用户名: 密码: 验证码:
基于数字散斑相关方法的沥青混合料疲劳破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是沥青路面的主要破坏形式,也是沥青路面结构基础理论与设计的本源性问题。研究表明,路面行车荷载的随机性、环境因素的复杂性,以及沥青混合料细观结构的变异性导致了沥青路面疲劳响应的分散性,从而使得室内疲劳试验结果与实际路面疲劳损伤累积过程存在较大的差异。因此有必要从细观层次上研究沥青混合料的疲劳破坏机理。
     本文基于光学测量方法——数字散斑相关方法(DSCM)及Matlab平台自行编程,实时观察并测量了疲劳加载过程中沥青混合料的位移场和应变场,通过DSCM方法将图像信息转化成了能够表征材料力学性能的变形信息,并对变形场的局部化特征进行了分析。然后引入了沥青混合料疲劳损伤阈值的概念,结合四点弯曲疲劳试验,验证了沥青混合料微损伤的愈合效应,计算了沥青混合料的疲劳损伤阈值。基于沥青混合料等应力区损伤累积的随机性,提出沥青混合料存在局部失效强度,并给出了局部失效强度的理论推导过程及破坏概率函数。最后对沥青混合料的疲劳失效判据进行了探讨及验证。提出了基于可变步长的耗散能相对变化率的突变点作为疲劳失效判据,并给出了理论解释。本文综合考虑现有试验条件及设备,主要完成了以下工作:
     1)为了获得沥青混合料在循环荷载作用下的变形分布及演化特征,详细探讨了光学测量方法——数字散斑相关方法(DSCM)的基本原理及数值计算方法。
     2)基于Matlab平台结合DSCM数值计算方法自行编程,实现了亚像素位移及全场应变的计算,并对其进行了数值模拟验证,然后对实际试验环境中的位移和应变测量精度进行了分析。
     3)分别对两种粒径的基质沥青混合料梁试件进行了四点弯曲疲劳试验,通过DSCM测量系统,实时监测了沥青混合料疲劳加载过程中的位移场及应变场,并对其断裂过程区进行了试验观察,得出了沥青混合料在四点弯曲疲劳加载下的变形分布特征。
     4)根据失稳断裂前应变场的分布特征及结合数字图像,对沥青混合料断裂过程区的尺寸进行了定义,并对沥青混合料疲劳裂纹扩展路径与集料的相对位置进行分析。在弯拉强度试验中,通过DSCM测量系统,捕捉到了沥青混合料的起裂时刻,发现沥青混合料在峰值荷载之前起裂,并计算了起裂应变。
     5)根据断裂统计理论,在分析材料的破坏行为时,必须预先给定一个达到破坏的损伤阈值。因此基于沥青混合料疲劳损伤阈值的基本思想,结合四点弯曲疲劳试验及弯拉强度试验,计算了沥青混合料的疲劳损伤阈值,并对沥青混合料微损伤的愈合效应进行了试验验证。
     6)在对未预制切口的试件进行四点弯曲疲劳加载过程中,通过DSCM测量系统发现试件中段等应力区,不同位置存在不同程度的损伤累积,因此推断沥青混合料存在局部失效强度,并给出了局部失效强度的理论推导过程,此理论推导同时考虑了沥青混合料的黏弹性、裂纹尖端应力重分布及荷载的间歇性等因素。这与沥青路面在真实交通荷载作用下的情况相符。
     7)采用统计断裂力学中的基本模型——最弱链环模型,对沥青混合料断裂破坏过程进行了的概率分析,推导出了沥青混合料在某一应力作用下的断裂概率函数。
     8)鉴于目前国内外对于沥青混合料的疲劳失效判据未达成共识,指出疲劳失效判据的不统一是导致沥青混合料疲劳试验数据分散性大的原因之一,提出了疲劳失效判据应具备的条件。然后通过对不同配合比的混合料进行不同荷载控制模式的四点弯曲疲劳试验,提出了基于可变步长的耗散能相对变化率突变点作为疲劳失效判据,并对其物理意义进行了理论解释。
Fatigue failure due to repeated loading is one of the major distress in asphalt pavements.That is also the major issue in basic theory of strcture and design in asphalt pavement. Studieshave shown that traffic load randomness, environment complexity and the mesostructurevariability of asphalt mixture lead to the randomness of asphalt pavement fatigue response. Sothere are big differences between indoor fatigue test and fatigue damage accumulation processof the actual pavements. Therefore, it is necessary to acquire more insight into the fatiguebehavior of asphalt mixture from the mesoscopic level,to obtain a better understanding of thefatigue failure mechanism of asphalt mixtures.
     The displacement fields and strain fields of asphalt mixtures in four-point bending fatigueloading process were obtained in this paper using digital speckle correlation method andMatlab platform. Furthermore, the local characteristics of the strain fields were analyzed; localfailure strength of asphalt concrete was proposed; the asphalt mixture fatigue failure criterionwas discussed. And finally this paper proposed the ratio of dissipated energy change toindicate the damage accumulation in the mixture as asphalt mixtures fatigue failure criterion,giving a theoretical proof. Considering the existing test conditions and equipment, the maininnovative work completed in this paper is included as follows:
     1) In order to obtain the deformation distribution and evolution characteristics of asphaltconcrete under cyclic loading, the basic principle of the digital speckle correlation method(DSCM) and numerical methods were introduced in detail.
     2) The subpixel displacement and strain fields were calculated based on Matlab platformcombining numerical calculation method. And then Numerical simulations were carried out onthe calculation results; the accuracy of displacement and strain measurement in actual testenvironment was discussed.
     3) Four-point bending fatigue test was carried out on asphalt concrete beam specimens oftwo particle size matrix. By the DSCM measuring system, the displacement field and strainfield of asphalt concrete were monitored in real time under4PB test. And then the deformationdistribution characteristics of asphalt concrete were obtained under4PB test.
     4) The size of asphalt concrete in the fracture process zone was defined, according to thedistribution characteristics of the strain field before the unstable fracture and digital images.The relative position between fatigue crack growth path and aggregates was analized. In4PBstrength test, the crack initiation time of asphalt concrete was captured by DSCM measuringsystem, awaring of the asphalt concrete starting to crack before peak load and then failure strain was calculated.
     5) Based on the fracture statistical theory, damage threshold must be pre given beforeanalyzing material fracture behavior. Therefore, based on the basic idea of the asphalt mixturefatigue damage threshold, combining4PB fatigue test and flexural strength test, microdamagehealing effect of the asphalt mixture was verified and fatigue damage threshold was calculated.
     6) During4PB fatigue test, there are different degrees of damage accumulated at differentlocations in the middle of specimen which is equal stress zone. Therefore,the presence ofpartial failure strength in asphalt concrete was inferred, giving the approach of calculatingpartial failure strength.This approach appeared to be rational and to provide the followingadvantages: strain rate was used in the determination of the dissipated creep strain energy limit,which accounts for the effects of viscoelasticity during repeated loading test;the actual stressdistribution near the crack tip was considered;dissipated creep strain energy per cycle wasdetermined by integrating the stress and strain functions associated with the actual loadingcondition(i.e.,the harvesine load).
     7)The failure probability of asphalt concrete fatigue failure was analized using statisticalfracture mechanics model named weakest link model. And then the fracture probabilityfunction was derived under some stress level.
     8) Presently, it is not reached consensus for asphalt mixtures fatigue failure criterion.Themost universally accepted fatigue criterion is a decrease in initial stiffness by50percent inflexural fatigue test. However, the50percent reduction in initial stiffness is an arbitrarynumber with no relation to damage accumulation in the material. This paper presents ratio ofdissipated energy change to indicate the damage accumulation in the mixture as asphaltmixtures fatigue failure criterion, giving a theoretical proof. This procedure shows similaritybetween constant stress and constant strain modes of testing. Finally, this paper verifies thefatigue performance prediction model, based on the ratio of dissipated energy change, isindependent of the load control mode.
引文
[1]张肖宁.沥青混合料材料结构数字图像技术的基本方法[J].华南理工大学学报(自然科学版),2012(10):166-173.
    [2] Braza D, Lopesa R T, Mottab L G. Research on fatigue cracking growth parameters inasphaltic mixtures using computed tomography[J]. Nuclear Instruments and Methods inPhysics Researc:2004,213(25):498-502.
    [3] FU Y, WANG L, Tumay M, et al. Quantification and Simulation of Particle Kinematicsand Local Strain in Granular Materials Using X-ray Tomography Imaging andDiscrete-Element Method[J]. Journal of Engineering Mechanics:2008,134(2):143-154.
    [4]段跃华,张肖宁,李智,等.基于工业CT的混凝土集料二维及三维轮廓表征方法[J].中国公路学报,2011(06):9-15.
    [5]万成,张肖宁,贺玲凤,等.基于真实细观尺度的沥青混合料三维重构算法[J].中南大学学报(自然科学版),2012,43(07):2813-2820.
    [6]段跃华,张肖宁.基于CT断层扫描图像的混凝土粗集料三维虚拟筛分[J].吉林大学学报(工学版),2012,42(04):918-923.
    [7]段跃华,张肖宁,李红杰,等.基于CT图像的粗集料颗粒接触特性细观尺度研究[J].建筑材料学报,2011(06):808-813.
    [8]张肖宁,段跃华,李智,等.基于X-ray CT的沥青混合料材质分类方法[J].华南理工大学学报(自然科学版),2011(03):120-124.
    [9] Krstulovic-opara N. Fracture Process Zone Presence and Behavior in MortarSpecimens[J]. Materials Journal:1993,90(6):618-626.
    [10]刘西拉,温斌.考虑广义边界条件的混凝土应变软化[J].岩石力学与工程学报,2008,27(5):885-892.
    [11]罗驰.钢筋混凝土桥面沥青混合料铺装层内应变的试验研究[D].大连:大连理工大学,2007.
    [12] Berthaud Y, Ringot E, Schmitt N. Experimental measurements of localization for tensiletests on concrete[C]//Fracture process in concrete,rock and ceramics,1991:41-50
    [13] Mihashi H, Nomura N, Niiseki S. Influence of aggregate size on fracture process zone ofconcrete detected with three-dimensional acoustic emission thehnique[J]. Cement andConcrete Research:1991,21(15):737-744.
    [14]张朝宗,郭志平,张朋,等.工业CT技术和原理[M].北京:科学出版社,2009.
    [15]李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2005,22(2):14-16.
    [16]李晓军,张金夫,刘凯年,等.基于CT图像处理技术的岩土材料有限元模型[J].岩土力学,2006,27(8):1331-1334.
    [17]李晓军,冯樊.非均匀性的沥青混合料半圆弯曲实验数值仿真[J].长安大学学报(自然科学版),2010,30(4):18-22.
    [18] Otsuka K. X-ray technique with contrast medium to detect fine cracks in reinforcedconcrete[C]//Fracture toughness and fracture energy,1989:521-534
    [19]吴智敏,徐世烺,刘佳毅.光弹贴片法研究混凝土裂缝扩展过程及双K断裂参数的尺寸效应[J].水利学报,2001(4):34-39.
    [20]徐世烺,赵国藩.混凝土裂缝的稳定扩展过程与临界裂缝尖端张开位移[J].水利学报,1989(4):33-44.
    [21]戴宜全,孙泽阳,吴刚,等.基于数字图像相关法的混凝土全场变形测量[J].东南大学学报(自然科学版),2010,40(4):829-834.
    [22] Jacquot P, Rastogi P K. Fracture mechanics of concrete[M]. New YORK: Elsevier,1983.
    [23] Yamaguchi I A. Laser-speckle strain gauge[J]. Journal of Physics E: ScientificInstruments:1981,14(1):1270–1273.
    [24] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J].Optical Engineering:1982,21(3):427-431.
    [25] PAN B, Asundi A, XIE H-m, et al. Digital image correlation using iterative leastsquares and pointwise least squares for displacement field and strain fieldmeasurements[J]. Optics and Lasers in Engineering:2009,47(7/8):865-874.
    [26] PAN B, WANG Z-y, XIE H-m. Generalized spatial-gradient based digital imagecorrelation for displacement and shape measurement with sub-pixel accuracy[J]. Journalof Strain Analysis for Engineering Design:2009,44(8):659-669.
    [27] TONG W. An evaluation of digital image correlation criteria for strainmapping applications[J]. Strain:2005,41(4):167-175.
    [28]于起峰.基于图像的精密测量与运动测量[M].北京:科学出版社,2002.
    [29] CHU T-c, Ranson W F. Application of digital image correlation techniqueto experimental mechanics[J]. Experimental Mechanics:1985,25(3):232–244.
    [30] Bruck H A, Mcneill S R, Sutton M A, et al. Digital image correlation usingNewton-Raphson method of partial differential correction [displacement measurement][J].Experimental Mechanics:1989,29(3):261-267.
    [31] Sutton M A, Mcneill S R, Jang J, et al. The Eeffcts of Subpixel Image Restorationon Digital Correlation Error Estimates[J]. Optical Engineering:1988,27(11):173-185.
    [32] Sutton M A, CHENG M, Mnceill S R, et al. Application of an OptimizedDigital Correlation Mehtod to Planar Deformation Anlysis[J]. Image and VisionComputing:1998,4(3):143-156.
    [33] Vendroux G, Knauss W G. Submicron deformation field measurements: Part2. Improved digital image correlation[J]. Experimental Mechanics:1998,38(2):86-92.
    [34]潘兵,谢惠民,夏勇,等.数字图像相关中基于可靠变形初值估计的大变形测量[J].光学学报,2009,29(2):400-600.
    [35] JIN H-q, Bruck H A. Pointwise digital image correlation using genetic algorithms[J].Experimental Technology:2005,29(1):36–39.
    [36] JIN H-q, Bruck H. Theoretical development for pointwise digital image correlation[J].Optical Engineering:2005,44(6):1-14.
    [37] Hwang S F, Horn J T, WANG H-j. Strain measurement of SU-8photoresist by adigital image correlation method with a hybrid genetic algorithm[J]. Optical and Lasersin Engineering:2008,46(3):281-289.
    [38] Davis C Q, Dennis M F. Statistics of subpixel registration algorithms basedon spatiotemporal gradients or block matching. Optical Engineering[J]. OpticalEngineering:1998,37(4):1290-1298.
    [39] ZHANG Jun, Jin G, MA Shao-peng, et al. Application of an improved subpixelregistration algorithm on digital speckle correlation measurement[J]. Optics&LaserTechnology:2003,35(7):533-542.
    [40] Wattrisse B C, Muracciole A. Nemoz-Gaillard JM. Analysis of strain localizationduring tensile tests by digital image correlation. Experimental Mechanics[J].Experimental Mechanics:2001,41(1):29-39.
    [41]侯成刚,赵明涛.基于二次曲面拟合的亚像素图像匹配算法[J].计量学报,1997,18(3):227-231.
    [42] Peters W H, HE Zheng-hui, Sutton M A. Two-Dimensionai FluidVelocity Measurements by Use of Digital Speckle Correlation Techniques[J].Experimental Mechanics:1984,24(2):117-121.
    [43] WU W, Peters W H, Hammer M. Basic mechanical properties of retina in simpleelongation[J]. Journal of Biomechanical Engineering:1987,109(2):65-67.
    [44] Durig B R, Peters W H, Hammer M A. Digital Image Correlation Measurements of Strainin Bovine Retina[J]. Optical Testing and Metrology:1989,954(25):438-443.
    [45] Zink A G, Davidson R W, Hanna R B. Effect of composite structure on strain and failureof laminar and wafer composites[J]. Mechanics of Composite Materials andStructures:1997,4(4):345-359.
    [46] Gonzalez J, Knauss W G. Strain inhomogeneity and discontinuous crack growth in aparticulate composite[J]. Journal of the Mechanics and Physics of Solids:1998,46(10):1981-1996.
    [47] Zink A G, Davidson R W, Hanna R B. Strain measurement in wood using a digital imagecorrelation technique[J]. Wood and Fiber Science:1995,27(4):346-356.
    [48] Sutton M A, Turner J L, CHAO Y-j, et al. Experimental investigations ofthree-dimensional effects near a crack tip using computer vision[J]. International Journalof Fracture:1992,53(3):201-228.
    [49] Mcneill S R, Sutton M A, MIAO Z, et al. Measurement of surface profile using digitalimage correlation[J]. Experimental Mechanics:1997,37(1):13-20.
    [50] HAN G, Sutton M A, CHAO Y-j. A study of stationary crack-tip deformation fields inthin sheets by computer vision[J]. Experimental Mechanics:1994,34(2):125-140.
    [51] Dawicke D S, Sutton M A. CTOA and crack-tunneling measurements in thin sheet2024-T3aluminum alloy[J]. Experimental Mechanics:1994,34(4):357-368.
    [52] ZHAO W-z, JIN G-c. An experimental study on measurement of Poisson's ratio withdigital speckle correlation method[J]. Journal of Applied Polymer Science:1996,60(5):1083-1088.
    [53] Yc C, DAI X, JIN G-c, et al. Nondestructive detection of delaminations in multilayerceramic capacitors using improved digital speckle correlation method[J]. Microwave andOptical Technology Letters:1998,16(2):80-85.
    [54]计宏伟,秦玉文,陆华.非常应变模式数字相关方法的初值估计[J].实验力学,2001,16(1):49-55.
    [55]侯振德,秦玉文.基于图像分形相关位移测量新方法的研究[J].光学学报,2002,22(2):210-214.
    [56] Yong-rak K, Lutif Jamilla Emi Sudo, Allen D H. Determining representative volumeelements of asphalt concrete mixtures without damage[J]. Transportation ResearchRecord:2009(2127):52-59.
    [57] Chehab G R, Richard K Y. Viscoelastoplastic continuum damage model application tothermal cracking of asphalt concrete[J]. Journal of Materials in Civil Engineering:2005,17(4):384-392.
    [58]谭忆秋,张魁,吴思刚,等.应用数字散斑技术的沥青混合料劈裂应变研究[J].哈尔滨工业大学学报,2009,41(9):56-58.
    [59] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of compositestructures[J]. Materials Science and Engineering:1985,68(2):239-248.
    [60] Sadouki H, Wittmann F H. On the analysis of the failure process in composite materialsby numerical simulation[J]. Materials Science and Engineering:1988,104(25):9-20.
    [61] Kennedy T W, Huber G A, Harrigan E T. Superior performing asphalt pavements(Superpave): The product of the SHRP asphalt research program,SHRP-A410[R].Auburn: National Center for Asphalt Technology,1994.
    [62]万成,张肖宁,贺玲凤,等.基于沥青混合料三维数值试样的非均匀性分析[J].华中科技大学学报(自然科学版),2012,40(02):40-44.
    [63] Tucker J. Statistical theory of the effect of dimensions and of method of loading uponthe modulus of rupture of beams[J]. ASTM Proc.:1941,1(41):1072-1094.
    [64] Motoo H. Statistical Aspects of Fracture in Concrete, I. An Analysis of Flexural Failureof Portland Cement Mortar from the Standpoint of Stochastic Theory [J]. Journal of thePhysical Society of Japan:1959,14(10):1444-1452.
    [65] Mihashi H, Izumi M. A stochastic theory for concrete fracture[J]. Cement and ConcreteResearch:1977,7(4):411-422.
    [66]邢修三.脆性断裂统计理论[J].物理学报,1980,29(06):718-731.
    [67]夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(I)[J].力学进展,1995,25(01):1-40.
    [68]夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(Ⅱ)[J].力学进展,1995,25(02):145-173.
    [69]白以龙,汪海英,夏蒙棼,等.固体的统计细观力学—连接多个耦合的时空尺度[J].力学进展,2006,36(2):286-305.
    [70]张蕊.数字图像相关及其在若干工程测试中的应用[D].广州:华南理工大学,2011.
    [71] Michael A S, Stephen R M, Jeffrey D H, et al. Advances in Two-Dimensional andThree-Dimensional Computer Vision[J]. Topics in Applied Physics:2000,77(5):323-372.
    [72]潘兵,吴大方,夏勇.数字图像相关方法中散斑图的质量评价研究[J].实验力学,2010(2):120-129.
    [73] Goodman J W. Statistical properties of laser speckle patterns[J]. Laser Speckle andRelated Phenomena:1975,9(10):9-75.
    [74]方强,陈家壁.全息散斑计量学[M].北京:科学出版社,1995.
    [75] Cary P D. Deformation measurements by digital image correlation: Implementation of asecond-order displacement gradient[J]. Experimental Mechanics:2000,40(4):393-400.
    [76]郑咸义,姚迎新,雷秀仁,等.应用数值分析[M].广州:华南理工大学出版社,2008.
    [77] MA Shao-peng, JIN Guan-chang. New correlation coefficients designed for digitalspeckle correlation method (DSCM)[C]//Optical Technology and Image Processing forFluids and Solids Diagnostics.USA:SPIE-Int. Soc. Opt. ENG,2003:25-33
    [78] XIE Hui-min. Equivalence of digital image correlation criteria for pattern matching[J].Applied Optics:2010,49(28):5501-5509.
    [79] Po-chih H, Voloshin A S. In-plane strain measurement by digital image correlation[J].Journal of the Brazilian Society of Mechanical SCI:2003,25(3):215-221.
    [80]潘兵,续伯钦,陈丁,等.数字图像相关中亚像素位移测量的曲面拟合法[J].计量学报,2005,27(2):128-134.
    [81]高建新,周辛庚.数字散斑相关方法的原理与应用[J].力学学报,1995,27(6):724-731.
    [82] WANG Huai-wen, KANG Yi-lan. Improved digital speckle correlation method and itsapplication in fracture analysis of metallic foil[J]. Optical Enguneering:2001,41(11):2793-2798.
    [83]潘兵,续伯钦,李克景.梯度算子选择对基于梯度的亚像素位移算法的影响[J].光学技术,2005,31(1):26-31.
    [84] CHEN D J, Chiang F P, TAN Y S, et al. Digital speckle-displacement measurement usinga complex spectrum method[J]. Appliled Optics:1993,32(11):839–1849.
    [85]亓东平,滕树云.频率域数字散斑相关方法的研究[J].光学学报,2000,20(4):489-493.
    [86] Pilch A. Measurement of whole-field surface displacements and strain using a geneticalgorithm based intelligent image correlation method[J]. Journal of Dynamic Systems,Measurement and Contro:2004,126(3):479-488.
    [87] Pitter M C, See C W, Somekh M G. Fast subpixel digital image correlation usingartificial neural networks[C]//Proceedings2001International Conference onImage.Piscataway, Nj, USA:IEEE,2001:901-4vol.2
    [88] Pitter M C, See C W, Somekh M G. Subpixel microscopic deformation analysis usingcorrelation and artificial neural networks[J]. Optics Express:2001,8(6):322-327.
    [89]张韵华,奚梅成,陈长松.数值计算方法和算法[M].北京:科学出版社,2000.
    [90]潘兵,吴大方,谢惠民,等.基于梯度的数字体图像相关方法测量物体内部变形[J].光学学报,2011,31(6):612005-612612.
    [91] PAN B xie h-m, XU B-q. Performance of sub-pixel registration algorithms in digitalimage correlation[J]. Measurement Science and Technology:2006,17(6):1615-1621.
    [92] ZHANG Z-f, KANG Y, QIN Q. A novel coarse-fine search scheme for digital imagecorrelation method[J]. Measurement:2006,39(8):710–718.
    [93] Du-ming T, Chien-ta L. Fast normalized cross correlation for defect detection [J].Pattern Recognition Letters:2003,24(15):2625–2631.
    [94] Smith B W, LI X, TONG W. Error assessment for strain mapping by digital imagecorrelation[J]. Experimental Techniques:1998,23(4):19-21.
    [95] LU H. Statistical Analysis of the Random Error in Measurements Obtained UsingDigital Correlation of Speckle Patterns[C]//Proceeding of the1993SEM SpringConference on Ex,1993:930-937
    [96] ZHANG Dong-sheng, MIAO Luo, Dwayne D A. Displacement/strain measurementsusing an optical microscope and digital image correlation[J]. Optical Engineering:2006,45(3):033605.
    [97]张志峰.图像变换在数字散斑相关方法中的应用研究[D].天津:天津大学,2005.
    [98]潘兵,谢惠民.数字图像相关中基于位移场局部最小二乘拟合的全场应变测量[J].光学学报,2007,27(11):1980-1986.
    [99]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001.
    [100]谭晓波.摄像机标定及相关技术研究[D].长沙:国防科学技术大学,2005.
    [101] PAN Bing, WANG Zhi-yong. Study on subset size selection in digital image correlationfor speckle patterns[J]. Optics Express:2008,16(10):7037-7048.
    [102]梁锡三.沥青混合料设计及质量控制原理[M].北京:人民交通出版社,2008.
    [103]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [104]黄宝涛,田伟平.具有长期使用性能的沥青砂浆配合比设计方法[J].公路,2008(04):148-151.
    [105]谭忆秋.沥青与沥青混合料[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [106] JTG F40-2004.公路沥青路面施工技术规范[S]中华人民共和国行业标准,2004
    [107] TG E42-2005.公路集料试验规程[S]中华人民共和国行业标准,2005
    [108]虞蒋苗.沥青混合料疲劳性能研究[D].广州:华南理工大学,2005.
    [109]王绍怀.路面设计中沥青混合料疲劳破坏预测方法的研究[D].[出版地不详]:哈尔滨建筑大学,1994.
    [110] Designation A, T321-07. Determining the Fatigue Life of Compacted Hot-MixAsphalt (HMA) Subjected to Repeated Flexural Bending[S],2010.
    [111]笠原笃,冈川秀幸,菅原照雄.沥青混合料的动态性质及其在沥青路面结构力学分析中的应用[J].沥青混合料力学性能研究论文集,1982:123-136.
    [112] Leykauf G, Kawohl W J. Structural Design of Full Depth-asphalt-pavements and fieldtest in Comparison with German Standardized asphalt Pavement[C]//Presented at theThird International Conference on,1972:1049-1060
    [113]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社,1989.
    [114]徐世烺.混凝土断裂机理[D].大连:大连理工大学,1988.
    [115] Monismith C L. Fatigue characteristics of asphalt paving mixtures and their use inpavement design[C]//Proceedings of the18th Paving Conference,1981
    [116] Dowling N. Mechanical behavior of materials: Engin eering methods for deformation,fracture&fatigue[M]. Englewood Cliffs: Prentice Hall,1993.
    [117] Kim Y R, Lee H J, Little D N. Fatigue Characterization of Asphalt Concrete UsingViscoelasticity and Continuum Damage Theory[C]//Journal of the Association ofAsphalt Paving Techn:Association of Asphalt Paving Technologists,1997:520-569
    [118] Sousa J B, Way G, Harvey J. Performance-based mix design and field quality control forasphalt-aggregate overlays,Transportation research board record[R],1996:46-62.
    [119]李灏.断裂力学[M].山东:山东科学技术出版社,1980.
    [120] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of BasicEngineer:1963,85(3):405-435.
    [121] Lee Y J, Little D N. Fatigue Characterization of Asphalt Concrete UsingViscoelasticity and Continuum Damage Theory[J]. Journal of the Association ofAsphalt Paving Techn:1997,66(8):520-569.
    [122] Jacobs M J, Hopman P C, Molenaar A A. Application of Fracture MechanicsPrinciples to Analyze Cracking in Asphalt Concrete[J]. Journal of the Association ofAsphalt Paving Techn:1996,65(5):1-39.
    [123] Schapery R A. Correspondence principles and a generalizedJ integral for largedeformation and fracture analysis of viscoelastic media[J]. International Journal ofFracture:1984,25(3):195-223.
    [124] Kim Y R, Little D N, Benson F C. Chemical and mechanical evaluation on healingmechanism of asphalt concrete[J]. Journal of the Association of Asphalt PavingTechn:1990,59(3):240-275.
    [125] Lee H J, Daniel J S, Kim Y R. Continuum damage mechanics-based fatigue model ofasphalt concrete[J]. Journal of Materials in Civil Engineering:2000,12(2):105-112.
    [126]徐世烺,赵艳华,吴智敏,等.楔入劈拉法研究混凝土断裂能[J].水力发电学报,2003,4(4):15-22.
    [127]郭向勇,方坤河,冷发光.混凝土断裂能的理论分析[J].哈尔冰工业大学学报,2005,37(9):1219-1222.
    [128] Hillerborg. Results of three comparative test series for determining the fracture energyGF of concrete[J]. Materials and Structures:1985,18(107):407–413.
    [129] Wittmann F H. Fracture toughness and fracture energy of concrete[C]//Proceedings ofthe international conference on fra,1986
    [130] Mihashi H, Takhashi H, Wittmann F H. Tensionsoftening curve measurements forfracture toughness determination in granite[C]//Proceedings of the internationalworkshop on fract,1989:47-55
    [131] XU S, ZHAO G. Fracture energy of concrete and its variational trend in size effectstudied by using three point bending beams[J]. Journal of Dalian University ofTechnology:1991,31(1):79-86.
    [132] Sedwick S C. Effect of Asphalt Mixture Properties and Characteristics on SurfaceInitiated Longitudinal Wheel Path Cracking[D].[S.l.]: University of Florida,1998.
    [133] Roque R, Birgisson B, Sangpetngam B, et al. Hot Mix Asphalt Fracture Mechanics: AFundamental Crack Growth Law for Asphalt Mixtures[J]. Journal of the Association ofAsphalt Paving Techn:2002,71(2):816-827.
    [134] Montepara A, Romeo E, Roncella R, et al. Determination and prediction of crackpatterns in hot mix asphalt (HMA) mixtures[J]. Engineering Fracture Mechanics:2008,75(3-4):664-673.
    [135] Publication B S, BS EN12697-26. Bituminous mixtures—Test methods for hot mixasphalt[S],2012.
    [136]沈金安,李福晋,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004.
    [137] Button J W. New Simple Performance Tests for Asphalt Mixes, NCHRPReport465:Simple Performance Test for super[R],2004:1-44.
    [138] Loulizi A, Flintsch G W, Al-qadi I L, et al. Comparing resilient modulus and dynamicmodulus of hot-mix asphalt as material properties for flexible pavement design,TRB2006[R],1970:161-170.
    [139]马林.间接拉伸试验模式下沥青混合料动态模量研究[D].广州:华南理工大学,2009.
    [140] Seo Y, Richard K Y, Schapery R A, et al. A study of crack-tip deformation and crackgrowth in asphalt concrete using fracture mechanics[J]. Journal of the Association ofAsphalt Paving Techn:2004,73(6):697-730.
    [141]杨挺青.黏弹性理论与应用[M].北京:科学出版社,2004.
    [142] ZENG M, Bahia H U, ZHAI H, et al. Rheological modeling of modified asphalt bindersand mixtures[J]. Journal of the Association of Asphalt Paving Techn:2001,70(5):403-441.
    [143]邢修三.疲劳断裂非平衡统计理论——Ⅰ.疲劳微裂纹长大的位错机理和统计特性[J].中国科学,1986,A(5):501-510.
    [144]邢修三.疲劳断裂非平衡统计理论——(Ⅱ)从微观机理到疲劳断裂的宏观特性[J].中国科学,1986,A(8):840-852.
    [145]徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社,2002.
    [146] Monismith C L, Epps J A, Finn F N. Improved Asphalt Mix Design[C]//Proceedings,Asphalt Paving Technology,1985
    [147] Van dijk W, Visser W. The Energy Approach to Fatigue for PavementDesign[C]//Association of Asphalt Paving Technologists Proc,1977:1-40
    [148] Yong-rak K, Little N, Lytton L. Fatigue and Healing Characterization of AsphaltMixtures[J]. Journal of Materials in Civil Engineering:2003,15(1):75-83.
    [149] Copper K E, Pell P S. The Effect of Testing and Mix Variables on the FatiguePerformance of Bituminous Materials,TRRL LR633[R],1974:1-69.
    [150] Rowe G M. Performance of Asphalt Mixtures in the Trapezoidal FatigueTest[C]//Asphalt Paving Technology,1993
    [151] Read J M, Collop A C. Practical Fatigue Characterization of Bituminous PavingMixture[J]. Journal of the Association of Asphalt Paving Techn:1997,66(7):74-108.
    [152] Pronk A C, Hopman P C. Energy Dissipation: The Leading Factor ofFatigue[C]//Highway Research: Sharing the Benefits. The United,1991:255-267
    [153] Tayebali A A, Rowe G M, Sousa J B. Fatigue Response of Asphalt-AggregateMixtures[J]. Journal of the Association of Asphalt Paving Techn:1992,61(8):333-360.
    [154] Tayebali A A, Deacon J A, Coplantz J S, et al. Modeling Fatigue Response ofAsphalt-Aggregate Mixtures[J]. Journal of the Association of Asphalt PavingTechn:1993,62(8):385-421.
    [155] Carpenter S H, Jansen M. Fatigue Behavior under New Aircraft LoadingConditions[C]//Aircraft/Pavement Technology In the Midst of Chang,1997:259-271
    [156] SHEN S-h, Carpenter S H. Application of the dissipated energy concept in fatigueendurance limit testing[C]//Bituminous Paving Mixtures,2005:165-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700