用户名: 密码: 验证码:
北美岩沥青及其混合料特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然岩沥青是一种优质的路用沥青改性剂,能有效地改善沥青材料及其混合料的路用性能。深入研究北美岩沥青的细观结构、改性机理、粘弹特性以及路用性能,对提高沥青路面的使用性能和北美岩沥青改性剂的推广应用,具有重要的意义。在前人的基础上,本文采用理论分析、室内综合参数测定试验研究、以及北美岩沥青试验段实体工程的现场铺筑和现场检测分析相结合的方法,对北美岩沥青及其混合料路用性能进行系统全面的研究,以期进一步提高北美岩沥青的作用属性认识水平和工程应用水平。主要研究内容与成果如下:
     (1)通过对不同掺量北美岩沥青制备岩沥青改性沥青的系统试验研究,分析了北美岩沥青对基质沥青感温性、高温性、低温性、耐久性的影响,结果表明北美岩沥青能明显改善沥青的感温性、高温稳定性和抗老化性能,但对沥青的低温性能无改善作用。
     进一步地,综合采用荧光显微镜、元素分析、红外光谱、差示扫描量热、凝胶渗透色谱、核磁共振波谱、表面自由能等细观分析测试手段,探寻北美岩沥青的作用机理及改性效果,深层次地揭示了北美岩沥青有效降低沥青温度敏感性、提高沥青高温稳定性、提高沥青抗老化能力、改善沥青黏附性能和水稳定性能的根本原因。北美岩沥青对基质沥青的改性作用主要表现是:①北美岩沥青与基质沥青混合后,岩沥青颗粒分散存在于沥青中,沥青与岩沥青颗粒相互包容,颗粒表面包有沥青,而沥青又渗透于岩沥青颗粒中,形成一种彼此交错的两相分散结构,这种结构决定了北美岩沥青改性沥青具有良好的流变性能和热储存稳定性能。经过北美岩沥青改性后的沥青的氢碳摩尔比减少,芳碳率提高,沥青的芳香组分比例增大,胶质比例减少,沥青质量得到很大提升。②北美岩沥青对基质沥青的改性不仅仅是北美岩沥青在基质沥青中简单分散的物理改性,而是存在化学键明显的减弱或消失,即北美岩沥青对基质沥青的改性可能存在一定程度的化学改性作用,也就是说北美岩沥青对基质沥青可能存在物理改性和化学改性的双重改性作用。北美岩沥青将-OH羟基峰带入到基质沥青中,产生新的官能团,该官能团使沥青的黏附性增强;同时,北美岩沥青将O-Si-O带入到基质沥青中,使沥青内聚力增强,软化点升高,延展性降低。③北美岩沥青的掺入能增大基质沥青的分子量,提高分子间相互作用力,使沥青软化点升高,针入度降低,粘度增加,深层次揭示了北美岩沥青改善基质沥青高温稳定性的原因所在。由于北美岩沥青的选择性吸附及溶胀作用使基质沥青的组分构成不再连续,岩沥青改性沥青的吸热量下降,其聚集态转化数量减少,沥青的分子间作用力增强,状态稳定,受温度影响小,从而揭示了北美岩沥青改善沥青感温性的原因所在。④北美岩沥青和基质沥青之间不是单纯的物理作用,还发生了部分交联反应,导致改性沥青的烷基取代基种类减少。基质沥青中烷基取代基的长度较大,容易在老化过程中发生失氢或碳链断裂,从而影响沥青的老化性能。然而,随着北美岩沥青的加入增加了改善沥青抗老化性能的可能性。⑤将北美岩沥青掺入基质沥青中,沥青与水的接触角增加,沥青的憎水性增强,表面自由能降低,沥青与集料的黏附性增强,表明北美岩沥青能改善基质沥青的抗水损害性能。北美岩沥青中氧、氮、硫等杂原子含量较高,这些杂原子都是极性很强的官能团,能够在岩石表面产生强吸附力,其吸附自由能以及在岩石表面的吸附量,均比基质沥青高出数倍,显著提高集料的抗剥落性和粘附性。
     (2)动态剪切流变仪温度扫描试验研究揭示:北美岩沥青改性沥青的车辙因子G*/sinδ提高、动粘度η增大,正切损失tanδ减小,疲劳因子G*sinδ增大,沥青的高温抗车辙性能得到明显改善,疲劳性能有所降低。沥青胶浆温度扫描结果表明,北美岩沥青的最佳掺量为12~15%。掺入北美岩沥青后,沥青的PG高温等级升高,北美岩沥青掺量每增加3%,PG高温等级基本上升1个等级;沥青的蠕变劲度S增大,蠕变速率m值变小,沥青的松弛能力有所降低,掺量9%~18%的北美岩沥青改性沥青PG低温等级比基质沥青降低了一个等级。
     (3)“干法”添加工艺获得的混合料的高温性能和水稳定性能优于“湿法”添加工艺。北美岩沥青粉末的加工粒径会影响沥青混合料的体积指标和路用性能,粒径越细,成型混合料更容易击实,也能节省沥青,用其改性后的混合料性能更优。
     (4)在相同的集料、矿料级配与拌和工艺下,对比分析了不同掺量北美岩沥青改性混合料以及使用不同沥青改性剂的混合料路用性能,研究结果表明,北美岩沥青能够显著改善混合料的高温稳定性能和水稳定性能,但会降低混合料的低温抗裂性能。
     (5)采用四点弯曲试验方法在应变控制模式下和应力控制模式下,对北美岩沥青改性沥青混合料的疲劳性能进行系统的试验研究。研究结果表明,北美岩沥青能明显提高混合料的疲劳寿命。疲劳寿命预测模型表明,北美岩沥青改性沥青混合料的疲劳寿命与应变水平具有十分良好的线性关系,应变水平越高,混合料疲劳寿命越短。
     基于本研究成果设计与铺筑的北美岩沥青试验段实体工程,验证了北美岩沥青的优良使用效果。北美岩沥青运输储存方便,使用工艺简单,生产及施工工艺与常规沥青混合料工艺一致,无需增加昂贵的机械设备,也无需改变拌和生产流程。本文研究成果对于提高北美岩沥青路面的设计与施工水平,具有理论参考与工程应用指导的作用。
Natural rock asphalt is an effective asphalt modification for pavement asphalt, which canimprove the pavement properties of asphalt and mixtures greatly. To improve the performanceof asphalt pavement and expand the use of rock asphalt modification, it is very important tostudy the microstructure, modified mechanism, viscoelastic behavior and pavement propertiesof North American rock asphalt. Based on prevous study carried out by former researchers,this article uses theorectical analysis, experimental study, and on-situ test and analysis toinvestigate the performance and properties of North American rock asphalt and mixture,which help improve the knowledge of properties and application of rock asphalt. The maincontent and results are as follows:
     (1)Based on the systematic experiments of modified rock asphalt made by mixing certainamounts of North American rock asphalt and base asphalt, analyzing the influence of NorthAmerican rock asphalt on several properties of base asphalt, such as temperature susceptibility,high temperature properties, low temperature properties and durability. The test results showthat North American rock asphalt can improve all the properties of base asphalt above exceptthe low-tem properties.
     Several micro-analysis methods, fluoresence microscopy method, elemental analysismethod, infrared spectrum method, differential scanning calorimetry method, nuclearmagnetic resonance spectrum method and surface free energy method, are carried out toinvestigate the function mechanism and effect that North American rock asphalt has on baseasphalt, it deeply reveals the reasons that North American rock asphalt can improve all theproperties of base asphalt, including temperature susceptibility, high temperature properties,durability, absorbability of asphalt which help stick the aggregates and anti moisture damagecapacity. This modified influence that North American rock asphalt has on base asphalt are:①I n the combination ofNorth American rock asphalt and base asphalt, the particles of rockasphalt disperse in the mixed asphalt, the mixed asphalt and the rock asphalt particles blendwith each other, the rock asphalt particles are surrounded by asphalt and asphalt permeatesinto the rock asphalt particles, thus an interlocked two phases structure can be formed. Thiskind of structure determines a good rheological property and good thermal storage stability ofmodified rock asphalt. After modification, decrease of Hydrogen and Carbon molar ratio,increase of aromatic-carbon ratio and aromatic proportion, decrease of colloid proportion,improvement of asphalt quality.②The modification ofNorth American rock asphalt onbase asphalt is not only a physical modification about simple dispersion of rock asphalt in base asphalt, but also a significant reduction or disappear of the chemical bond, which isprobable the chemical modification of North American rock asphalt on base asphalt to somedegree. In other words, the North American rock asphalt has a double modifying function onbase asphalt, physically and chemically. The North American rock asphalt bring the peak ofthe-OH hydroxyl to the base asphalt, forming new a functional groups which enhanceasphalt’s adhesion ability, meanwhile, the North American rock asphalt bring O-Si-O to baseasphalt, enhancing the cohesion, increasing softening point and decreasing the extensibility.③The North American rock asphalt can increase base asphalt’s molecular weight, improvethe intermolecular force, leading to a higher softening point, a lower penetration and a betterviscosity, thus exposing why the North American rock asphalt can improve the hightemperature stability of base asphalt. As the selective adsorption and the swelling effect makebase asphalt’s component formation intermittent, decrease of modified rock asphalt’s heatabsorption, as well as the quantity of aggregation transformation, and the intermolecular forcewill be enhanced, which make asphalt a steady state and a weak effect of temperature,exposing how the North American rock asphalt can improve the temperature sensitivity ofbase asphalt.④T heNorth American rock asphalt and the base asphalt have not only physicaleffects, they also bring about crosslinking reaction partly, decreasing the alkyl substitutionspecies. The alkyl substitution of base asphalt has greater length, so the hydrogen or carbonstrand breaks occur easily in the aging process, which affect asphalt aging property. However,the North American rock asphalt can increase the possibility of improving asphalt’s anti-agingproperties.⑤increase of contact angles among asphalt and water, increase of hydrophobicity,decrease of surface free energy, increase of absorbability of asphalt which help stick theaggregates, great improvement of anti moisture damage capacity. The North American rockasphalt has a great amount of oxygen, nitrogen, sulfur and other heteroatom, they are allfunctional groups which have strong polarity, forming a higher adsorbability to the rocksurface, they have greater adsorption free energy and capacity than the base asphalt, whichcan significantly improve the anti-stripping capacity and the adhesion ability of aggregates.
     (2)As the temperature scanning test of modified asphalt shows, the modified asphalt hasan higher rutting factor G*/sinδ, a larger dynamic viscosity η, a smaller tangent loss tanδ, abigger fatigue factor G*sinδ. The high temperature anti rutting properties of modified asphalthas been greatly improved, while the fatigue properties of the asphalt drop a little bit. Theasphalt mucilage temperature scanning shows that the optimal amount of addition (rockasphalt) is12~15%. The asphalt modified by North American rock asphalt has an higher PGhigh temperature level, the PG high temperature level will basically rise one grade when the North American rock asphalt contents for each additional3%. The modified North Americanrock asphalt has an bigger creeping stiffness(S), a smaller creeping rate(m values), a littledropping of the relaxation ability. The PG low temperature level of modified asphaltcontented with9%to18%North American rock asphalt only has one grade lower thanasphalt.
     (3)Dry process adding method of North American rock asphalt mixture at hightemperature performance and water stability performance is better than the wet processadding method. The powder processing size of North American rock asphalt will affect theasphalt mixture volume indexes and pavement performance, easier compacted mixture andbetter mixture properties under the smaller powder size of North American rock asphalt. Itcan also save the modified asphalt.
     (4)Investigation is carried on modified asphalt made by the same aggregates, grade ofore materials and mixing process but different additional rock asphalt. The results shows thatrock asphalt can improve the high temperature stability and water stability, while it has anegative influence on anti cracking properties in low temperature.
     (5)Using four-point bending test to investigate fatigue properties of modified asphaltunder strain controled model and stress controled model, it shows that North American rockasphalt can greatly increase the fatigue life of mixed asphalt. The prediction model of fatiguelife shows that it has good linear relationship between fatigue life of modified asphalt mixtureand strain level, lower fatigue life under higher strain level.
     The design of the modified asphalt and successful application of modified asphalt showthat the North American rock asphalt has high the modification quality. With the easytransportation, simple and standard production process of the North American rock asphalt,this asphalt is of high applicable value. The results of this study has improved the the rockasphalt pavement design and its construction level, and also owns a guidance for theoreticalreference and engineering application.
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001
    [2]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001
    [3]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004
    [4]谢美东,李向琼.天然岩沥青改性沥青性能及改性机理试验研究[J].湖南交通科技,2007,33(3):1-3
    [5]陆兆峰,何兆益,黄刚.天然岩沥青改性沥青性能及改性机理研究[J].武汉理工大学学报(交通科学与工程版),2011,35(6):1161-1164
    [6] H.Burrell. Gilsonite Information Bulletin, Polymer Handbook,2nded., Wiler-Inter Science,New York,1975
    [7] Gilsonite Resin-A Modifier for High Stability Pavements[J]. Roads&Bridges,1987
    [8] Donna S.Harmelink. Gilsonite, An Asphalt Modifier[J]. Colorado Department ofTransportation,1992
    [9] Item400HS. Standard Specification for Asphalt Concrete-High Stress Using Gilsonite[R].1998
    [10] Shell. Addendum to the Shell Pavement Design Manual[M]. Shell InternationalPetroleum Company, Limited, London,1985
    [11] AASHTO. Specification for Performance-graded Asphalt Binder. AASHTO StandardMP1. Washington, D.C.1998:10-89
    [12] M.W. Witczak.2002Design Guide—Design of New and Rehabilitated AC PavementStructures[R]. NCHRP1-37A, National Cooperative Highway Research Program,2001
    [13] Mark G. Bouldin, Gilsonite Modifier Hard Pen Binder Study[R], American GilsoniteCompany,2002
    [14] JTG F40-2004,公路沥青路面施工技术规范[S].北京:人民交通出版社,2004
    [15]交通部重庆公路科学研究所译.《美国公路战略研究计划(SHRP)》[M].北京:人民交通出版社,1995
    [16]交通部公路科学研究所.道路沥青及沥青混合料路用性能的研究总报告[R].“八五”国家重点科技项目(总报告),1995
    [17]中国交通部公路科学研究所.印度尼西亚Buton天然岩沥青路用性能研究报告[R].2001
    [18] The Asphalt Institute. Mix Design Methords for Asphalt Concrete and Other Hot-mixTypes(MS-2)[M].[sl]:Asphalt Association of America,1997.
    [19] Prithvi S K, Sanjoy C. Evaluation of Voids in the Mineral Aggregate for HMA PavingMixtures(NCAT Report No.96-4)[R].[sl]:National Center for Asphalt Technology ofAuburn University,1996
    [20] Asphalt Concrete with Gilsonite, State of Ohio Department of TransportationSupplemental Specification857,2002
    [21]李瑞霞. BRA岩沥青及其混合料技术特性研究[D].西安:长安大学硕士学位论文,2010
    [22]邵显智,谭亿秋,邵敏华等.沥青胶浆微观界面的研究[J].公路,2003,(12):105-109
    [23]陈炜. TLA改性沥青混合料应用技术研究[D].长沙:长沙理工大学硕士学位论文,2008
    [24]曹东伟,陆军,刘清泉.岩沥青路面工程应用技术指南[R].北京:交通部公路科学研究院,西部交通建设科技项目(200531822305),2008
    [25]钟科,曹东伟,刘清泉.岩沥青改性沥青胶结料流变特性研究[J].公路交通科技,2007,24(7):15-19
    [26]沈金安.道路沥青的当量软化点及当量脆点指标[J].公路交通科技,1997,14(3):45-52
    [27]黄文通,徐国元.布敦岩沥青混合料路用性能的试验研究[J].华南理工大学学报(自然科学版),2012,40(2):87-91
    [28]原健安.国产沥青的DCS分析[J].石油沥青,1994,(2):10-16
    [29]原健安.用DSC分析聚合物对改性沥青性质的影响[J].石油沥青,1997,6:23-27
    [30]杨广烈.荧光与荧光显微镜[J].光学仪器.2001,23(2):19-30
    [31]张肖宁,郭组辛,吴旷怀.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36
    [32]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [33]肖云. SBS改性沥青微观分散性分析[D].广州:华南理工大学硕士学位论文,2004
    [34]李瑞霞,郝培文,王春等.布敦岩沥青改性机理[J].公路交通科技,2011,28(12):16-20
    [35]赵晶.嵌段共聚物改性沥青机理研究[D].哈尔滨:哈尔滨建筑大学博士学位论文,1998
    [36] Sybilski. Zero-Shear Viscosity of Bituminous Binder and its Relation to BituminousMixtures Rutting Resistance[J], Transportation Research Record1535, TRB,1996:15-21
    [37] Stuart K D. Mogawer W S. Validation of asphalt binder and mixture tests that predictrutting susceptibility using FHWA Accelerated Loading Facility[J],1997
    [38] D. A. Anderson, Y. M. Le Hir, J. Planche, D. Martin. Zero Shear Viscosity of AsphaltBinders. Presented at the81st Annual Transportation Research Board Meeting, TRB,National Research Council, Washington D. C.,2001:2-19
    [39] Gerald H. Reinke,Stacy Glidden. Development of Mixture Creep Performance TestsUsing a Dynamic Shear Rheometer[R]. Transportion Research Board of the NationalAcademies.2004,9:1-43
    [40]李晓民.基于流变特性的沥青胶浆评价方法及性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2006
    [41]孟勇军.不同嵌段比的SBS改性沥青流变性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2008
    [42]刘洪海,范鹏云,岳鹏程等.影响沥青混合料体积参数的因素与质量控制[J].武汉理工大学学报.2007,29(9):55-58
    [43]尹应梅,张肖宁.布敦岩沥青对沥青胶浆高温流变特性的影响[J].武汉理工大学学报,2010,32(7):85-89
    [44]贾娟.改性沥青高温流变性能与应用研究[D].广州:华南理工大学博士学位论文,2005
    [45] Wentong HUANG, Guoyuan XU. Experimental Study of High Temperature Propertiesand Rheological Behavior of Iranian Rock Asphalt[J]. The3rd International Conference onStructures and Building Materials,2013,671-674:1277-1281
    [46]杨宇亮.沥青混合料细观结构的分析方法[D].上海:同济大学博士学位论文,2003
    [47]华敏.天然沥青对基质石油沥青改性机理研究[D].西安:长安大学硕士学位论文,2008
    [48]肖鹏. SBS物理和化学改性沥青及沥青混合料性能评价对比研究[D].南京:河海大学博士论文,2005
    [49]詹百万.北美岩沥青路用性能研究[D].广州:华南理工大学硕士学位论文,2007
    [50]孔祥利.岩沥青改性70#沥青混凝土应用技术研究[D].吉林:吉林大学硕士学位论文,2009
    [51]叶国铮.柔性路面疲劳与优化设计[M].北京:人民交通出版社,1989
    [52]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996
    [53]交通部重庆公路科学研究所.沥青混合料和半刚性基层材料疲劳特性的研究[R].1990
    [54] I.F. Taylor. Asphaltic road Materials in Fatigue[D]. University of Nottingham,1968
    [55] John T. Harvey, John A. Deacon, Bor-Wen Tsai, Carl L. Monismith. Fatigue Performanceof Asphalt Concrete Mixes and Its Relationship to Asphalt Concrete PavementPerformance in California[R]. California Department of Transportation,1995
    [56] SHRP Designation M-009. Determining the Fatigue Life of Compacted BituminousMixtures Subjected to Repeated Flexural Bending[R]. SHRP-A-003A, StrategicHighway Research Program, Nation Research Council,1994
    [57] Tayebali, A.A., J.A. Deacon, J.S. Coplantz, J.T. Harvey, and C.L. Monismith. FatigueResponse of Asphalt-Aggregate Mixes[R]. SHRP-A-404, Strategic Highway ResearchProgram, Nation Research Council,1994
    [58] Khalid A. ghuzlan. Fatigue Damage Analysis in Asphalt concrete Mixtures Based UponDissipated Energy Concepts[D]. University of Illinios at Urbana-Champaign,2001
    [59]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1986:148-158
    [60]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005
    [61]王绍怀.路面设计中沥青混合料疲劳破坏预测方法的研究[D].哈尔滨:哈尔滨建筑大学硕士学位论文,1994
    [62]森吉昭博,菅原照雄.流动破坏区域内沥青混合料的流变性质及破坏行为[A].菅原照雄.沥青混合料力学性能研究论文集[C].哈尔滨建筑工程学院,1982:69-80
    [63] Monismith CL, Deacon J A, Harvey J T. Westrack: Performance models for permanentdeformation and fatigue[R]. Berkeley: Pavement Research Center, University ofCalifornia,2000
    [64] Nunn, M.E., Brown, A., Weston, D., and J.C. Nicholls. Design of long-life flexiblepavements for heavily trafficked roads[R]. Transport Research Laboratory, TRL Report250, Crowthorne,1997
    [65] Harvey J T, Tsai B W. Effects of Asphalt Content and Air Void Content on Mix Fatigueand Stiffness[J]. Transportation Research Record. Washington D.C:TRB,1996,38-45
    [66] Christensen D.W., Anderson. D.A. Interpretation of Dynamic Mechanical Test Data forPaving Grade Asphalt Cements[J]. Journal of the Association of Asphalt PavingTechnologists.1992,61:59-72
    [67] Petersen J.C., Robertson R.E., Branthaver. J.F. Binder Characterization and EvaluationVolume4: Test Methods, SHRP-A-370[R]. National Research Council,1994:36-48
    [68] Monismith C.L., Alexander R.L., and Secor K.E., Rheologic Behaviour of AsphaltConcrete[R], Proceedings of the Association of Asphalt Paving Technologists,1968,(35):400-450
    [69]广东华路交通科技有限公司.5U北美岩沥青改性沥青混合料应用技术研究[R].广州:广东华路交通科技有限公司,2013
    [70]张中岳,乔金樑.高分子共混体系界面张力的研究[J].高分子学报,1993,(3):343-347
    [71]肖庆一,钱春香,解建光.偶联剂改善沥青混凝土性能及油石界面试验研究[J].东南大学学报(自然科学版),2004,34(4):185-189
    [72]迟凤霞.基于变形特性的沥青混合料形态学研究[D].广州:华南理工大学博士学位论文,2008
    [73]王端宜.设计沥青路面及其方法的研究[D].广州:华南理工大学博士学位论文,2003
    [74]迟凤霞,张肖宁,王丽健等.沥青混合料动态剪切模量主曲线的确定[J].吉林大学学报(工学版),2009,39(2):349-353
    [75]詹小丽.基于DMA方法对沥青粘弹性能的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007
    [76] Sherwood J. Thomas N L. Qi X. Correlation of Superpave G*/sinδ with Rutting TestResults from Accelerated Loading Facility[R]. Transportation Research Record No.1630, Transportation Research Board,1998
    [77]王娜. TLA天然沥青的改性机理及其应用研究[D].重庆:重庆交通大学硕士学位论文,2012
    [78] Anderson, D. A., et al. Binder characterization, Volume3: Physical properties. StrategicHighways Research Program, Rep. No. SHRP-A-369[R]. National Research Council,Washington, D.C.1994:43-79
    [79] Airey, G. D., Hunter, A. E., and Rahimzadeh(2002c). The Influence of Geometry andSample Preparation on Dynamic Shear Rheometer Testing Proceedings[A]. The4thEuropean Symposium on the Performance of Bituminous and Hydraulic Materials inPavements[C]. A. A. Balkema, Rotterdam, The Netherlands,2002,3-12
    [80] Monismith C L. Rutting Prediction in Asphalt Concrete Pavements[R]. Washington D C:Transportation Research Record616, Transportation Research Board, National Academyof Sciences,1976
    [81] Sousa J B, Craus J, Monismith C L. Summery Report on Permanent Deformation inAsphalt Concrete[R]. SHRP-A/IR-91-104, Strategic highwayresearch program. Nationalresearch board,1991:21-31
    [82] JTG E20-2011,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011
    [83]肖云,黄文通,袁燕,张肖宁.基于微观分散性分析的改性沥青在线质量控制技术[J].中南公路工程,2006,31(2):134-137
    [84]尹应梅.基于DMA法的沥青混合料动态粘弹特性及剪切模量预估方法研究[D].广州:华南理工大学博士学位论文,2010
    [85]笠原笃,菅原照雄.不规则应变波形下沥青混合料的动态响应[A].菅原照雄.沥青混合料力学性能研究论文集[C].哈尔滨:哈尔滨建筑工程学院,1982:107-122
    [86]笠原笃,冈川秀幸,菅原照雄.沥青混合料的动态性质及其在沥青路面结构力学分析中的应用[A].菅原照雄.沥青混合料力学性能研究论文集[C].哈尔滨:哈尔滨建筑工程学院,1982:123-136
    [87] Duanyi WANG, Zheren WANG, Xiaoning ZHANG. Analysis of Structural Factors ThatInflence the Low-temperature Cracking of Asphalt Pavement[R]. ISCORD,1991
    [88]郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标[J].西安公路交通大学学报,2000,20(13):1-5
    [89] Xue Li and Mihai Marasteanu. Evaluation of the Low Temperature Fracture Resistanceof Asphalt Mixtures Using the Semi Circular Bend Test[J]. Journal of the Association ofAsphalt Paving Technologists.2004,(73):401-426
    [90] American Gilsonite Company. Gilsonite in Paving Applications[EB/OL].www.americangilsonite.com,2005
    [91]卢亮.功能型沥青混合料及其设计方法研究[D].广州:华南理工大学博士学位论文,2009
    [92]张争奇,张登良,原健安.用聚集态和分子量解释沥青的性能[J].西安公路交通大学学报,1998,18(3B):207-211
    [93][美] J.J.阿克洛尼斯,W.J.麦克奈特.聚合物粘弹性引论[M].北京:科学出版社,1996
    [94]黄卫东.聚合物改性沥青显微结构、储存稳定性、流变性能及其关系的研究[D].上海:同济大学博士学位论文,2000
    [95] WillyTumewu, Neni Kusnianti. Laboratory evaluation of lawele buton natural asphalt inasphalt concrete mixture[J]. Proceedings of the Eastern Asia Society for TransportationStudies,2005,(5):857-867
    [96] Mirza M. W. and Witczak M. W.. Development of a Global Aging System for Short andLong Term Aging of Asphalt Cements[J]. Journal of the Association of Asphalt PavingTechnologists.1995,64:42-60
    [97]袁迎捷.基于Superpave的沥青胶浆流变特性与级配优化研究[D].西安:长安大学博士论文,2004:113-117
    [98]刘宇,关祖华,吴传海,黄文通.5U北美岩沥青改性沥青路用性能试验研究[J].广东公路交通,2013,(1):1-3
    [99] Gerald A. Huber and Dale S.Decker, Evaluation of Aging Characteristics of ModifiedAsphalt Mixtures. American Society for Testing and Meterials. Philadelphia,1995
    [100] Van Dijk, W., et al. The Fatigue of Bitumen and Bituminous Mixes[J].3rd Internationalconference on Structural Design of Asphalt Pavements, London,1972,1:38-74
    [101] Hveem, F.N. Pavement Fatigue Deflections and Fatigue Failure[J]. Highway ResearchBoard, Bulletin114, Washington, D.C.1955,43-87
    [102] Pell, P.S. Characterization of Fatigue Behavior[R]. Special Report140: StructuralDesign of Asphalt Concrete Pavement Systems to Pavement Fatigue Cracking. HRB,National Research Council, Washington, D.C.1973
    [103] Brown E.R, John E.Haddock. A Method Ensure Stone-on-Stone Contact in StoneMatrix Asphalt Paving Mixtures[J]. NCAT,1997:166-197
    [104] Tayebali, A.A. Influence of Shear Deformantion in Flexural Fatigue Beam Compared tothe Deformation Due to Bending[R]. Technical memorandum prepared for SHRP ProjectA-003A. Asphalt Research Program, Institute of Transportation Studies, University ofCalifornia, Berkeley,1991
    [105] Bor-Wen Tsai. High Temperature Fatigue and Fatigue Damage Process ofAggregate-Asphalt Mixes[D]. Berkeley:University of California, Berkeley,2001
    [106]黄卫,邓学钧, Monismith C.L.能量方法分析沥青混合料的疲劳特性[J].中国公路学报,1994,7(3):23-28
    [107]张婧娜,谭忆秋,张肖宁.应用能量原理预测沥青混合料的疲劳破坏[J].中国公路学报,1998,11(4):11-17
    [108]郝培文,张景涛,张登良等.不同级配类型沥青混合料抗疲劳特性研究[J].石油沥青,1998,12(2):20-25
    [109]赵永翔.应变疲劳可靠性分析的现状及展望[J].机械工程学报,2001,37(11):1-6
    [110]赵永翔,王金诺,高庆.基于应变的疲劳可靠性分析新方法[J].机械工程学报,2002,38(11):27-30
    [111]张肖宁等.沥青混合料疲劳性能研究[R].广州:华南理工大学道路工程研究所,2004
    [112]虞将苗.沥青混合料应变控制疲劳性能研究[D].广州:华南理工大学博士学位论文,2005
    [113]关宏信.沥青混合料粘弹性疲劳损伤模型研究[D].长沙:中南大学博士学位论文,2005
    [114]黄文通.钢桥面铺装沥青混合料疲劳性能试验研究[D].广州:华南理工大学硕士学位论文,2008
    [115]单丽岩.基于粘弹特性的沥青疲劳-流变机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010
    [116]黄文通,王端宜.环氧沥青混凝土黏弹性分析与疲劳性能试验研究[J].科学技术与工程,2008,8(17):4901-4904
    [117] Dongre, Raj, D’Angelo, John and Gerry Reinke. A New Criterion for Superpave HighTemperature Binder Specification[J]. Transportation Research Record, TRB2004:Transportation Research Board, National Research Council, Washington D.C:25-41
    [118]张久鹏,黄晓明,李辉.重复荷载作用下沥青混合料的永久变形[J].东南大学学报(自然科学版),2008,38(3):511-515
    [119] Nevelt, G.,Thanfold H.. Evaluation of the Resistance to Deformation of Different RoadStructures and Asphalt Mixtures Determined in the Pavement-Rutting Tester.Proceedings of the Association of Asphalt Paving Technologists,1988,57(1):320-345
    [120] Jean-Francois Corte. Development and use of hard-grade asphalt and of High-ModulusAsphalt Mixes in France. Perpetual Bituminous Pavement, Transportation ResearchCircular, No.503,2001
    [121] Desmazes, C., Lesueur, D. and Phillips, M. A protocol for reliable measurement ofzero-shear-viscosity in order to evaluate the anti-rutting performance of binders[C].Proceedings of2nd Eurasphalt&Eurobitume Congress,2000, Barcelona, Spain, Book1:202-211
    [122]谢凌.北美岩沥青路用性能试验研究[D].武汉:华中科技大学硕士学位论文,2006
    [123]廖宣锦.岩沥青混合沥青及其混合料性能研究[D].广州:华南理工大学硕士学位论文,2010
    [124]詹百万,张肖宁,杨永红.基于界面改性的岩沥青添加剂路用性能的试验[J].石油沥青,2007,21(4):36-39
    [125]吴旷怀,伦兴.添加北美岩沥青的混合料路用性能试验研究[J].公路,2006,(8):167-72
    [126]张裕卿,黄晓明.重复荷载下沥青混合料永久变形的粘弹性力学模型[J].公路交通科技,2008,25(4):l-6
    [127]彭妙娟,许志鸿.沥青路面车辙预估方法[J].同济大学学报(自然科学版),2004,32(11):1457-1460
    [128] JTG E60-2008,公路路基路面现场测试规程[S].北京:人民交通出版社,2008
    [129]解晓光,王哲人.沥青碎石混合料永久变形评价方法的研究[J].公路交通科技,2005,22(5):5-9
    [130]徐世法,朱照宏.按粘弹性理论预估沥青路面车辙[J].同济大学学报,1990,18(3):299-305
    [131]徐伟,韩大建,张肖宁.应用RLWT车辙仪评价沥青路面抗车辙性能[J].公路交通科技,2005,22(1):5-8
    [132]李立寒,陈建军,苏洲等.基于车辙试验的空隙率效应模型的建立[J].公路交通科技.2007,24(1):37-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700