用户名: 密码: 验证码:
基于多级等幅荷载下的沥青混合料损伤累积和沥青面层疲劳损伤破坏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳损伤破坏是沥青路面的主要破坏形式之一,也是沥青路面结构设计重点考虑的问题。而沥青混合料作为沥青路面主要的建筑材料,研究其在交通荷载作用下的疲劳损伤累积进程以及疲劳寿命预测是研究沥青路面疲劳损伤破坏的重要手段和需要解决的关键性问题之一。论文依托国家自然科学基金重点项目“沥青路面随机疲劳累积损伤机理研究(51038004)”,通过不同加载方式下四点弯曲小梁疲劳试验,揭示了沥青混合料各性能指标参数的变化规律,开展了基于劲度模量衰减的与加载历史及次序相关的沥青混合料非线性疲劳损伤研究,对于改善现有的沥青路面结构疲劳设计具有重要的科学参考价值。
     通过4种应变水平下的单级荷载加载的四点弯曲小梁疲劳试验,提出了确定初始劲度模量以及失效判据的方法,据此给出了单级荷载作用下与劲度模量和应变大小相关的沥青混合料疲劳寿命预测方程,同时分析不同应变水平下弯拉劲度模量的衰减规律,建立了与加载次数,加载大小及劲度模量相关的幂函数疲劳累积损伤模型,确定沥青混合料疲劳损伤演变呈非线性的特性。
     通过不同加载方式的多级等幅荷载下的疲劳试验,获得了不同荷载大小、不同加载次数及不同加载顺序下弯拉劲度模量、耗散能变化率等疲劳损伤相关指标的衰变规律。运用以往的疲劳损伤累积模型不能准确拟合多级荷载下沥青混合料的疲劳累积损伤,预测的疲劳寿命与试验结果相差大,在此基础上提出并建立了与加载历史,加载次序相关的疲劳寿命预测方程,其预测结果比以往的疲劳寿命预测模型更准确,引入加载历史和加载次序作为疲劳损伤参数更具有优越性。
     采用数字散斑相关(DSCM)测量系统,基于Matlab平台结合分形理论数值计算方法自行编程,对多级荷载作用下沥青混合料疲劳损伤累积的宏观体现-裂缝的发展规律进行研究,揭示了荷载转换时疲劳损伤累积途径的变化;同时通过改变低-高应变水平加载次数的比例,确定沥青混合料在低-高加载模式下存在“锻炼效应”,通过以上研究对多级等幅荷载变换时疲劳损伤出现延迟现象给出了合理的解释。
     深入分析了多级荷载作用下沥青混合料的疲劳损伤累积规律,并对基于疲劳累积损伤的沥青混合料破坏进行了研究,结果表明加载历史与加载顺序对沥青混合料疲劳破坏的影响较大;在此基础上,尝试建立了一种能反映损伤现状以及加载历史、加载次序相关的基于非线性疲劳损伤累积的沥青层破坏评价的新体系,实例分析表明,它比现有的基于Miner线性准则建立的疲劳破坏评价体系更能反映路面沥青层的实际情况。
     本文研究所取得的成果有助于人们进一步认识沥青路面在荷载作用下的疲劳损伤累积规律,为以沥青层层底拉应变作为控制指标的沥青层破坏体系的建立奠定基础,对于完善沥青路面疲劳设计方法,提高沥青层的耐久性设计水平具有重要意义。
Fatigue damage which is one of the (destructive forms)of the asphalt pavent is also animportant issue to consider for the design of the asphalt pavent structure. Asphalt mixture asthe main building material of asphalt pavent, studying its process of cumulative fatiguedamage and predicting the fatigue life under the traffic loading is an important way to studyasphalt pavent fatigue damage and destruction. And it is a key issue which needs to be solvedThis project is part of "the study about the random accumulated fatigue damage of asphaltpavent", which is supported by the key program of national natural science foundation (GrantNo.51038004). Through four-point bending beam fatigue test under different loading ways, itreveals each variation of asphalt mixture performance paraters, carries out nonlinear fatiguedamage of asphalt mixture based on the stiffness modulus decay associated with the loadinghistory and order, and has important scientific reference value for improving the existingasphalt pavent fatigue design.
     Through four-point bending load beam fatigue test of a single-stage load under four kinds ofstrain levels, this paper proposes a thod to determine the initial stiffness modulus and failurecriterion. According to this, this paper which gives the prediction equation of the expectedfatigue life of asphalt mix under single-stage load related to stiffness modulus and strain andalso analyzes the attenuation regulation of the flexural tensile stiffness modulus under differentstrain levels, establishes the fatigue cumulative damage model of power function which isbased on load tis, load size and stiffness modulus. By this the nonlinear characteristicalevolution of asphalt mixture fatigue damage has been determined.
     Through the fatigue test under the multi-level amplitude load of different loading thods, thedecay law of indicators related to fatigue damage, such as,the flexural tensile stiffness modulusand energy dissipation change rate under varying load size, different load tis and different loadorder is obtained. Previous fatigue damage accumulation model can not accurately fit thecumulative fatigue damage of the asphalt mixture under multilevel loads, so there is a bigdifference between the predicted fatigue life and experintal results. Based on these, this paperproposes and establishes a new prediction equation of the fatigue life associated with the loadhistory and load order, whose prediction results are more accurate than the prediction model ofthe fatigue life of all ti, which suggests that using load history and load sequence as fatiguedamage parater has more advantages.
     Using digital speckle correlation asurent system (DSCM) and the program based on theMatlab platform combined with the nurical calculate thod of the fractal theory to study thedevelopnt law of crack which is macro reflect of fatigue damage accumulation in asphaltmixture under the multi-stage loading, reveals the change of the cumulative fatigue damagepathway when load converses. At the sa ti, through changing the proportion of low and highstrain level load tis, we conclude that asphalt mixture have "training effect" under low-highload mode. According to the research above, a reasonable explanation for the delayingphenonon of the fatigue damage is got when multi-level loads convert. We deeply analyze thefatigue damage accumulation law of asphalt mixture under multi-stage loads, and study theasphalt mixture damage based on the accumulated fatigue damage. Study shows that the loadhistory and load order have a great effect on the asphalt mixture fatigue damage; we try toestablish a new evaluation system on the basis of the nonlinear accumulated fatigue damagewhich can reflect the current situation injuries, loading history and load order. Case analysisshows that it can better reflect the actual fatigue damage of asphalt pavent layer than theexisting evaluation system based on Miner linear criteria.
     The results of this study can help people get a better understanding of the fatigue damageaccumulation laws of asphalt pavent under loads, and lay the foundation for the establishnt ofthe controlling indicator of the asphalt layers damage system using tensile strain at the end oflayer upon layer, which has great significance for perfecting the fatigue design thod of asphaltpavent and improving the design level for the durability of asphalt layer.
引文
[1]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [2] Palmgren A. Die Lebensdauer von Kugellagem[J]. Verfahrenstechinik,1924,68(1):339~341
    [3] Miner M A. Cumulative damage in fatigue[J]. J Appl ch,1945,12(3): A159~A164
    [4] Wallgren G. Fatigue test with stress cycles of varying amplitude[R]. FFA Reports,28,Stockholm, Aeronautical Research Institute of Sweden,1949.
    [5] Buch A. Fatigue Strength Calculation[J]. Trans Tech Publications,1988,32(7):173~177
    [6] SAE. Fatigue Design Handbook AE-10[M].2nd ed. SAE,1988.238~240
    [7] Levy J C. Cumulative damage in fatigue[J]. Engineering,1955,179(11):724~726
    [8] Choulcairi F Z, Barrault J. Use of a statistical approach to verify the cumulative damagelaws in fatigue[J]. Int J Fatigue,1993,15(2):145~149
    [9] Birnbaum Z W, Sauders S C. A probabilistic interpretation of Miner's rule[J]. SIAM, JAppl Math,1968,16(3):637~652
    [10] Tanaka S, Akita S. On the Miner's damage hypothesis in notched specin with emphasis onscatter of fatigue life[J]. Engineering Fracture chanics,1975,7(2):473~480
    [11] Langer B F. Fatigue failure from stress cycles of varying amplitud[J].e. J Appl ch,1937,59(13): A160~A162
    [12] Marco S M, Starkey W J. A concept of fatigue damage[J].. Trans AS,1954,76(21):627~632
    [13] Henry D L. A theory of fatigue damage accumulation in steel[J]. Trans AS,1955,77(2):913~918
    [14] Hashin Z. Rieinterpretation of the Palmgren-Miner rule for fatigue life prediction[J].JAppl ch,1980,47(2):324~328
    [15] Manson S S, Halford G R. Reexamination of cumulative fatigue damage analysis[J].Engineering Fracture chanics,1986,25(5):539~571
    [16] Golos K, Ellyin F. Generalization of cumulative damage criterion to multilevel cyclicloading[J]. Theor Appf Frac ch,1987,7(14):169~176
    [17] Kececioglu D, Chester L B, Gardner E D. Sequential cumulative fatigue reliability[A].Proc R M Symp[C], Los Angeles, CA,1974.533~539
    [18] Kececioglu D. Probabilistic design for reliability and their data and research requirents[A].Proc Failure Prevenlion and Reliability[C], AS,1978.285~309
    [19] Carter A S. chanical Reliability[J].2nd ed. London: Macmillan Education,1986.102~103
    [20] Bognanoff J L. A new cumulative damage model, part1[J]. Appl ch,1978,45(2):246~250
    [21] Bognanoff J L, Kozin F. A new cumulative damage model, part4[J]. Appl ch,1980,47(1):40~44
    [22] Sobczyk K. Modelling of random fatigue crack growth[J]. Eng Flac ch,1986,24(4):609~623
    [23] Tsurui A, Ishikawa H. Application of the Fokker-Planck equation to a stochastic fatiguecrack growth model[J]. Structure Sajety,1986,4(1):15~29
    [24] Altus E. Fatigue, fractals, and a modified Miner's rule[J]. J Appl ch,1991,58(3):571~579
    [25] Corlen H T, Dolan T J. Cumulative fatigue damage[J]. International Conference onFatigue of tals. Vol1,1956.
    [26]吴富民.结构疲劳强度[M].西安:西北工业大学出版社,1985.
    [27] Morrow J.D., The effect of selected sub-cycle sequences in fatigue loading histories[J]. InRandom Fatigue Life Predictions, AS Publication PVP72,1986:43~60
    [28] R.R. Gatts. Application of a cumulative damage concept to fatigue [J]. Journal of BasicEngineering,1961,83:529~540
    [29] S.A. Subramanyan. Cumulative damage rule based on the knee point of the S-N curve [J].Journal of Engineering Materials and Technology,1976,98(4):316-~321.
    [30]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展,1999,第29卷第1期:pp.43~65
    [31] Hveem, F.N. Pavent Fatigue Deflections and Fatigue Failure[R]. Highway ResearchBoard, Bulletin114, Washington, D.C.1955: pp.43-87
    [32] Ioannides, A.M. Pavent Fatigue Concepts: A Historical Review. Proceedings[C],6thInternational Conference on Concrete Pavent Design and Materials for high Performance,Purdue University, Indianapolis, Indiana,1997:147-160
    [33] C.L. Monismith, Salam, Y.M. Fracture Characteristics of Asphalt concrete[J].Proceedings, Association of Asphalt Paving Technologists.1971:215-256
    [34] Pell, P.S. Characterization of Fatigue Behavior[A]. Special Report140: Structural Designof Asphalt Concrete Pavent Systems to Pavent Fatigue Cracking[C]. HRB, NationalResearch Council, Washington, D.C.1973
    [35] Monismith, C.L., F.N. Finn. Improved Asphalt Mix Design. Proceedings[J]. Associationof Asphalt Paving Technologists,1985, Vol.54
    [36] Sara. Montazeri. Assessing Repeatability of Four-point Bending thod for EstimatingFatigue Cracking of Hot Mix Asphalt[J]. Texas: Departnt of Civil Engineering in TheUniversity of Texas at EI Paso,2009
    [37] Dither Bodin, Gilles Pijaudier-Cabot, Chantal de La Roche, etc. A Continuum DamageApproach of Asphalt Concrete Fatigue Tests[J].ASCE,2002
    [38] Zhi Suo, Wing Gun Wong. Analysis of fatigue crack growth behavior in asphalt concretematerial in wearing course[J].Construction and Building Materials,200923(11).462~468
    [39] Jaeseung Kim, Ph.D. and Randy C. West, Ph.D.,P.E. Application of the ViscoelasticContinuum Damage Model to the Indirect Tension Test at a Single Temperature[J].Journal of Engineering chanics ASCE,2010
    [40] Heukelom.W. Observations on the Rheology and Fracture of Bituns and Asphalt Mixes[J].Proceedings, Asphalt Paving Technology, Vol35,1966
    [41] Van Dijk, W. etal. The Fatigue of Bitun and Bituminous Mixes[A].3rd Internationalconference on Structural Design of Asphalt Pavents[C]. London,1972, Vol.1: pp.38-74
    [42] Van Dijk, W. Practical Fatigue Characterization of Bituminous Mixes[J]. Association ofAsphalt Paving Technologist,1975, Vol.44: pp.38-74
    [43] Monismith, C.L., J.A. Epps, D.A. Kasianchuk, and D.B. McLean Asphalt MixtureBehavior in Repeated Flexure[J]. Report TE70-5, University of California, Berkeley,1971, pp303
    [44] Van dijk W, Visser W. The Energy Approach to Fatigue for PaventDesign[C]//Association of Asphalt Paving Technologists Proc,1977:1-40
    [45] Carpenter S. H.,M. Jansen. Fatigue Behavior Under New Aircraft Loading Conditions[J]. Proceedings of Aircraft Pavent Technology in the Midst of Change,1997.4(2):259~271.
    [46] Carpenter S. H.,Khalid A. Ghuzlan, Shihui Shen. A Fatigue Endurance Limit forHighway and Airport Pavent[J]. Journal of Transportation Research Record (TRR),2003,1832(14),131-138
    [47] Shen S.,Carpenter, S.H. Application of Dissipated Energy Concept in Fatigue EnduranceLimit Testing[J]. Journal of Transportation Research Record: Transportation ResearchBoard,2005.19(29):165-173
    [48] Shen S.,Airey G D.,S.H.Carpenter, et al. A Dissipated Energy Approach to FatigueEvaluation[J]. International Journal of Road Materials and Pavent Design,2006,7(1):38-51
    [49] Kachanov L.M. On the ti to failure during creep[J],Izv. AN SSSR,OTN,1958,11(8):26-31
    [50] Rabotnov Yu N. On the equations of state for creep [J]. Progress in Applied chanics,1963:307-315
    [51] Chaboche J L. Continuum damage chanics-a tool to describe phenona before crackinitiation[J]. Nuclear Engng. and Design,1981,64(13):233-247
    [52]郑健龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32-42
    [53]郑健龙,吕松涛.沥青混合料非线性疲劳损伤模型[J].中国公路学报,2009,22(5):21-29
    [54]张肖宁.沥青与沥青混合料的粘弹力学[M].北京:人民交通出版社,2006
    [55]吕松涛.老化沥青混合料粘弹性疲劳损伤特性研究[D].长沙理工大学,2008
    [56]唐雪松,蒋持平,郑健龙.沥青混合料疲劳过程的损伤力学分析[J].应用力学学报,2000,17(4):92-99
    [57]黄卫,邓学钧.沥青混合料疲劳响应新模型研究[J].中国公路学报,1995,8(1):56-62
    [58] GUAN Hongxing, ZHENG Jianlong. Comparing of Fatigue Damage Defining Ways ofAsphalt Mixtures[J]. ICTE2009, pp2749-2755
    [59]严恒,朱洪洲,唐伯明,高爽. AC-13沥青混合料疲劳能耗模型分析[J].重庆大学学报(自然科学版),2010,29(4):559-563
    [60]苑苗苗,张肖宁,陈伟强等.沥青混合料疲劳失效判据探讨及验证[J].华南理工大学学报,2013,41(4):96-101.
    [61]虞将苗.沥青混合料疲劳性能研究[D].华南理工大学土木与交通学院,2005
    [62]吴旷怀,张肖宁.沥青混合料疲劳损伤非线性演化统一模型试验研究[J].公路,2007,4(5):125-130
    [63]刘亚敏,韩森,徐鸥明,高世君.疲劳试验中沥青混合料的弯拉劲度模量[J].广西大学学报(自然科学版),2010,35(1):127-131
    [64]肖建清,丁德馨,骆行文,等.再生混凝土疲劳损伤演化的定量描述[J].中南大学学报(自然科学版),2011,42(1):170-177
    [65]刘宏富.基于强度与刚度衰变的沥青混合料非线性疲劳损伤特性研究[D].长沙理工大学,2012
    [66]李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2005,22(2):4-16.
    [67]李晓军,冯樊.非均匀性的沥青混合料半圆弯曲实验数值仿真[J].长安大学学报(自然科学版),2010,30(4):18-22.
    [68]苑苗苗.基于数字散斑相关方法的沥青混合料疲劳破坏机理研究[D].华南理工大学土木与交通学院,2013
    [69]谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究[D].西南交通大学,2002
    [70] Hveem, F.N. Pavent Fatigue Deflections and Fatigue Failure[R]. Highway ResearchBoard, Bulletin114, Washington, D.C.1955: pp.43-87
    [71] Myre, Jostein. Fatigue of Asphalt Pavents[C], Third International Conference on BearingCapacity of Roads and Airfields, The Norwegian of Technology Trondheim, Norway,1990: pp.703-714
    [72] Deacon, J.A. Fatigue of Asphalt Concrete[D]. Ph.D. Dissertation, University of California,Berkeley,1965
    [73] Prowell, Brian D. Estimate of Fatigue Shift Factors Between Laboratory Tests and FieldPerformance[J]. Journal of the Transportation Research Board,2010,2181(3):pp.117-124
    [74] Homsi, F. Bodin, D. Yotte, S. Fatigue life model of asphalt pavents under multiple-axleloadings[J]. Road Materials and Pavent Design,2012,13(4), pp.749-768
    [74]陈少幸,张肖宁,孟书涛等.基于ALF加速加载试验的沥青层疲劳损伤[J].公路交通科技,2012,29(1):18-22
    [75]薛连旭,陈少幸,张肖宁.沥青层模量累积疲劳损伤衰减的试验研究[J].科学技术与工程,2008,8(6):1635-1638
    [76]王保良.车辆荷载作用下沥青路面疲劳行为研究[D].长安大学,2008
    [77]孙志林.基十损伤力学沥青路面疲劳损伤研究[D].东南大学,2008
    [78]李盛,刘朝晖,李宇峙.刚柔复合式路面沥青层荷载疲劳损伤特性及开裂机理[J].中南大学学报(自然科学版),2013,44(9),3857-3862
    [79]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社,1989
    [80] Hugo F. So Notes On Tests With The MMLS MK3On Full-Scaled Pavents[J].2000,25(1):55-72
    [81] Hugo F. and Poolman P. A Critical Analysis of WesTrack MMLS3and Truck RutData[R]. Appendix A in Report2134-1of Project2134by Epps A. L., Ahd T., Little D.C. and Hugo F. for Texas Departnt of Transportation
    [82] Hugo F., Smit A. de F. and Epps A. A Case Study of Model APT in the Field.Proceedings of the First International Conference on Accelerated Pavent Testing[C],Reno, Nevada,1999
    [83] Germann, F.P., and Lytton, R.L. thodology for Predicting the Reflection Cracking Life ofAsphalt Concrete Overlays[R]. Research Report, FHWA/TX-79/09+207-5, Texas,College Station,1979
    [84] Paris, J., Pereira, P., and Picado-Santos, L. Variability of Laboratory Fatigue Life ofAsphalt Mixes Using Four Point Bending Test Results [D]. Departnt of Civil Engineering,University of Minho, Portugal., IPJ,2002
    [85] Bonnaure, F., A. Gravois, and J. Udron. A New thod for Predicting the Fatigue Life ofBituminous Mixes[J]. Proceedings, Association of Asphalt Paving Technologists,1980,49:499-524.
    [86] Pronk, A.C., Comparison of2and4point fatigue tests and healing in4point dynamicbending test based on the dissipated energy concept[C]. Proceedings of the eighthintemational conference on asphalt pavents, Seattle, Washington,1997:987-994
    [87] ASTM, D4123-82. Standard Test thod for Indirect Tension Test for Resilient Modulus ofBituminous Mixtures[S]. Washington, Withdrawn,2003
    [88] Bell, C., A. Weider, and M. Fellin. Laboratory Aging of Asphalt-Aggregate Mixtures:Field Validation. SHRP-A-390, Strategic Highway Research Program[R]. ResearchCouncil; Washington, D.C.,1994
    [89] Monismith C L. Fatigue characteristics of asphalt paving mixtures and their use in paventdesign[C]//Proceedings of the18th Paving Conference,1981
    [90] Dowling N. chanical behavior of materials: Engin eering thods for deformation, fracture&fatigue[M]. Englewood Cliffs: Prentice Hall,1993
    [91] Kim Y R, Lee H J, Little D N. Fatigue Characterization of Asphalt Concrete UsingViscoelasticity and Continuum Damage Theory[C]//Journal of the Association of AsphaltPaving Techn: Association of Asphalt Paving Technologists,1997:520-569
    [92] Sousa J B, Way G, Harvey J. Performance-based mix design and field quality control forasphalt-aggregate overlays[J]. Transportation research board record,1996:46-62
    [93] Lee Y J, Little D N. Fatigue Characterization of Asphalt Concrete Using Viscoelasticityand Continuum Damage Theory[J]. Journal of the Association of Asphalt Paving Techn,1997,66(8):520-569
    [94] Jacobs M J, Hopman P C, Molenaar A A. Application of Fracture chanics Principles toAnalyze Cracking in Asphalt Concrete[J]. Journal of the Association of Asphalt PavingTechn,1996,65(5):1-39
    [95] Schapery R A. Correspondence principles and a generalizedJ integral for largedeformation and fracture analysis of viscoelastic dia[J]. International Journal of Fracture,1984,25(3):195-223
    [96] Kim Y R, Little D N, Benson F C. Chemical and chanical evaluation on healing chanismof asphalt concrete[J]. Journal of the Association of Asphalt Paving Techn,1990,59(3):240-275
    [97] Lee Y J, Little D N. Fatigue Characterization of Asphalt Concrete Using Viscoelasticityand Continuum Damage Theory[J]. Journal of the Association of Asphalt Paving Techn,1997,66(8):520-569
    [98] Jacobs M J, Hopman P C, Molenaar A A. Application of Fracture chanics Principles toAnalyze Cracking in Asphalt Concrete[J]. Journal of the Association of Asphalt PavingTechn,1996,65(5):1-39
    [99] Tayebali A, Rowe G M, Sousa J B. Fatigue Response of Asphalt-Aggregate Mixtures[J].Journal of the Association of Asphalt Paving Techn,1992,61(8):333-360
    [100] Bor-Wen Tsai. High Temperature Fatigue and Fatigue Damage Process ofAggregate-Asphalt Mixes[D]. Dissertation, University of California, Berkeley,2001
    [101] Rao Tangella, S.C.S. Developnt of an Asphalt-Aggregate Mixture Analysis System[D].Doctor of Engineering Dissertation, Departnt of Civil Engineering, University ofCalifornia, Berkeley,1989
    [102] Tayebali, A. A., J. A. Deacon, J. S. Coplantz, J. T. Harvey, and C. L. Monismith. Mixand Mode of Loading Effects on Fatigue Response of Asphalt-Aggregate Mix[J]. Journalof the Association of Asphalt Paving Technologists,1994,63:118-151
    [103] Tayebali, A. A., J. A. Deacon, and C. L.Monismith. Developnt and Evaluation ofSurrogate Fatigue Models for SHRPA-003A Abridged Mix Design Procedure[J]. Journalof the Association of Asphalt Paving Technologists,1995,64(21):340-366
    [104]罗桑.基于损伤断裂分析的钢桥面铺装层疲劳行为与寿命预估研究[D].南京:东南大学博士学位论文,2010
    [105]张顺先.基于使用性能的钢桥面铺装环氧沥青混合料设计研究与疲劳寿命预测[D].华南理工大学交通学院,2013
    [106] Rabotnov Yu N. On the equations of state for creep[J]. Progress in Applied chanics,1963,11(5):307-315
    [107] Amit Bhasin etl. Quantitative Comparison of Energy thods to Characterize Fatigue inAsphalt Materials[J]. Journal of the Association of Asphalt Paving Technologists,1999,61:242-266
    [108]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].中南大学博士学位论文,2003
    [109]赵少汴.常用累积损伤理论疲劳寿命估算精度的试验研究[J].机械强度,2000,22(3):206-209
    [110]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,2000
    [111]鞠杨,樊承谋.钢纤维混凝土的疲劳“锻炼效应”[J].土木工程学报,1995,28(3):67-73
    [112] Fleck NA. Influence of stress state on crack growth retardation [A]. Basic Questions inFatigue, ASTM STP924[C]. Philadelphia: Arican Society for Testing and Materials,1988,157-183
    [113] Skorupa M. Load interaction effects during fatigue crack growth under variableamplitude loading-a literature review. Part i: empirical trends [J]. Fatigue&Fracture ofEngineering Materials&Structures,1998,21(8):987-1006.
    [114] Skorupa M. Load interaction effects during fatigue crack growth under variableamplitude loading-aliterature review. Part II: qualitative interpretation [J]. Fatigue&Fracture of Engineering Materials&Structures,1999,22(10):905-926.
    [115] Murthy ARC, Palani GS, Iyer NR. State-of-the-art review on fatigue crack growthanalysis under variable amplitude loading [J]. Journal of the Institution of Engineers(India), Part CV, Civil Engineering Division,2004,85:118-129.
    [116] Silva FS. Fatigue crack propagation after overloading and underloading at negativestress ratios [J]. International Journal of Fatigue,2007,29(9):1757-1771
    [117] Ramos MS, Pereira MV, Darwish FA, Motta SH, Carneiro MA. Effect of single andmultiple overloading on the residual fatigue life of a structural steel [J]. Fatigue&Fractureof Engineering Materials&Structures,2003,26(2):115-121
    [118]鞠杨,樊承谋.钢纤维混凝土的疲劳“锻炼效应”[J].土木工程学报,1995,28(3):67-73
    [119]王瑞杰,尚德广,刘泓滨.两级加载下两焊点拉剪点焊接头的损伤[J].焊接学报,2010,31(12):51-43
    [120] Miner, M.A. Cumulative Damage in Fatigue[J]. Appl. ch.,1945,13(11):159-164
    [121] Schijve J, Broek D. The result of a test program based on a gust spectrum with variableamplitude loading[J]. Aircraft Engineering and Aerospace Technology,1962,34(11);314-316
    [122] Suresh S. Microchanisms of fatigue crack growth retardation following overloads [J].Engineering Fracture chanics,1983,18(3):577-593
    [123] Tvergaard V. Overload effects in fatigue crack growth by crack-tip blunting [J].International Journal of Fatigue,2005,27(12):1389-1397
    [124] Jones RE. Fatigue crack growth retardation after single-cycle peak overload inTi-6A1-4V titanium alloy [J]. Engineering Fracture chanics,1973,5(3):585-588
    [125] Elber W. The significance of fatigue crack closure [A]. Damage tolerance in aircraftstructures, ASTM STP486[C]. Philadelphia: Arican Society for Testing and Materials,1971:230-242.
    [126]董连科.分形动力学[M].辽宁科学技术出版社,1994
    [127]齐东旭.分形及其计算机生成[M].科学出版社,1996
    [128]辛厚文.分形理论及应用[M].中国科学技术大学出版社,1991
    [129]卢春生.断面分形研究中的几个问题[J].力学进展,1996,26:353-361
    [130]卢春生,白以龙.材料损伤断裂中的分形行为[J].力学进展,1990,20:468-477
    [131]陈煌国,李相麟,扶名福.微孔洞型的分形断裂理论初探[J].应用力学学报,1998,15(4):55-59
    [131] Xie H. Effect of fractal crack[J]. Theo. Appl. Fract. ch.,1991,23(1):235-244
    [133]谢和平,黄约军.分形裂纹扩展对材料疲劳行为的影响[J].机械强度,1996,18(1):1-5
    [134] Carpinteri A,Yang G P. Fractal dinsion evolution of micro-crack net in disorderedmaterials[J]. Theoretical and applied fracture chanics,1996,25:73-81
    [135] Williford RE. Fractal fatigue[J]. Scripta tallurgica.1990,24:455-460
    [136]谢和平.动态裂纹扩展中的分形效应[J].力学学报,1995,27:18-27
    [137] Carpinteri A, Decrease of apparent tensile and bending strength with specin size twodifferent explanations based on fracture chanics[J]. Int J. of solids and Structures,1989,25:407-429
    [138]孙长军,崔卫平,陈雷等.分形理论在沥青混凝土疲劳开裂过程中的应用[J].建材世界,2013,34(2):52-54
    [139] WAN Cheng, Research on3D Reconstruction and Digital Test of Asphalt ConcreteBased on X-ray CT and Finite Elent thod[J]. South China University of Technology,2010,13(02),11-18
    [140]张济忠.分形[M].北京:清华大学出版社,1995
    [141]吴国雄,李亮,胡敢峰.纤维沥青混凝土低温开裂的分形研究[J].重庆交通大学学报(自然科学版),2009,28(3):537-542
    [142]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [143]梁锡三,唐有君.柔性路面设计[M].北京:人民交通出版社,1982
    [144] Hugo F., Smit A. de F. and Epps A. A Case Study Of Model APT In The Field [J].Proceedings of the First International Conference on Accelerated Pavent Testing, Reno,Nevada,1999
    [145]袁燕.改性沥青胶浆的疲劳性能评价[D].华南理工大学交通学院,2013
    [146] JTG D50-2006,公路沥青路面设计规范[S].北京:人民交通出版社,2006
    [147] JTJ E20-2011,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700