用户名: 密码: 验证码:
微小型薄壁内沟槽热管弯曲成形缺陷分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子、光电子芯片热流密度急剧增加及有效散热空间日益狭小,具有高导热率、高可靠性、热响应快、重量轻、无需额外电力驱动等特点的沟槽式微热管已成为航空及光电子领域普遍使用的理想导热元件。然而,微热管在实际应用中,往往受限于复杂多变且有限的空间,因此必须将微热管进行弯曲加工以适应不同的工作环境。
     由于沟槽式微热管壁薄、微小沟槽多,且弯曲加工时不能使用芯棒等特点,难以按常规管材弯管工艺进行加工。本文以分析其成形机理为基础,比较多种常用弯管工艺方式对此种工况的优劣性,并着重研究其成形缺陷,找出影响最大的缺陷,并分析其成形机理,以期消除此种缺陷,指导弯管工艺实施及其质量控制。
     首先比较多种弯管工艺对此种工况的优劣性,制定出最适合的弯管工艺;并以实验研究为基础,分析沟槽式微热管弯曲成形机理,以及缺陷形成规律,然后以三维的有限元弯管数值模拟对微热管弯管工艺成形进行分析研究,并以实验研究和有限元模拟为基础,尝试建立对应力学模型。指导弯管工艺实施及其质量控制。主要内容及结果如下:
     (1)比较和分析了常用的弯管方式:压弯、拉弯、绕弯、推弯、滚弯等,对此种特定工况的优劣性,并选出最适用的方法,并制定弯管工艺;
     (2)为找出对微热管性能影响最大的缺陷,并对其深入研究,以期消除此种缺陷,开发了微热管传热性能测试平台,研究弯管缺陷对传热性能的影响,并界定了所能接受的缺陷形式和程度,以及影响最大的缺陷类型;
     (3)进行实验研究,研究了绕弯工艺成型极限及缺陷成型规律,以及管内外壁面缺陷联系;
     (4)结合实验研究和三维有限元弯管数值模拟方法,对沟槽式薄壁微热管弯曲工艺的应变、应力状态、成形机理及缺陷形成规律等进行了分析;
     (5)通过对沟槽式薄壁微热管弯管工艺实验研究及模拟结果,应用薄板受压失稳理论,建立了微热管弯曲内侧起皱的数学模型,弥补了有限元模拟的不足;
     (6)为指导实际生产中工厂对弯管质量的控制与优化,根据实验研究、三维有限元方法模拟和理论分析结果,提出了弯曲工艺改进方案,实施效果良好。
As the microelectronics, optoelectronics chip heat flux increase rapidly, and the space for heat dissipation growing small, power-driven grooves micro heat pipe with high thermal conductivity, high reliability, fast thermal response and no extra features has become a ideal and widely used thermal components for aviation and optoelectronics. However, the micro heat pipe limited by incapacious and complex space in practice, so it must be bended to adapt to different working environments.
     As the micro-grooves heat pipe has thin wall and many tiny grooves, and can not use mandril when bending it, etc, it is difficult to process by conventional tube pipe bending process. This paper analyzes the mechanism of heat pipe bending deformation, based on comparison of different methods commonly used in pipe bending on the pros and cons of such a condition. And focuses on the forming defects, identify the defects has greatest impact, and to analyze the forming mechanism in order to eliminate such defects to guide the implementation of process and the quality control of pipe bending.
     First of all, compare the pipe bending methods on the pros and cons of such a condition and analyze the mechanism of micro-grooved heat pipe bending deformation based on some experiments, then analysis the micro heat pipe bending process with three-dimensional finite element numerical simulation, and attempt to establish a wrinkling model based on experimental study and finite element simulation to guide the implementation and quality control of micro heat pipe bending. Main contents and results are as follows:
     (1) Compare and analyze the advantages and disadvantages of some common bending methods, and select the most appropriate method for such specific conditions;
     (2) Develop a heat transfer performance test platform for heat pipe, to study influence to the heat pipe performance of the bending defects, and defines the acceptable defects, as well as the most influential type of defect;
     (3) Perform the experimental study the rotary draw bending process, analyze the forming limit, the defect shaping-law, and the relationship of the defects occur on inside and outside of the wall;
     (4) Based on the experimental study and three-dimensional numerical simulation of bending, strain, stress state and formation mechanism of thin-walled micro-grooved heat pipe bending process are analyzed;
     (5) Base on the experimental study and simulation results of thin-walled micro-grooved heat pipe bending, and the thin plate buckling theory, the mathematical model of wrinkling has been founded to make up for weakness in analyzing the wrinkling of finite element simulation;
     (6) Proposed an improvement of heat pipe bending process, based on experimental studies, three-dimensional finite element simulation and theoretical analysis results.
引文
[1]王同海.管材塑性加工技术.北京:机械工业出版社.1998:27-58
    [2] Plesch D., Bier W., Seidel D., Schubert K., Miniature heat pipes for heat removal from microelectronic circuits, Micromechanical Sensors, Actuators and Systems ASME-DSC 32 (1991) 303-314.
    [3] Peterson G.P., An introduction to heat pipes - Modelling, testing and applications. John Wiley and Sons, New-York, 1994.
    [4] Cotter T.P., Principles and prospects for micro heat pipes, in: Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, 1984, 4, pp. 328-334.
    [5] Itoh A., Polasek F., Development and application of micro heat pipes, in: Proc. 7th International Heat Pipe Conference, Minsk, Belarus (CIS), 1990, pp. 295-3 10.
    [6]鹿晓阳,徐秉业等.牛角芯棒热推弯管成形过程力学原理及分析求解方法.塑性工程学报,1999,(9):31-36
    [7]胡勇,王呈方.弯管工艺中回弹、伸长和成形半径的确定方法.锻压机械,1997,(1):35-37
    [8] Juniehi Endow, Tadao Murota. On the Flattening of Cross-Section of Circular Tubes in Uniform Bending. Advanced Technology of Plasticity, 1984,(l):285-290
    [9]胡忠.中频感应局部加热弯管回弹的研究.应用力学学报,1996,6:81-88
    [10] Y. Yokoushi. Prediction of deformed cross section in pure bending. Advanced Technology of Plasticity, 1996:599-602
    [11] Forde Paulsen, Torgeir Welo. Application of numerical simulation in the bending of aluminum-alloy Profiles. Journal of Materials Processing Teehnology.1996,58:274-285
    [12] Forde Paulsen, Torgeir Welo, Odd Perry Sovik.. A design method for rectangular hollow section in bending. Journal of Materials Processing Teehnology.2001,113:699-704
    [13]胡福泰.异型管材与型材无模弯曲工艺理论及实验研究.东北重型机械学院工学博士学位论文:1995
    [14] Abdelmajid Fantnassi, Yoshihiro Tomita, Akio Shindo. Theoretical Investigation of Buekling Behavior of Axisymmetric Elastic-Plastic Membrane Shells Subjected to Axisymmetric Forming. Advanced Technology of Plasticity, 1984, (l):611-616
    [15] Lin Yan, Yang He. Thin-walled tube Precision bending Process and FEM simulation. In: Yang Huayong, Li Wei, Proceedings of the 4th International Conference on Frontiers of Design and Manufacturing. Beijing: International Academic Publishers, 2000:305-308
    [16]何卫平,钟夏娣,余隋怀,杨彭基.数控弯管机弯管过程仿真系统—Tubemod的研究.西北工业大学学报.1997,15,(3):360-364
    [17] Jae-bong Yong,Byung-hee Jeon, Soo-lk Oh. The tube bending technology of a hydroforming Process for automotive Part. Journal of Materials Processing Technology. 2001,111:175-181
    [18]郭玲等.具有预成形设计的薄壁弯管数据库管理系统的研究与开发.塑性工程学报.2007.14(2):80-85
    [19]李名望,彭炎荣等.薄壁弯管变形量的理论计算及弯曲工艺的改进.模具工业.2007.33(4):29-31
    [20]李炳乾.基于金属线路板的新型大功率LED及其光电特性研究[J].光子学报,2005.34(3) :372-374.
    [21] Ryan J. McGlen, Roshan Jachuck, Song Lin. Integrated thermal management techniques for high power electronic devices, Applied Thermal Engineering.2004,24: 1143-1156
    [22] Yuji Nishikawa. High optical intensity 2-D AlGaAs laser arrays[J]. SPIE, 2000. 3628:71-79.
    [23] Markoff J. Intel's Big Shift After Hitting Technical Wall. The New York Times, May 17, 2004
    [24] Zuo J. Hoover R, Phillips F. Advanced thermal architecture for cooling of high power electronics.2001,Http://www.thermacore.com
    [25] Ioan S, Greg C, Ravi M, Michele S. Air-cooling extension-performance limits for processor cooling applications. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003:74~81
    [26] L.L. Vasiliev. Micro and miniature heat pipes– Electronic component coolers. Applied Thermal Engineering 2008,28: 266–273
    [27]赵臻淞.基于三维FEM模拟的数控弯管质量控制.西北工业大学硕士学位论文
    [28]胡居传等.热管的应用及发展现状.制冷.2001.20(3): 20-26
    [29]曹国俊.滑弯管沿轴向内表面裂纹弹塑性有限元分析.大连理工大学硕士学位论文
    [30]肖传冰.斜接弯管沿管向穿透裂纹弹塑性有限元分析.大连理工大学硕士学位论文
    [31]杨合,林艳,孙志超.面向21世纪的先进塑性加工技术与管成形研究发展.见:中国科学协会第二届学术年会文集,北京:科学技术出版社,2000:745、746
    [32]赵臻淞,杨合,林艳,詹梅.管材弯曲工艺研究新进展.金属成形工艺,2002(2):1-7
    [33] Frank Vollertsen, Axel Sprenger, Jurgen Krraus, et al. Extrusion, channel, and profile bending: a review. Journal of Materials Processing Technology, 1997, 87: 1~27
    [34] Murata M, Yamnamnoto S, Suzuki H. Development of new flexible bending CNC machine for circular tube [J]. Advanced Technology of Plasticity, 1993(1):435~440.
    [35]张涛,李文平,林刚.金属管材冷旋压成形过程的三维有限元数值模拟,锻压技术,2003(2):31-32
    [36]高西成,康达昌,孟晓峰.薄壁筒收口旋压过程的数值模拟,塑性工程学报,1999,6(4):54-57
    [37]吕昕宇,侯红亮,张士宏等.TC4合金流动旋压三维弹塑性有限元模拟,锻压技术,2005(6):38-41
    [38]夏琴香.三维非轴对称偏心及倾斜管件缩径旋压成形理论与方法研究[D].华南理工大学博士学位论文. 2006,6
    [39]张光亮,张士宏,张海渠.内螺纹铜管滚珠旋压三维有限元模拟,现代制造工程,2006(8):103-106
    [40]应富强,张更超,潘孝勇.金属塑性成形中的三维有限元模拟技术探讨,锻压技术,2004(2 ):1-5
    [41]寇淑清,傅沛福,杨慎华等.三维大变形弹塑性有限元分析与边界条件的处理,塑性工程学报,1998,5 (4 ):65-70
    [42]陈火红,杨剑,薛小香等.新编MARC有限元实例教程.北京:机械工业出版社,2007
    [43]林艳.薄壁管数控弯曲成形过程失稳起皱的数值模拟研究[D],西北工业大学,2003
    [44] Frode Paulsen, Torgeir Welo, Application of numerical simulation in the bending of aluminium-alloy profiles[J]. Journal of Materials Processing Technology, 1996,58:274~285
    [45]詹梅,杨合,江志强.管材弯曲成形的国内外研究现状及发展趋势,机械科学与技术,2004,23(12):1509-1514
    [46] Yoshida K.Purposes and features of the Yoshida wrinkling test.Journal of the JSTP,1983,24(272):901-908
    [47] Reddy B.D..An experimental study of the plastic buckling of circular cylinders in tube bending. International Journal of Solids&Structure,1979,15:669-683
    [48] Kyriakide S, Ju G T. Bifurcation and localization instabilities in cylindricall shells under under bending-II. predications[J]. Int.J. Solids Struct,1992,29(9):1143~1171
    [49] Ju G T, Kyriakide S. Bifurcation and localization instabilities in cylindricall shells under under bending-I. experiments[J]. Int.J. Solids Struct,1992,29(9):1117~1142
    [50]刘鸿文.板壳理论.杭州:浙江大学出版社,1987
    [51]胡世光.板料冷压成形原理.北京:国防工业出版社,1979
    [52]梁炳文,胡世光.弹塑性稳定理论.北京:国防工业出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700