以得到波长间隔为0.4nm和0.8nm的多波长滤波器。再利用高非线性光纤以及高非线性光子晶体光纤在光纤谐振腔中的四波混频效应抑制掺铒光纤放大器的均匀展宽引起的模式竞争,结合基于保偏光纤环镜的多波长滤波器,可以产生波长间隔为0.4nm以及0.8nm,至多15个波长同时稳定输出的多波长光纤激光器。
     (4)提出了两个不同波段基于SOA的多波长光纤激光器设计方案,并实验验证了多波长的稳定输出。实验中首先用基于SOA的环形腔结构实现了C+L波段的25个波长输出。之后又首次采用1060nm波段的SOA作为增益介质,并结合保偏光纤Sagnac环镜作为梳状滤波器,实现了11个波长的稳定输出。
WDM-PON is a frontier and hot research subject in recent years. However, WDM-PON has not been commercially deployed, due to its ultra-high implementation cost. Although internet users would like to have considerably higher bandwidth, they do not want to pay subscription fee much higher than the current access networks. It is a big risk for the telecommunication operators to widely deploy WDM-PONs at present. The main cost of WDM-PON is the installing and maintaining of many wavelength-specific optical transmitters at the central office (OC) and optical network units (ONU). To address this issue, it is desirable to use wavelength independent (colorless) light sources to replace those wavelength-specific optical transmitters, for example, using the spectrum-sliced broadband optical sources technology or their injection-locked FP-LD (or RSOA) technology. However, both of the two technologies use the incoherent optical sources and induce some intensity noise, hence can only make a lower rate WDM-PON. Instead of the incoherent optical sources, multiwavelength lasers can provide the coherent sources, and have a significant potential to develop a cost-efficient and high-speed WDM-PON.
     The research work presented in this dissertation focused on the frontier area of multiwavelength lasers as the centralized optical sources of WDM-PONs. Considering the compatibility and integration between the centralized optical sources and all-fiber WDM-PON, high-performance multiwavelength fiber lasers are specially investigated, such as EDFA, SOA, based multiwavelength fiber lasers.
     The major achievements of this thesis are summarized as follows:
     (1)A novel FSR-tunable FPF based on two superimposed FBGs (SFBGs) with initially uniform periods but slightly different Bragg wavelengths, is proposed and demonstrated. The SFBGs were glued onto the lateral surface of a specially-designed cantilever beam and linearly chirped by the beam bending-induced strain gradient. As a result, their reflection bands overlapped and a grating-based FPF with a tunable FSR was formed. Finally, a continuous tuning range of 0.12 nm and a tuning rate of 0.04 nm/cm have been realized experimentally.
     (2) We have proposed a novel Mach-Zehnder interferometer (MZI) configuration, namely, isolator-assisted double-pass MZI. The filtering characteristics of the proposed isolator-assisted double-pass MZI are analyzed and examined theoretically in comparison with those of the single-pass and direct double-pass MZI. It is shown that the isolator-assisted double-pass MZI has some intriguing advantages, including the narrower 3-dB bandwidth per transmission peak and the higher extinction ratio. Using the three types of MZI configurations as a comb-like filter in the laser cavity, experimental investigations for generating multiwavelength oscillations are carried out. We have experimentally demonstrated high-performance multiwavelength EDFA-based fiber lasers with 8-wavelength simultaneous oscillations spaced at 43 GHz and high extinction ratio of more than 40 dB. The lasers have a good stability with a maximum power fluctuation per lasing channel of less than 0.6 dB.
     (3) We have proposed and demonstrated a novel and simple technique to generate stable multiwavelength oscillations in an EDFL. A multiwavelength erbium-doped fiber laser by incorporating a HNLF and PMF Sagnac filter has been presented. Over 16 wavelengths simultaneous lasing with a spacing of 0.4nm was achieved. The laser had a total output power of-3dBm, a bandwidth of 0.05nm and an extinction ratio of-50dB. The lasing states were observed to be very stable. The power fluctuation is less than 0.5dB when monitored over a period of an hour.
     (4) We have experimentally investigated SOA based multiwavelength fiber lasers at both C+L band and 1060nm band. We have proposed, for the first time to the best of our knowledge, the 1060nm band SOA based multiwavelength fiber laser by introducing a PMF Sagnac loop mirror. Using the linear cavity configuration, we realized multiwavelength lasing with narrow linewidth and stable power output. Up to 11 wavelengths with channel spacing of 0.39nm have been presented, and the output power stability is quite good.
引文
[1]刘德明,孙军强,鲁平,严敏,光纤光学,科学出版社,2008.
    [2]杨克成,激光原理与技术,华中科技大学出版社,2000.
    [3]蓝信钜,激光技术,华中科技大学出版社,2004.
    [4]Eugene Hecht, Optics 4th Edition,2002.
    [5]Raman Kashyap, Fiber Bragg Gratings,1998.
    [6]Agrawal, G. P., Kelley, P. L., Kaminow, I. P., Nonlinear Fiber Optics 4th Edition, 2001.
    [7]Bakopoulos, P., Kehayas, E., Oehler, A. E. H., Sudmeyer, T., Weingarten, K. J., Hansen, K. P., Bintjas, C., Keller, U., Avramopoulos, H., Multi-Wavelength Laser Source for Dense Wavelength Division Multiplexing Networks, Optical Fiber Communication Conference, OFC2007,2007,1-3.
    [8]Oh, S. H., Park, Y. J., Kim, S. B., Park, S., Sung, H. K., Baek, Y. S., Oh, K. R., Multiwavelength lasers for WDM-PON optical line terminal source by silica planar lightwave circuit hybrid integration, IEEE Photonics Technology Letters,2007,19: 1622-1624.
    [9]Han, Y. G., Tran, T. V. A., Kim, S. H., Lee, S. B., Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature, Optics Letters,2005,30:1282-1284.
    [10]Feng, X., Lu, C., Tam, H. Y., Wai, P. K. A., Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser, IEEE Photonics Technology Letters,2007,19:1334.
    [11]Lee, J. H., Kim, C. H., Han, Y. G., Lee, S. B., Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications, Electronics Letters,2006,42:549-550.
    [12]Zhou, K., Zhou, D., Dong, F., Ngo, N. Q., Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback, Optics Letters,2003,28:893-895.
    [13]Feng, X., Tam, H. Y., Lu, C., Wai, P. K. A., Guan, B., Multiwavelength Erbium-Doped Fiber Laser Employing Cavity Loss Modulation, IEEE Photonics Technology Letters,2009,21:1314-1316.
    [14]Liu, X. S., Zhan, L., Hu, X., Li, H. G., Shen, Q. S., Xia, Y. X., Multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing, Optics Communications,2009,282:2913-2916.
    [15]Luo, A.-P., Luo, Z.-C., Xu, W.-C., Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer, Optics Letters,2009,34:2135-2137.
    [16]Mohd Nasir, M. N., Yusoff, Z., Al-Mansoori, M. H., Abdul Rashid, H. A., Choudhury, P. K., Widely tunable multi-wavelength Brillouin-erbium fiber laser utilizing low SBS thresholdphotonic crystal fiber, Optics Express,2009,17:12829-12834.
    [17]Yamashita, S., Hotate, K., Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen, Electronics Letters,1996,32: 1298.
    [18]Sun, G., Qu, R., Yang, J., Wang, X., Fang, Z., Highly uniform room-temperature multiwavelength unidirectional erbium-doped fibre ring laser without isolators, Electronics Letters,2004,40:1326-1327.
    [19]Kim, S. K., Chu, M. J., Lee, J. H., Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback, Optics Communications,2001,190: 291-302.
    [20]Bellemare, A., sek, M., Rochette, M., LaRochelle, S., Tu, M., Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid, Journal of Lightwave Technology,2000,18:825.
    [21]Liu, X., Yang, X., Lu, F., Ng, J., Zhou, X., Lu, C., Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber, Optics Express,2005,13:142-147.
    [22]Dong, X. P., Li, S., Chiang, K. S., Ng, M. N., Chu, B. C. B., Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror, Electronics Letters,2000,36:1609-1610.
    [23]Hu, S., Zhan, L., Song, Y. J., Li, W., Luo, S. Y., Xia, Y. X., Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror, IEEE Photonics Technology Letters,2005,17: 1387-1389.
    [24]Feng, X., Tam, H., Liu, H., Wai, P. K. A., Multiwavelength erbium-doped fiber laser employing a nonlinear optical loop mirror, Optics Communications,2006,268: 278-281.
    [25]Chang, C. H., Lin, H., Huang, Y. S., Tong, S. H., Multi-wavelength-switchable and Uniform Erbium-doped Fiber Laser Using Unbalanced In-line Sagnac Interferometer, Optics Express,2007,15:12450-12456.
    [26]Tran, T. V. A., Lee, K., Lee, S. B., Han, Y. G., Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings, Optics Express,2008,16:1460-1465.
    [27]Sun, G., Chung, Y., Luo, Z. Q., Ye, C. C., Cai, Z. P., Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator, Optical Fiber Technology,2007,13:198-201.
    [28]Chen, D., Qin, S., Gao, Y., Gao, S., Wavelength-spacing continuously tunable multiwavelength erbium-doped fibre laser based on DSF and MZI, Electronics Letters,2007,43:1-2.
    [29]Yao, J., Deng, Z., Liu, J., Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator, IEEE Photonics Technology Letters, 2005,17:756-758.
    [30]An, H. L., Lin, X. Z., Liu, H. D., Pun, E. Y. B., Chung, P. S., Multiwavelength erbium-doped fiber laser incorporating a double-pass Mach-Zehnder interferometer, Microwave and Optical Technology Letters,1999,20:270-272.
    [31]Yang, X., Dong, X., Zhang, S., Lu, F., Zhou, X., Lu, C., Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber, IEEE Photonics Technology Letters,2005,17:2538-2540.
    [32]Liu, X., Lu, C., Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers, IEEE Photonics Technology Letters, 2005,17:2541-2543.
    [33]Lee, J. H., Kim, C. H., Han, Y. G., Lee, S. B., Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications, Electronics Letters,2006,42:549.
    [34]Han, Y. G., Tran, T. V. A., Kim, S. H., Lee, S. B., Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature, Optics Letters,2005,30:1282-1284.
    [35]De Matos, C. J. S., Chestnut, D. A., Reeves-Hall, P. C., Koch, F., Taylor, J. R., Multi-wavelength, continuous wave fibre Raman ring laser operatingat 1.55μm, Electronics Letters,2001,37:825-826.
    [36]Han, Y. G., Kim, C. S., Kang, J. U., Paek, U. C., Chung, Y., Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings, IEEE Photonics Technology Letters,2003,15:383-385.
    [37]Kim, C. S., Sova, R. M., Kang, J. U., Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter, Optics Communications,2003,218:291-295.
    [38]Han, Y. G., Lee, S. B., Moon, D. S., Chung, Y., Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings, Optics Letters,2005,30: 2200-2202.
    [39]Han, Y. G., Tran, T. V. A., Kim, S. H., Lee, S. B., Development of a multiwavelength Raman fiber laser based on phase-shifted fiber Bragg gratings for long-distance remote-sensing applications, Optics Letters,2005,30:1114-1116.
    [40]Ning, G., Shum, P., Aditya, S., Liu, D., Gong, Y., Ngo, N. Q., Tang, M., Multiwavelength Raman fiber lasers with equalized peak power using a sampled chirped fiber Bragg grating, Applied Physics B:Lasers and Optics,2006,83: 249-253.
    [41]Zhao, C. L., Li, Z., Demokan, M. S., Yang, X., Jin, W., Lu, C., Studies on strain and temperature characteristics of a slanted multi-mode fiber Bragg grating and its application in multiwavelength fiber Raman ring laser, Journal of Lightwave Technology,2006,24:2394.
    [42]Wang, Q., Wang, Y., Zhang, W., Feng, X., Liu, X., Zhou, B., Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers, Optics Letters,2005,30: 952-954.
    [43]Dong, X., Shum, P., Ngo, N. Q., Chan, C. C., Multiwavelength Raman fiber laser with a continuously-tunable spacing, Optics Express,2006,14:3288-3293.
    [44]Luo, Z., Cai, Z., Huang, J., Ye, C., Huang, C., Xu, H., Zhong, W. D., Stable and spacing-adjustable multiwavelength Raman fiber laser based on mixed-cascaded phosphosilicate fiber Raman linear cavity, Optics Letters,2008,33:1602-1604.
    [45]Han, Y. G., Lee, J. H., Kim, S. H., Lee, S. B., Tunable multi-wavelength Raman fibre laser based on fibre Bragg grating cavity with PMF Lyot-Sagnac filter, Electronics Letters,2004,40:1475-1476.
    [46]Young-Geun, H., Chang-Seok, K., Kang, J. U., Un-Chul, P., Chung, Y., Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings, IEEE Photonics Technology Letters,2003,15:383-385.
    [47]Chen, D., Qin, S., Shen, L., Chi, H., He, S., An all-fiber multi-wavelength Raman laser based on a PCF sagnac loop filter, Microwave and Optical Technology Letters, 2006,48.
    [48]Jain, R. K., Lin, C., Stolen, R. H., A, A., A tunable multiple Stokes CW fibre Raman oscillator, Applied Physics Letters,1977,31:89.
    [49]Xiong, Z., Chen, T., Multi-wavelength Raman fiber laser with 2-and 3-stage cavities in a phosphosilicate fiber, Optical Fiber Technology,2007,13:81-84.
    [50]Babin, S. A., Churkin, D. V., Kablukov, S. I., Rybakov, M. A., Vlasov, A. A., All-fiber widely tunable Raman fiber laser with controlled output spectrum, Optics Express,2007,15:8438-8443.
    [51]Bouteiller, J. C., Spectral modeling of Raman fiber lasers, IEEE Photonics Technology Letters,2003,25:1698-1700.
    [52]Cierullies, S., Renner, H., Brinkmeyer, E., Numerical optimization of multi-wavelength and cascaded Raman fiber lasers, Optics Communications,2003, 217:233-238.
    [53]Dianov, E. M., Grekov, M. V., Bufetov, I. A., Vasiliev, S. A., Medvedkov, O. I., Plotnichenko, V. G., Koltashev, V. V., Belov, A. V., Bubnov, M. M., Semjonov, S. L., CW high power 1.24μm and 1.48μm Raman lasers based on low loss phosphosilicate fibre, Electronics Letters,1997,33:1542.
    [54]Han, Y. G., Moon, D. S., Chung, Y., Lee, S. B., Flexibly tunable multiwavelength Raman fiber laser based on symmetrical bending method, Optics Express,2005,13: 6330-6335.
    [55]Grubb, S. G., High-power 1.48 um cascaded Raman laser in germanosilicate fibers, Proc. Topical Meeting on Optical Amplifiers and Applications, Optical Society of America, Washington DC 1995,197.
    [56]Koch, F., Reeves-Hall, P. C., Chernikov, S. V., Taylor, J. R., CW, multiple wavelength, room temperature, Raman fiber ring laser with external 19 channel, 10GHz pulse generation in a single electro-absorption modulator, Optical Fiber Communication Conference, OFC2001,2001.
    [57]Kim, N. S., Prabhu, M., Li, C., Song, J., Ueda, K.,1239 and 1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation, Optics Communications,2000,176:219-222.
    [58]Vareille, G., Audouin, O., Desurvire, E., Numerical optimisation of power conversion efficiency in 1480 nm multi-Stokes Raman fibre lasers, Electronics Letters,1998, 34:675-676.
    [59]Luo, Z. Q., Huang, C. H., Sun, G. Y., Xu, H. Y., Wang, Y. S., Ye, C. C., Cai, Z. P., 800 mW/1484 nm highly efficient two-cascaded phosphosilicate Raman fiber laser pumped by Nd:YVO4 solid-state laser, Optics Communications,2006,265: 616-619.
    [60]Huang, C. H., Cai, Z., Luo, Z. Q., Huang, W. C., Xu, H. Y., Ye, C. C., Highly efficient cascaded P-doped Raman fiber laser pumped by Nd:YVO4 solid-state laser, Chinese Optics Letters,2008,6:41-43.
    [61]Wang, Z., Cui, Y., Yun, B., Lu, C., Multiwavelength generation in a Raman fiber laser with sampled Bragg grating, IEEE Photonics Technology Letters,2005,17: 2044-2046.
    [62]Tang, M., Gong, Y., Shum, P., Broad-band tunable wavelength conversion using Raman-assisted parametric four-wave mixing in highly nonlinear fibers with double-pass geometry, IEEE Photonics Technology Letters,2005,17:148-150.
    [63]Ho, M. C., Uesaka, K., Marhic, M., Akasaka, Y., Kazovsky, L. G., 200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain, Journal of Lightwave Technology,2001,19:977.
    [64]Chang, D. I., Lim, D. S., Jeon, M. Y., Kim, K. H., Park, T., Cascaded Raman fibre laser for stable dual-wavelength operation, Electronics Letters,2001,37:740-741.
    [65]Babin, S. A., Churkin, D. V., Ismagulov, A. E., Kablukov, S. I., Podivilov, E. V., Spectral broadening in Raman fiber lasers, Optics Letters,2006,31:3007-3009.
    [66]Han, Y. G., Fresi, F., Poti, L., Bogoni, A., Lee, J. H., Lee, S. B., Continuously FSR tunable all fiber Fabry-Perot filter and its application to tunable multiwavelength SOA ring laser, Optical Fiber Communication Conference, OFC 2007,2007,1-3.
    [67]Healey, P., Townsend, P., Ford, C., Johnston, L., Townley, P., Lealman, I., Rivers, L., Perrin, S., Moore, R., Spectral slicing WDM-PON using wavelength-seeded reflective SOAs, Electronics Letters,2001,37:1181-1182.
    [68]Luo, Z. Q., Zhong, W. D., Cai, Z. P., Ye, C. C., Wen, Y. J., High-performance SOA-based multiwavelength fiber lasers incorporating a novel double-pass waveguide-based MZI, Applied Physics B-Lasers and Optics,2009,96:29-38.
    [69]Moon, D. S., Kim, B. H., Lin, A., Sun, G., Han, W. T., Han, Y. G., Chung, Y., Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber, Optics Express,2007,15:8371-8376.
    [70]Pleros, N., Bintjas, C., Kalyvas, M., Theophilopoulos, G., Yiannopoulos, K., Sygletos, S., Avramopoulos, H., Multiwavelength and power equalized SOA laser sources, IEEE Photonics Technology Letters,2002,14:693-695.
    [71]Yu, B. A., Kwon, J., Chung, S., Seo, S. W., Lee, B., Multiwavelength-switchable SOA-fibre ring laser using sampled Hi-Bi fibre grating, Electronics Letters,2003, 39:649-650.
    [72]Zhao, C. L., Li, Z., Demokan, M. S., Yang, X., Jin, W., Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating, Optics Communications,2005,252:52-57.
    [73]Ning, G., Shum, P., Aditya, S., Gong, Y. D., Xia, L., Multiwavelength peak power equalized lasers based on SOA using a sampled chirped fiber Bragg grating, Microwave and Optical Technology Letters,2006,48.
    [74]Liu, D., Ngo, N. Q., Tjin, S. C., Microwave photonic bandpass filter using a multiwavelength semiconductor-optical-amplifier ring laser, Optical Engineering, 2007,46:054304.
    [75]Yu, B. A., Shin, W., Lee, Y. L., Eom, T. J., Noh, Y. C., Lee, J., Ko, D. K., Multiwavelength switchable SOA-fibre ring laser using digital micromirrors, Electronics Letters,2006,42:742-743.
    [76]Chen, D. R., Fu, H., Ou, H., Qin, S., Wavelength-spacing continuously tunable multi-wavelength SOA-fiber ring laser based on Mach-Zehnder interferometer, Optics and Laser Technology,2008,40:278-281.
    [77]Li, Y. J., Wu, C. Q., Fu, S. N., Shum, P., Gong, Y. D., Zhang, L. R., Power Equalization for SOA-Based Dual-Loop Optical Buffer by Optical Control Pulse Optimization, Journal of Lightwave Technology,2007,34.
    [78]Dong, J., Fu, S. N., Zhang, X. L., Shum, P., Zhang, L. R., Huang, D. X., Analytical Solution for SOA-Based All-Optical Wavelength Conversion Using Transient Cross-Phase Modulation, IEEE Photonics Technology Letters,2006,18: 2554-2556.
    [79]Hyun-Do Jung, I. T. M., Koonen, A. M. J., Tangdiongga, E., All-optical data vortex node using an MZI-SOA switch array, IEEE Photonics Technology Letters,2007, 19:1777.
    [80]Wen, Y. J., Cheng, X., Xu, Z., Wang, Y., Shankar, J., Light sources for WDM passive optical networks, Joint International Conference on Optical Internet and the Australian Conference on Optical Fibre Technology, Australia 2007,1-3.
    [81]Akimoto, K., Kani, J., Teshima, M., Iwatsuki, K., Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network, Journal of Lightwave Technology,2003,21:2715.
    [82]Han, K. H., Son, E..S., Choi, H. Y., Lim, K. W., Chung, Y. C., Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating, IEEE Photonics Technology Letters,2004,16:2380-2382.
    [83]Lee, W., Cho, S. H., Park, J., Kim, B., Noise suppression of spectrum-sliced WDM-PON light sources using FP-LD, ETRI Journal,2005,27:334-336.
    [84]Kwon, H. C., Jang, W. S., Han, S. K., WDM-PON downstream optical link using wavelength-locked FP-LD by spectrally-sliced FP-LD, IEICE Transactions on Communications,2005,88:384-387.
    [85]Wen, Y. J., Chae, C. J., WDM-PON upstream transmission using Fabry-Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses, Optics Communications,2006,260:691-695.
    [86]Hoshi, T., Shioda, T., Tanaka, Y., Kurokawa, T.,10-Gbps DWDM transmission using multi-frequency light source with 50-GHz channel spacing, Optical Fiber Communication Conference, OFC2007,2007,1-3.
    [87]Oh, S. H., Park, Y. J., Kim, S. B., Park, S., Sung, H. K., Baek, Y. S., Oh, K. R., Multiwavelength lasers for WDM-PON optical line terminal source by silica planar lightwave circuit hybrid integration, IEEE Photonics Technology Letters,2007,19: 1622-1624.
    [88]Veselka, J. J., Korotky, S. K., A multiwavelength source having precise channel spacing for WDMsystems, IEEE Photonics Technology Letters,1998,10: 958-960.
    [89]Dutta, A., Dutta, N. K., Fujiwara, M., Eds. WDM Technologies:passive optical components, Elsevier:Amsterdam,2003.
    [90]Bethuys, S., Lablonde, L., Rivoallan, L., Optical add/drop multiplexer based on UV-written Bragg grating in twincore fiber Mach-Zehnder interferometer, Electronics Letters,1998,34:1250-1252.
    [91]Song, M., Yin, S. Z., Ruffin, P. B., Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder inferferometer, Applied Optics,2000, 39:1106-1111.
    [92]Yao, S. Q., Chen, K. X., A 8-channel fiber Mach-Zehnder interferometric super narrow spacing wavelength-division-multiplexer, Acta Optica Sinica,1998,18: 1113-1118.
    [93]Chen, S. P., Li, J. F., Lu, K. C., Li, Y. G., Multi-wavelength superfluorescent fibre source based on a Mach-Zehnder interferometer, Journal of Optics A:Pure and Applied Optics,2004,6:549-552.
    [94]Luo, Z. C., Luo, A. P., Xu, W. C., Polarization-Controlled Tunable All-Fiber Comb Filter Based on a Modified Dual-Pass Mach-Zehnder Interferometer, IEEE Photonics Technology Letters,2009,21:1066-1068.
    [95]N. Park, P. F. Wysocki.24-line multiwavelength operation of erbium-doped fiber-ring laser, IEEE Photonics Technol.Lett.,1996,8(11):1459-1461
    [96]M. Zirngibl, C. H. Joyner, C. R. Doerr, et al. An 18-channel multifrequency laser, IEEE Photon. Technol.Lett.,1996, (8):870-872
    [97]H. X. Chen. Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier, Opt. Lett.,2005,30(6):619-621
    [98]F. W. Tong, W. Jin, D. N. Wang, et al. Multiwavelength fiber laser with wavelength selectable from 1590 to 1654nm, Electron. Lett.,2004,40(10):594-595
    [99]H. L. Liu, H. Y. Tam, W. H. Ching, et al. Multi-wavelength ring laser using highly nonlinear semiconductor optical amplifier, Opt. Commun,2006,268(2):278-281
    [100]D. N. Wang, F. W. Tong, X. Fang, et al. Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium, Opt. Commun,2003,228:295-301
    [101]Antoine Bellemare, Miroslav Karasek, Martin Rochete, et al. Temperature Multifrequency Erbium-doped Fiber Lasers Anchored on the ITU Frequency Grid,J. Light. Technol IEEE,2000,18:825-831
    [102]X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber, Opt. Express,13,142-147 (2005)
    [103]Y. G. Han, T. V. A. Tran, S. B. Lee. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber, Opt. Lett.,2006,31:697-699
    [104]A. Zhang, H. Liu, M. S. Demokan, et al. Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber, IEEE Photon. Technol. Lett.,2005,178:2535-2537
    [105]S. Yamashita and Y.Inoue, Multiwavelength Er-Doped Fiber Ring Laser Incorporating Highly Nonlinear Fiber, Jpn. J. Appl. Phys., Part 244, L1080-L1081 (2005)
    [106]X. H. Feng, H. Y. Tam, P. K. A. Wai. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation, Opt. Express,2006, 14(8):8205-8210
    [107]A. L. Zhang, H. L. liu, M. S. Demokan, et al. Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber, IEEE Photonics Technol. Lett.,2005,17(12):2535-2537
    [108]S. L. Pan, C. Y. Lou, Y. Z. Gao. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter, Opt. Express,2006,14(3):1113-1118
    [109]Yu Yu, Zhang Xin-Liang, Huang De-Xiu. All-Optical RZ-to-NRZ Format Conversion with a Tunable Fiber Based Delay Interferometer, Chin. Phys. Lett, 2007,24(3):706-709
    [110]Xing Wei, Juerg Lenthold, Liming Zhang. Delay-interferometer-based optical pulse generator, Optical Society of America,2004,1:23-27
    [111]Guojie Chen, De-xiu Huang, Xin-liang Zhang, et al. Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber, Optics Letters,2008,33(6):554-556
    [112]H. Dong, G. Zhu, Q. Wang, et al. Multiwavelength fiber ring laser source based on a delayed interferometer. IEEE Photonics Technol. Lett.,2005,17(2):303-305
    [113]D. S. Moon, Un-Chul Paek, Y. Chung. Multiwavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating, Opt. Express,2004, 12(25):6147-6152
    [114]R. Slavik, S. Doucet, and S. LaRochelle, High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings,J. Lightw. Technol., vol.21, no.4, pp.1059-1065, Apr.2003.
    [115]S. Pereira and S. LaRochelle, Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers, Opt. Exp., vol.13, no.6, pp.1906-1915,2005.
    [116]X. Dong, P. Shum, C.C. Chan, and X. Yang, FSR-tunable Fabry-Perot filter with superimposed, chirped fiber Bragg gratings, IEEE Photonics Technology Letters, vol.18(1), pp.184-186, Jan.2006.
    [117]N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating, J. Lightwave Technol. 21,1568-1575 (2003).
    [118]X. Dong, B.-O. Guan, S. Yuan, X. Dong, H.-Y. Tam, Strain gradient chirp of fiber Bragg grating without shift of central Bragg wavelength, Opt. Commun.202,91-95 (2002).
    [119]J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, L. Dong, Fibre Bragg gratings tuned and chirped using magnetic fields, Electron. Lett.33,235-236 (1997).
    [120]J. Lauzon, S. Thibault, J. Martin, and F. Ouelletter, Implementation and characterization of fiber Bragg grating linearly chirped by a temperature-gradient, Opt. Lett.19,2027-2029 (1994).
    [121]X. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. H. Ng, and C.-L. Zhao, Largely tunable CFBG-based dispersion compensator with fixed center wavelength, Opt. Expr., vol.11, no.22, pp.2970-2974,2003.
    [122]Bakopoulos, P., Kehayas, E., Oehler, A. E. H., Sudmeyer, T., Weingarten, K. J., Hansen, K. P., Bintjas, C., Keller, U., Avramopoulos, H., Multi-Wavelength Laser Source for Dense Wavelength Division Multiplexing Networks, Optical Fiber Communication Conference, OFC2007,2007,1-3.
    [123]Poustie, A. J., Finlayson, N., Harper, P., Multiwavelength fiber laser using a spatial mode beating filter, Optics Letters,1994,19:716-718.
    [124]Zhang, Z., Zhan, L., Xu, K., Wu, J., Xia, Y., Lin, J., Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter, Optics Letters,2008,33:324-326.
    [125]Sun, J., Multiwavelength ring lasers employing semiconductor optical amplifiers as gain media, Microwave and Optical Technology Letters,2004,43.
    [126]Chen, H., Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier[J]. Optics Letters,2005,30:619-621.
    [127]Qureshi, K. K., Tam, H. Y., Chung, W. H., Wai, P. K. A., Multiwavelength laser source using linear optical amplifier, IEEE Photonics Technology Letters,2005,17: 1611-1613.
    [128]Roh, S., Chung, S., Lee, Y. W., Yoon, I., Lee, B., Channel-spacing-and wavelength-tunable multiwavelength fiber ring laser using semiconductor optical amplifier, IEEE Photonics Technology Letters,2006,18:2302-2304.
    [129]Baby, V., Chen, L. R., Doucet, S., LaRochelle, S., Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing, IEEE Journal of Selected Topics in Quantum Electronics, 200713:764-769.
    [130]Tong, F. W., Jin, W., Wang, D. N., Wai, P. K. A., Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm, Electronics Letters,2004,40: 594-595.
    [131]Yoon, I., Lee, Y. W., Jung, J., Lee, B., Tunable multiwavelength fiber laser employing a comb filter based on a polarization-diversity loop configuration, Journal of Lightwave Technology,2006,24:1805.
    [132]Han, Y. G., Dong, X., Kim, C. S., Jeong, M. Y., Lee, J. H., Flexible all fiber Fabry-Perot filters based on superimposed chirped fiber Bragg gratings with continuous FSR tunability and its application to a multiwavelength fiber laser, Optics Express,2007,15:2921-2926.
    [133]Chen, S. P., Lu, K. C., Li, Y. G., Feng, M., Li, J. F., Characteristics comparison of backward and forward pumped spectrum pre-sliced multi-wavelength fibre sources, Journal of Optics A:Pure and Applied Optics,2004,6:971-976.
    [134]Wang, J., Zheng, K., Peng, J., Liu, L., Li, J., Jian, S., Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser, Optics Express,2009,17: 10573-10583.
    [135]Li, T., Advances in optical fiber communications:An historical perspective, IEEE Journal on Selected Areas in Communications,1983,1:356-372.
    [136]Jinno, M., Miyamoto, Y., Hibino, Y., Networks:Optical-transport networks in 2015, Nature Photonics,2007, 1:157-159.
    [137]Chanclou, P., Gosselin, S., Palacios, J. F., Alvarez, V. L., Zouganeli, E., Overview of the optical broadband access evolution:A joint article by operators in the 1ST network of excellence e-Photon/One, IEEE Communications Magazine,2006,44: 29-35.
    [138]Kim, K. S., On the evolution of PON-based FTTH solutions, Information sciences, 2003,149:21-30.
    [139]Govind P. Agrawal, N. Anders Olsson, Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers, IEEE Journal of Quantum Electronics,1989, VOL.25, No.11,2297-2306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700