用户名: 密码: 验证码:
碳基复合材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)以其能量转化率高、低排放、能量和功率密度高等优点被认为是适应未来能源和环境要求的理想动力源之一。双极板是PEMFC的重要组成部分,它为电池分配燃料与氧化剂并串联相邻电池,其成本可占总成本的约40%,而高成本正是其走向实用化的一大障碍。寻找性能优良的材料和成本低廉的加工方法已成为燃料电池产业化技术研究中的重要课题。本论文着眼于PEMFC双极板的现实需要和未来发展,在开发高性能、耐高温的燃料电池双极板材料和工艺方面进行了新的探索和尝试。
     我们建立了石墨/聚苯硫醚复合双极板成型的烧结工艺。与采用较多的注塑成型工艺相比,其优势在于降低了生产上的设备投入,而且可以采用注塑工艺所不允许的高石墨含量,从而使双极板的材料费用更低而导电率更高;与模压工艺相比其优势在于提高了生产率。
     我们以价格低廉的天然鳞片石墨为板主体,选取耐高温的工程塑料聚苯硫醚为粘结剂,制备了石墨/聚苯硫醚复合板。考察了烧结工艺四要素、树脂含量对复合板导电性能、阻气性能、机械性能和耐腐蚀性能等性质的影响,对比了烧结制备复合板与模压制备复合板的性能。并首次考察了石墨/聚苯硫醚复合板导电性能与温度的关系以及复合板长时间置于高温下的导电性能。
     通过对工艺条件的探索,使烧结复合板的综合性能达到公认的PEMFC双极板技术指标。对于模压工艺制备的石墨/聚苯硫醚复合板,在适当的工艺条件下,PPS含量高于10wt%时,复合板的各种性能均能达到美国能源部提出的PEMFC双极板要求,而当PPS含量小于30wt%时,复合板的导电率都高于100S·cm-1。在相同树脂含量下,烧结复合板的导电性能和阻气性能低于模压复合板,机械性能高于模压复合板。烧结复合板和模压复合板的电阻都随着环境温度的升高而减小。在200℃时,两种复合板的导电性能都很稳定且都高于室温下的导电性能。
     复合材料双极板中的聚合物与扩散层接触的地方会产生较大的接触电阻,而且随聚合物含量增加接触电阻成快速增大的趋势,虽然有很多对复合材料双极板改性的研究,但往往降低了接触电阻,却又增大了体积电阻。为了解决这一问题,我们首次在石墨/酚醛树脂复合板的表面覆盖一层导电的膨胀石墨,采用模压工艺制备了膨胀石墨表面改性复合板。研究表明:不但改性复合板的接触电阻大大降低,而且随复合板中树脂含量的增加改性复合板接触电阻保持不变。膨胀石墨厚度较小时,改性复合板不但可以降低复合板接触电阻,而且可以降低复合板体积电阻。改性复合板在几乎没有降低复合板的阻气性和强度的情况下,大大降低了复合板的接触电阻和体积电阻。改性复合板耐腐蚀性达到了美国能源部的要求。
     氧化石墨烯具有较高的比表面能、良好的亲水性、良好的机械性能以及在水中较好的分散性,是一种优良的纳米材料,可以用于纳米复合材料的制备。目前对氧化石墨烯的研究还处于起步阶段,且关于氧化石墨烯和氧化石墨具体区别的研究还未见文献报道。因此我们制备了氧化石墨和氧化石墨烯,并通过对二者的表征首次总结出了氧化石墨烯和氧化石墨的异同。同时制备了氧化石墨烯/聚乙烯醇纳米复合膜,并考察了氧化石墨烯含量、热处理温度对复合膜机械性能和溶胀性能的影响。
     氧化石墨烯表面官能团的形式和氧化石墨的基本没有区别,但是通过元素分析可知超声会使氧化石墨表面的含氧官能团部分减少。氧化石墨烯的热稳定性较低,在高于170℃时官能团开始分解,而且氧化石墨烯的热稳定性略低于氧化石墨。与氧化石墨相比,氧化石墨烯在水中的分散性更好。
     氧化石墨烯能提高聚乙烯醇膜的玻璃化温度、拉伸强度以及断裂伸长率。氧化石墨烯/聚乙烯醇复合膜出现了各向异性的溶胀性能,而热处理以后复合膜的这种性能消失。复合膜热处理以后,氧化石墨烯上的含氧官能团与聚乙烯醇上的羟基发生脱水反应。当氧化石墨烯含量为0.1wt%,150℃热处理复合膜的弹性模量提高了168.59%。
Polymer electrolyte membrane fuel cell (PEMFC) is recognized as a new alternative to the present power sources because of its high efficiency, low emission, high energy and power density. Bipolar plate is an important part in FC, which distributes fuel and oxidant to the electrodes of FC and provides electronic connection between single cells. Its cost can account for as high as 40% of a FC stack, while the high cost of FC is a key obstacle to its wide application. Therefore, searching materials and manufacturing methods for high performance and low cost bipolar plate has been very important. With the above background, new materials and manufacturing methods for bipolar plates are explored in this study.
     The nature graphite/polyphenylene sulfide (NG/PPS) composite plates were manufactured using a sintering process. Compared with injection process commonly used, our method is more competitive for much lower equipment cost and high graphite content allowed in the plate, which then leads to lower cost of the plate and higher conductivity. Compared with moulding process, our method has higher efficiency.
     The heat-resistant PPS were selected to mix with the low-cost natural graphite. The variation of electrical properties, gas tightness, mechanical properties and corrosion resistance with sintering technological conditions and polymer content was studied. The property of sintered composite plates was compared with the property of molded composite plates, and the conductivity in high temperature was also studied. The sintered composite plate with PPS content 20wt% can meet the demand for the bipolar plate materials. The molded composite plate with PPS content 10~30wt% can meet the demand of the American DOE. Compared with the molded composite plates, the sintered composite plates have lower H2 permeability, higher flexural strength and lower conductivity, when the PPS content is the same in the tow type of composite plates. The conductivity of the tow kinds of composite plates at 200℃is higher than the conductivity at the room temperature.
     The contact resistance between the composite plate and the gas diffusion layer is high because of the nonconducting polymer in the composite plate, and the contact resistance increases rapidly with the polymer content increasing. In order to decrease the contact resistance, expanded graphite (EG) was used to modify the natural graphite/phenol formaldehyde (NG/PF) resin composite plate. Results show that the modification considerably reduced contact resistance versus bare NG/PF plates. The extant of the decrease in contact resistance is influenced by the expanded volume of EG used. The total electrical resistance, as expressed by volume resistance, can be reduced by applying EG layers to NG/PF composite plates. The reduction of total resistance is more remarkable for the composite plates with high PF content because the bulk resistance of the EG layer can be well compensated by the decrease of contact resistance at a proper range of EG layer thickness.
     Graphene oxide with high surface energy, high hydrophilic properties, good mechanical strength, can be used for preparation of nano composite membrane. So far, the study of graphen oxide is still in primary stage, and we have not seen the article about the difference between grapheme oxide and graphite oxide. For the fist time, we prepared grapheme oxide and graphite oxide and obtained the same and the difference by characterized them. We also adopted the graphene oxide in preparation of graphene oxide/polyvinyl alcohol (PVA) composite membrane, and investigated the properties.
     The surface functional groups of graphene oxide are the same as that of the graphite oxide. Ultrasonication can destroy the surface functional groups of the graphite oxide, as revealed by elemental analysis. The surface functional groups of the graphene oxide decomposed at 170℃, and the thermal stability of graphene oxide is lower than that of graphite oxide. Compared with graphite oxide, graphene oxide is much easier to distribute in water.
     Graphene oxide increases the glass temperature and the tensile strength of the PVA membrane. Graphene oxide/PVA composite membrane has anisotropic swelling property, but heat treatment would destroy this property. The oxygen functional groups of graphene oxide react with the hydroxyl groups of PVA after the composite membrane heated. Compared with the no heat treatment composite membrane (graphene oxide 0.1wt%), the elastic modulus of the heat treatment composite membrane at 150℃increases 168.59%.
引文
[1] A. J. Appleby, F. R. Foulkes, Fuel cell handbook, Van Nostrand Reinhold, New York, 1989
    [2]衣宝廉,燃料电池现状和未来,电源技术,1998,22(5):216-221
    [3]江船,燃料电池,北京:国防工业出版社,1983
    [4]衣宝廉,质子交换膜型燃料电池(PEMFC)-国内外状况与主要技术问题,电源技术, 1997, 21(2): 80-85
    [5]韩明,离子交换膜燃料电池初步研究,电源技术, 1996, 20(6): 238-242
    [6] http:// www.Ballard.com
    [7]林维明,燃料电池系统,北京:化学工业出版社,1996
    [8]衣宝廉,燃料电池-原理、技术、应用,北京:化学工业出版社,2003
    [9] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International journal of hydrogen energy, 2005, 30(12): 1297-1302
    [10] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of power sources, 2003, 114(1): 32-53
    [11] R. J. Tian, J. C. Sun, L. Wang, Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC, International journal of hydrogen energy, 2006, 31(13): 1874-1878
    [12] Jianhua Huang, D.G.. Baird, J.E. McGragh, Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials, Journal of power sources, 2005, 150(4): 110-119
    [13] L. A. Orest, Next generation bipolar plates for automotive PEM fuel cells, GrafTech International Ltd, DEO annual progress report, 2007
    [14] B. D. Cnnungham, J. Huang, D. G. Baird, Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer, Journal of power sources, 2007, 165(2):764-773
    [15] R.C. Emanuelson, Separator Plate for Electrochemical, US Patent 4301222, 1981-11-17
    [16] L. A. Joo, K. W. Shaner, R. Jay, Process for production of a porous monolithic graphite plate, US Patent 4782586, 1988-11-8
    [17] A.P. Grasso, R.G. Martin, R.P. Robert, Composite article, US Patent 6039823, 2000-03-21
    [18] K. S. Dhathathreyan, P.Sridhar, G. Sasikumar, etc., Development of polymer electrolyte membrane fuel cell stack, International journal of hydrogen energy, 1999, 24: 1107-1115
    [19] R. L. Borup, N. E. Vanderborgh, Design and testing criteria for bipolar plate materials foe PEM fuel cell applications, Materials research society, 1995, 393: 151-155
    [20] R. G. Spear, H. H. Mueggenburg, R. Hodge, Metal platelet fuel cells production and operation methods, U S Patent 5683828,1997-11-04
    [21] M.C. Kimble, Characterization of Corrosion-Proctective Methods for Electrically Conductive Coating on Aluminum, American Eletroplaters and Surface Finishers Society, AESF SUR/FIN’99 Proceedings, 1999-06-21
    [22] R. F. Silva, A. Pozio, Corrosion study on different types of metallic bipolar plates for polymer electrolyte membrane fuel cells, Journal of fuel cell technology, 2007, 4(2):116-122
    [23] J. Yoshimura, Y. Nonobe, K. Yamane, Separator for fuel cell, fuel cell incorporating the same, and method of production of the same, US Patent, 6291094, 2001-9-18
    [24] R.C. Makkus, A.H.H. Janssen, F.A.D. Bruijn, R.K.A.M. Mallant, Stainless steel for cost-competitive bipolar plates in PEMFCs, Fuel Cells Bulletin, 2000, 17(3): 5-9
    [25] K.B. Prater, Solid polymer fuel cells for transport and stationary applications, Journal of Power Sources, 1996, 61(1-2): 105-109
    [26] D. L. Reichert, C. C. Seastrom, V. M. Felix, et al, Electrochemical cell having an oxide growth resistant current distributor, US Patent, 5868912, 1999-2-9
    [27] R. Hornung, G. Kappelt, Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells, Journal of power sources, 1998, 72(1): 20-21
    [28] R. C. Makkus, A. H. H. Janssen, F. A. D. Bruijin, et al., Use of stainless steel for cost comprtitive bipolar plates in the SPFC, Journal of power sources, 2000, 86(1-2): 274-282
    [29] D. P. Davies, P. L. Adcock, M. Turpin, et al., Stainless steel as a bipolar plate material for solid polymer fuel cells, 2000, 86(1-2): 237-242
    [30] H. L. Wang, M. A. Sweikart, J. A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of power sources, 2003, 115(2): 243-251
    [31] Y. Wang, D. O. Northwood, An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells, Journal of power sources, 2007, 165(1): 293-298
    [32] B.R. Padhy, R.G. Reddy, Performance of DMFC with SS 316 bipolar/end plates, Journal of Power Sources, 2006,153(1): 125-129
    [33] A. Pozio, R. F. Silva, M. De Francesco, et al., Nafion degradation in PEFCs from end plate iron contamination, Electrochimica acta, 2003, 48(11):1543-1549
    [34] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, Stainless steel as a bipolar plate material for solid polymer fuel cells, Journal of Power Sources, 2000, 86(1-2): 237-242
    [35] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, Bipolar plate materials for solid polymer fuel cells, Journal of Applied Electrochemistry, 2000, 30(1): 101-105
    [36] H. L. Wang, J.A. Turner, Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 2004, 128(2): 193-200
    [37] J. O. Murphy, A. Cisar, E. Clarke, Low-cost light weight high power density PEM fuel cell stack, Electrochimica acta, 1998, 43(24): 3829-3840
    [38] D. R. Hodgson, B. May, P. L. Adcock, et al., New lightweight bipolar plate system for polymer electrolyte membrane fuel cells, Journal of power sources, 2001, 96(1): 233-235
    [39] J. Wind, R. Spah, W. Kaiser, Metallic bipolar plates for fuel cells, Journal of power sources, 2002, 105(2):256-260
    [40] S. J. Lee, C. H. Huang, J. J. Lai, Corrosion-resistance component for PEM fuel cells, Journal of power sources, 2004, 131(1-2): 162-168
    [41] A. Pozio, F. Zaza, A. Masci, et al., Bipolar plate matrials for PEMFCs: a conductivity and stability study, Journal of power sources, 2008, 179(2): 631-639
    [42] H. Wang, M. P. Brady, G. Teeter, et al., Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates: part 1: model Ni-50Cr and austenitic 349TM alloys, journal of power sources, 2004, 138(1-2):86-93
    [43] Y. Hung, K. M. Ei-Khatib, H. Tawfik, Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70℃, Journal of power sources, 2006, 163(1): 509-513
    [44] Y. Hung, H. Tawfik, D. Mahajan, Durability and characterization studies of polymer electrolyte membrane fuel cell’s coated aluminum bipolar plates and membrane electrode assembly, Journal of power sources, 2008, xxx-xxx
    [45] S. J. Lee, C. H. Huang, Y. P. Chen, Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell, Journal of materails processing technology, 2003, 140(1-3): 688-693
    [46] H. P. Feng, C. H. Hsu, J. K. Lu, et al., Effects of PVD sputtered coatings on the corrosion resistance of AISI 304stainless steel, Materials science and engineering A, 2003, 347(1-2): 123-129
    [47] R. F. Silva, D. Franchi, A. Leone, et al., Surface conductivity and stability of metallic bipolar plate materials for polyme electrolyte fuel cells, Electrochimica acta, 2006, 51(17):3592-3598
    [48] M. P. Brady, K. Weisbrod, I. Paulauskas, et al., Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates, Scripta materialoa, 2004, 50(7):1017-1022
    [49] C. Y. Bai, Y. H. Chou, C. L. Chao, et al, Surface modifications of aluminum slloy 5052 for bipolar plates using an electroless deposition process, Journal of power sources, 2008, 183(1): 174-181
    [50] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, et al, New materials for polymer electrolyte membrane fuel cell current collectors, Journal of power source , 1999, 80(1-2): 235-241
    [51] A. S. Woodman, E. B. Anderson, K. D. Jayne, et al, Development of corrrosion-resistant coatings for fuel cell bipolar plates, American electroplaters and surface finishers society, 1999, 6: 21-24
    [52] S. J. Lee, C. H. Huang, Y. P. Chen, et al, Chemical treatment method for the aluminum bipolar plates of PEM fuel cell, Journal of fuel cell science and technology, 2005, 2(3): 208-212
    [53] Z. Iqbal, D. Narasimhan, J. V. Guiheen, et al, Corrosion resistant coated fuel cell bipolar palate with filled-in fine scale porosites and method of making the same, US Patent, 6649031,2003-11-18
    [54] Y. Li, W. J. Meng, S. Swathirajan, et al, Crrosion resistant PEM fuel cell, US Patent, 5624769, 1997-4-29
    [55] J. Spear, G. Reginald, H.H. Mueggenburg, R. Hodge, Fuel cell platelet separeators having coordinate features, U.S. Patent 6,051,331, 2000-04-18
    [56] K. Feng, Y. Shen, J. M. Mai, et al, An investigation into nickel implanted 316L stainless steel as a bipolar plate for PEM fuel cell, Journal of power, 2008, 182(1): 145-152
    [57] S. Joseph, J. C. Mcclure, P. J. Sebastian, et al, Polyaniline and polypyrrole coating on aluminum for PEM fuel cell bipolar plates, Journal of power sources, 2008,177(1): 161-166
    [58] Y. J. Ren, C. L. Zeng, Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells, Journal of power sources, 2008, 182(2): 524-530
    [59] D.N. Busick, M.S. Wilson, Low-cost composite materials for PEFC bipolar plates, Fuel Cells Bulletin, 1999, 2(5): 6-8
    [60] D. Busick, M. Wilson, Development of composite materials for PEFC bipolar plates, Materials Research Society Symposium Proceeding, 2000, 575: 247-251
    [61] H. Chang, P. Koschany, C. Lim, J. Kim, Materials and processes for light weight and high power density PEM fuel cells, Journal of New Material for Electrochemical Systems, 2000, 3(1): 55-59
    [62] R. A. Mercuri, J. J. Gough, Flexible graphite composite for use in the form of fuel cell flow field plate, U. S. patent, 6037074, 2000-3-14
    [63] X. Q. Yan, M. Hou, H. F. Zhang, et al., Performance of PEMFC stack using expanded graphite bipolar plates, Journal of power sources, 2006, 160(1): 252-257
    [64] L. N. Song, M. Xiao, S. H. Li, et al., Short carbon fiber reinforced electrically conductivity aromatic polydisulfide/expanded graphite nanocomposites, materials chemistry and physics, 2005, 93(1): 122-128
    [65] M. Xiao, Y. Lu, S. J. Yang, et al., Poly (arylene disulfide)/ graphite nanosheets composites as bipolar plates for polymer elerolyte membrane fuel cells, Journal of power sources, 2006, 160(1):165-174
    [66] R. B. Mathur, S. R. Dhakate, D. K. Gupta, et al., Effect of different carbon fillers on the propertities of graphite composite bipolar plate, journal of materials processing technology, 2008, 203:184-192
    [67] S. H. Liao, C. Y. Chen, C. C. Weng, et al., Preparation and propertities of carbon nanotube/polypropylene nanocomposite bipolar plates for electrolyte membrane fuel cell, Journal of power sources, 2008, 185(2): 1225-1232
    [68] T. Yang, P. F. Shi, Study on the mesocarbon microbeads/polyphenylene sulfide composite bipolar plates applied for proton exchange membrane fuel cells, Journal of power sources, 2008, 175(1): 390-396
    [69] K.W. Tucker, G.P. Weeks, Wet-laid sheet material and composites thereof, US Patent 5614312, 1997-3-25
    [70] B. D. Cunningham, J. Huang, D. G. Baird, Journal of materials chemistry, 2006, 16(45): 4385-4388
    [71] B. D. Cunningham, D. G. Baird, Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer, Journal of power source, 2007, 168(2): 418-425
    [72] B. K. Kakati, D. Deka, Differences in physico-mechanical behaviors of resol(e) and novolac type phenolic resin based composite bipolar palte for proton exchange membrane (PEM) fuel cell, Electrochimica acta, 2007, 525: 7330-7336
    [73] H. S. Lee, H. J. Kim, S. G. Kim, et al., Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: electrical, mechanical, and molding properties, Journal of materials processing technology, 2007, 187-188: 425-428
    [74] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E.D. Waal, Bipolar plates for PEM fuel cells, Journal of Power Sources, 2003, 118(1-2): 44-46
    [75] H.C. Kuan, C.C.M. Ma, K.H. Chen, S.M. Chen, Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell, Journal of Power Sources, 2004, 134(1): 7-17
    [76] J.F. LeCostaouec, Carbon fiber reinforced plastic bipolar plates with continuous electrical pathways, US Patent, 20030219646 A1, 2003-11-27
    [77] R.H.J. Blunk, C.L. Tucker, Y.E. Yoo, J.J. Lisi, Fuel cell separator plate having controlled fiber orientation and method of manufacture, US Patent, 6607857, 2003-08-19
    [78] R.H.J. Blunk, D.J. Lisi, Y.E. Yoo, C.L. Tucker, Enhanced conductivity of fuel cell plates through controlled fiber orientation, AIChE Journal, 2003, 49(1): 18-29
    [79] R.H.J. Blunk, M.H.A. Elhamid, et al, Polymeric composite bipolar plates for vehicle applications, Journal of Power Sources, 2006, 156(2): 151-157
    [80] R. J. Lawrance, Low cost bipolar current collector-separator for electrochemical cells, US Patent, 4214969, 1980-7-29
    [81] E. N. Balko, R. J. Richard, Carbon fiber reinforced fluorocarbon-graphite bipolar current collector-separator, US Patent, 4339322, 1982-7-13
    [82] K. Ledjeff-Hey, F. Mahlendorf, O. Neimzig, et al, Proceedings of the fuel cell, 1980: 570
    [83] A. Pellegri, P. M. Placido, Bipolar separator for electrochemical cells and method of preparation thereof, US Patent, 4197178, 1980-4-8
    [84] R. C. Emanuelson, W. L. Luoma, Separator plate for electrochemical cells, US Patent, 4301222, 1981-11-17
    [85] W. A. Taylor, Coke and graphite filled separator plate for electrochemical cells, US Patent, 4592968, 1986-6-3
    [86] J. Stewart, C. Robert, Carbon-graphite component for an electrochemical cell and method for making the component, US Patent, 4670300, 1987-6-2
    [87] T. Uemura, S. Murakami, Method for producing a carbon sheet and a fuel cell separator, US Patent, 4737421, 1988-4-12
    [88] T. M. Besmann, J. W. Klett, T. D. Burchell, Carbon composite for a PEM Fuel cell bipolar plate, 1997 fall meeting of the materials research society, 1997-12-01
    [89] M. S. Willson, D. N. Deanna, Composite bipolar plate for electrochemical cells, US Patent, 6248467, 2001-6-19
    [90] E. A. Cho, U.–S. Jeon, H. Y. Ha, et al, Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells, Journal of power sources, 2004, 125(2): 178-182
    [91] A. Heinzel, F. Manlendorf, O. Niemzig, Injection moulded low cost bipolar plates for PEM fuel cells, Journal of power sources, 2004, 131(1-2): 35-40
    [92]汪永恒,接触电阻的危害与防治措施,自动化博览,2002, 019 (001):19-21
    [93] L. B. Appleby, Recently developments in fuel cell material, Materials research society, 1995, 393: 11-24
    [94] A. Pozio, R. F. Silva, A. Masci, Corrosion study of SS304/Nb as bipolar plate materials for PEMFCs, International journal of hydrogen energy, 2008, 33: 5697-5702
    [95] S. -H. Lee, J. -H. Kim, M. -C. Kim, et al, Effects of Nb, Ti Addition and surface treatments on the electrical conducting of 316 stainless steel as bipolar plates for proton exchange membrane fuel cell, Journal of power sources, 2008, xxx-xxx
    [96] J. Spear, G. Reginald, H.H. Mueggenburg, R. Hodge, Fuel cell platelet separeators having coordinate features, U.S. Patent 6,051,331, 2000-04-18
    [97] Moucheng Li, Suzhen Luo, Chaoliu Zeng, Jianian Shen, Haichao Lin, Chunan Cao, Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments, Corrosion Science, 2004, 46(6): 1369-1380
    [98] Y. Fu, G. Q. Lin, M. Hou, B. Wu, et al, Optimized Cr-nitride film on 316L stainless steel as proton exchange membrane fuel cell bipolar plate, International journal of hydrogen energy, 2008, (xx):1-6
    [99] J. Wind, R. Sp?h, W. Kaiser, Metallic bipolar plates for PEM fuel cells, Journal of power sources, 2002, 105(2): 256-260
    [100] P. L. Hentall, J. B. Laleman, G.O. Mepsted, et al., New materials for polymer electrolyte membrane fuel cell current collectors, Journal of power sources, 1999, 80(1-2):235-241
    [101] S. H. Wang, J. Peng, W. B. Liu, et al., Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells, Journal of power sources, 2006, 162(1): 486-491
    [102] T. Yasuo, K. Hori, Y. Chikano, et al., Separator used for fuel cell, method for manufacturing the separator, and the fuel cell, U.S. Patent, 6869718, 2005-3-22
    [103] G. Vyas, Y. T. Cheng, M. H. Abd Elhamid, et al, Ultra-low loadings of Au for stainless steel bipolar plates, U.S. Patent, 6866958, 2005-3-15
    [104] Y. Kaneta, S. Takagi, H. Yoshida, et al, Corrosion-resistance metallic membrane, metallic separator for fuel cell comprising the same, and process for production thereof, U.S. Patent 6699593, 2004-3-2
    [105] S. H. Wang, J. Peng, W. B. Liu, et al., Surface modification and development of titanium bipolar plates for PEM fuel cells, Journal of power sources, 2006, 160(1): 485-489
    [106] W. Yoon, X. Y. Huang, P. Fazzino, etc., Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cell, Journal of power sources, 2008, 179(1):265-273
    [107] Y. Fu, M. Hou, H. F. Xu, et al., Ag-polytetrafluoroethylene composite coating ion stainless steel as bipolar plate of proton exchange membrane fuel cell, Journal of power sources, 2008, 182(2): 580-584
    [108] Y. Show, M. Miki, T. Nakamura, Increased in output power from fuel cell used metal bipolar plate coated with a-C film, Diamond and research materials, 2007, 16: 1159-1161
    [109]刘宗浩,王宇新,石墨/聚丙烯复合板与碳纸间接触电阻的研究,材料研究学报,2005, 19(6): 651-656
    [110]刘宗浩,许莉,王宇新,石墨/酚醛树脂复合板与碳纸间接触电阻的研究,化工学报,2006, 57(2): 403-408
    [111] R.H.J. Blunk, M.H.A. Elhamid, D.J. Lisi, Y.M. Mikhail, Low contact resistance PEM fuel cell, US Patent, 6811918, 2004-11-02
    [112]王文增,以纳米聚吡咯修饰复合石墨板的研究,天津大学,2005-1
    [113] M.H. Oh, Y.S. Yoon, S.G. Park, The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system, Electrochimica Acta, 2004, 50(2-3): 777-780
    [114] T.M. Besmann, J.W. Klett, T.D. Burchell, Carbon composite for a PEM fuel cell bipolar plate, Materials Research Society Symposia Proceedings, 1998, 496: 243-248
    [115] T.M. Besmann, J.W. Klett, J.J. Henry, Jr.E. Lara-Curzio, Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, Journal of Electrochemical Society, 2000, 147(11): 4083-4086
    [116]刘宗浩,石墨/聚合物复合材料双极板研究,天津大学,2006-1
    [117] D. Li, R. B. Kaner, Graphene-Based Materials, Science, 2008, 320:1170~1171
    [118] J. C. Meyer, A. K. Geim, M. I. Katsnelaon, et al, The structure of suepended graphene sheets, Nature, 2007, 446: 60-63
    [119] T. Nakajima, A. Mabuchi, A new structure model of graphite oxide, Carbon, 1988, 26(3): 357-361
    [120] A. Lerf, H. Y. He, M. Forster, et al, Structure of graphite oxide revisited, Journal of Physical Chemistry B, 1998, 102(23): 4477-4482
    [121] H. Y. He, J. Klinowski, M. Forster, et al, A new structure model for graphite oxide, Chemical Physics Letters, 1998, 287: 53-56
    [122] L. Staudenmaier, Berichte der deutschen chemischen gesellschaft, 1898, 31: 1481-1487
    [123] A. Clauss, R. Plass, H. P. Boehm, et al, Original-abhandlungen unrtersuchungenüber die adsorbierende und katalytisch wirksame oberfl?che der ruβe, Zeitschrift anorganische und allgemeine chemie, 1957, 290(1-2): 35-51
    [124] G. Ruess, Kolloid Z., 1945, 110: 17
    [125] T. Nakajima, Y. Mastsuo, Formation Process and structure of graphite oxide, Carbon, 1994, 32(3): 469-475
    [126] M. Mermoux, Y. Chabre, Formation of graphite oxide, Synthetic metals, 1989-1990, 34(1-3): 157-162
    [127] M. Mermoux, Y. Chabre, A. Rousseau, FTIR and 13C NMR study of graphite oxide, Carbon, 1991, 29(3): 469-474
    [128] K. S. Novoselov, A. K. Geim, S. V. Morozov et al, Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306: 666-669
    [129] H. A. Bercerril, J. Mao, Z. F. Liu, et al, Evaluation of solution-processed reduced grapheme oxide films as transparent conductors, Nano letters, 2008, 2 (3): 463-470
    [130] M. J. McAllister, J. L. Li, D. H. Adamson et al., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chemistry of materials, 2007, 19: 4396-4404
    [131] S. Stankovich, D. A. Dikin, R. D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, 45: 1558-1565
    [132] S. Stankovich, R. D. Piner, X. Q. Chen, et al, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presece of poly(sodium 4-styrenesulfonate), Journal of materials chemistry, 2006, 16: 155-158
    [133] B. Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPS) and NGP nanocomposites: a review, Journal of materials science, 2008, 43(15): 5092-5101
    [134] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 2008, 3:101-105
    [135] K. S. Novoselov, A. K. Geim, S. V. Morozov et al, Electric field effect in atomically thin carbon films, Science, 2004, 306:666-669
    [136] C. Berger, Z. Song, T. Li, et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, Journal of physical chemistry B, 2004, 108(52):19912-19916
    [137] T. Ohta, A. Bostwick, T. Seyller, et al., Controlling the electronic structure of bilayer graphene, Science, 2006,313:951-954
    [138] Y. Hernandez, V. Nicolosi, M. Lotya, et al., High yield production of graphene by liquid phase exfoliation of graphite, Nature nanotechnology, 2008, 3: 563-568
    [139] A. Dato, V. Radmilovic, Z. Lee, et al., Substrate-free gas-phase synthesis of graphene sheets, Nano letters, 2008, 8(7):2012-2016
    [140] N. Liu, F. Luo, H. Wu, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite, Advanced functional materials, 2008, 18: 1518-1525
    [141] S. Stankovich, R. D. Piner, X. Q. Chen, et al, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), Journal of materials chemistry, 2006, 16: 155-158
    [142] X. S. Du, M. Xiao, Y. Z. Meng, A. S. Hay, Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide, Carbon, 2005, 43(1): 195-197
    [143] H. C. Schniepp, J.–L. Li, M. J. Mcalllister, et al, Functionalized single graphene sheets derived from splitting graphite oxide, Journal of physical chemistry B, 2006,110(17): 8535-8539
    [144] B. C. Brodie, On the atomic weight of graphite, Royal society publishing Philosophical transactions B, 1859, 149:249-59
    [145] F. Schedin, A. K. Geim, S. V. Morozov, et al, Detection of individual gas molecules absorbed on graphene, Nature, 2007, 6: 652-655
    [146] P. E. Sheehan, L. J. Whitman, Detection limits for nanoscale biosensors, Nano letters, 2005, 5(4): 803-807
    [147] C. Berger, Z. M. Song, X. B. Li, et al, Electronic confinement and coherence in patterned epitaxial graphene, Science, 2006, 312: 1191-1196
    [148] T. Ohta, A. Bostwick, T. Seyller, et al, Controlling the electronic structure of bilayer graphene, Science, 2006, 313: 951-954
    [149] I. I. Barbolina, K. S. Novoselov, S. V. morozov, et al, Submicron sensors of local electric field with single-electron resolution at room temperature, Applied physics letters, 2006, 88(013901):1-3
    [150] J. S. Bunch, A. M. Zande, S. S. Verbridge, et al, Electromechanical resonators from graphene sheets, Science, 2007, 315: 490-493
    [151] B. Obradovic, R. Kotlyar, F. Heinz, et al, Analysis of graphene nanoribbons as a channel material for field-effect transistors, Applied physics letters, 2006, 88 (142102): 1-3
    [152] S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, et al, Graphene-based electrochemical supercapacitors, Journal of chemical sciences, 2008, 120 (1): 9-13
    [153] I. Meric, M. Y. Han, A. Young, et al, Current saturation in zero-bandgap, top-gated grapheme filed-effect transistors, Nature nanotechnology, 2008, 3: 654-659
    [154] J. Kedzierski, P. L. Hsu, P. Healey, et al, Epitaxial graphene transistors on SiC substrates, IEEE Transactions on electron devices, 2008, 55(8):2078-2085
    [155] N. Tombros, C. Jozsa, M. Popinciuc, et al, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 2007, 448: 571-574
    [156] E. W. Hill, A. K. Geim, K. Novoselov, et al, Graphene spin-valve devices, IEEE Transactions on magnetics, 2006, 6(10): 2694-2696
    [157] M. Ohishi, M. Shiraishi, R. Nouchi, et al, Spin injection into a graphene thin film at room temperature, Japanese journal of applied physics, 2007, 46(25): L605-L607
    [158] Y. C. Si, E. T. Samulski, Synthesis of Water Soluble Graphene, Nano letters, 2008, 8: 1679-1682
    [159] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, Journal of the American chemical society, 1958, 80(6): 1339-1339
    [160] S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al, Graphene-based composite materials, Nature, 2006, 442: 282-286
    [161] R. F. Ding, Y. Hu, Z. Gui, et al, Preparation and characterization of polystyrene/graphite oxide nanocomposite by emulsion polymerization, Polymer degradation and stability, 2003, 81(3): 473-476
    [162] J. Y. Xu, Y. Hu, L. Song, et al, Preparation and characterization of polyacrylamide-intercalated graphite oxide, Materials research bulletin, 2000, 36(10): 1800-1836
    [163]徐加艳,胡源,宋磊,等,聚丙烯酰胺/氧化石墨纳米复合材料的制备及表征,火灾科学,2001,10(2):92-94
    [164] J. Y. Xu, Y. Hu, L. Song, et al, Structure of poly(acrylic-acid)-intercalated graphite oxide, Carbon, 2002, 40(15): 2964-2965
    [165] P. G. Liu, K. C. Gong, P. Xiao, et al, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite, Journal of materials chemistry, 2000, 10(4): 933-935
    [166] P. Xiao, M. Xiao, P. G. Liu, Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite, Carbon, 2000, 38(4):626-628
    [167] S. Higashika, K. Kimura, Y. Matsuo, et al, Synthesis of polyaniline-intercalated graphite oxide, Carbon, 1999, 37(2): 354-356
    [168] P. G. Liu, K. C. Gong, Synthesis of polyaniline-intercalated graphite oxide by an in situ oxidative polymerization reaction, Carbon, 1999, 37(4): 706-707
    [169] P. G. Liu, K. C. Gong, P. Xiao, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide, Carbon, 1999, 37(12): 2070-2073
    [170] Y. Matsuo, K. Tahara, Y. Sugie, Structure and thermal properties of poly (ethylene oxide)-intercalated graphite oxide, Carbon, 35(1): 113-120
    [171] Y. Matsuo, K. Tahara, Y. Sugie, Synthesis of poly (ethylene oxide)-intercalated graphite oxide, Carbon, 1996, 34(5): 672-674
    [172]徐加艳,胡源,宋磊,等,Structure and thermal analysis of poly(vinyl alcohol) /graphite oxide intercalated nanocomposite,安全与环境学报,2001,1(5):10-13
    [173]徐加艳,胡源,宋磊,等,聚乙烯醇/氧化石墨插层和层离纳米复合材料结构的观察,火灾科学,2001,10(2):120-122
    [174] Y. Matsuo, S. Higashika, K. Kimura, et al, Synthesis of polyaniline-intercalated materials via exchange reaction, Journal of materials chemistry, 2002, 12 :1592-1596
    [175] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, et al, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chemistry of materials, 1999, 11: 771-778
    [176] T. Cassagneau, F. Guerin, J. H. Fendler, Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide Nanoplatelets and Polymers, Langmuir, 2000, 16: 7318-7324
    [177] N. A. Kotov, I. Dekany, J. H. Fendler, Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states, Advanced materials, 1998, 8(8):637-641
    [178] D. A. Dikin, S. Stankovich, E. J. Zimney et al., Preparation and characterization of graphene oxide paper, Nature, 2007, 448:457-460
    [179] S. J. Park, K. S. Lee, G. Bozoklu, Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking, Nano letters, 2008, 23: 572-578
    [180] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 2008, 3:101-105
    [181] J. T. Robinson, F. K. Perkins, E. S. Snow, et al, Reduced graphene oxide molecular sensors, Nano letters, 2008, 8(10): 3137-3140
    [182] R. Verdejo, F. B. Bujans, M. A. Rodriguez-Perez et al., Functionalized graphene sheet filled silicone foam nanocomposites, Journal of materials chemistry, 2008, 18: 2221-2226
    [183] T. Ramanathan, A. A. Abdala, S. Stankovich, Functionalized graphene sheets for polymer nanocomposites, Nature nanotechnology, 2008, 3:327-331
    [184] L. Staudenmaier, Verfahren Zur Darstellung Der Graphitsaure, Berichte der bunsen-gesellschaft physical chemistry chemical physics., 1898, 31:1481~99
    [185] E. L.柯斯乐,扩散流体系统中的传质,北京:化学工业出版社,2002
    [186]中华人民共和国国家技术监督局,GB/T 13465.2-92,中华人民共和国国家标准,北京:中国标准出版社,1994-06-02:346-350
    [187]王绍亭,陈涛,动量、热量与质量传递,天津:天津科学技术出版社,1986,191-193
    [188]顾惕人,朱步瑶,李外郎,等,表面化学,北京:科学出版社,1994
    [189]朱步瑶,赵振国,界面化学基础,北京:化学工业出版社,1996
    [190]宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社, 1988, 12-13
    [191]曾泳淮,林树昌,分析化学,北京:高等教育出版社,2004
    [192]王玉才,陶妍,陈启明,表面荷正电聚苯乙烯颗粒界面电性质的研究,化学世界,2008,5:278-281
    [193]沈钟,王果庭,胶体和表面化学(第二版),北京:化学工业出版社,1997
    [194]李圣华,炭和石墨制品生产,北京:冶金工业出版社, 1976, 1-5
    [195] H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes-properties, processing and applications, USA: Noyes Publications, 1993, 43-69
    [196]杨杰,聚苯硫醚树脂及其应,化学工业出版社,北京,2006,22-40
    [197]管从胜,聚苯硫醚涂料及应用,化学工业出版社,北京,2007,1-2
    [198]古昌红,谭世语,周志明,热交联聚苯硫醚的红外光谱研究,渝州大学学报(自然科学版),1998,15(2):64-67
    [199] Y.–H. So, B. Bell, J. P. Heeschen, et al, , Poly(p-phenylenebenzobisoxazole) fibers with polyphenylene sulfide pendent groups, Journal of polymer science Part A polymer chemistry, 33 (1) (1995) 159-164
    [200] I. Krupa, I. Chodak, Physical properties of thermoplastic/graphite composites, European polymer journal, 2001, 37(11): 2159-2168
    [201] W.G. Zheng, X.H. Lu, S.C. Wong, Electrical and Mechanical properties of expanded graphite-reinforced high-density of polyethylene, Journal of Applied Polymer Science, 2004, 91(5): 2781-2788
    [202] P. Potschke, A. R. Bhattacharyya, A. Janke, Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene, Carbon, 2004, 42(5-6): 965-969
    [203] R.M. Scarisbrick, Electrically conducting mixtures, Journal of Physics D: Applied Physics, 1973, 6(17): 2098-2110
    [204] C. Rajagopal, M. Satyam, Studies on electrical conductivity of insulator-conductor composites, Journal of Applied Physics, 1978, 49(11): 5536-5542
    [205] F. Carmona, Percolation in short fibers epoxy resin composites: Conductivity behavior and finite size effects near threshold, Solid State Communications, 1984, 51(4): 255-257
    [206] F. Kohler, Resistance element, U.S. Patent 3,243,753, 1966-03-29
    [207] L. H. Sperling, Introduction to physical polymer science, Wiley, NY, USA, 1992
    [208] S. Radhakrishnan, B. T. S. Ramanujam, A. Adhikari, et al, High-temperature, polymer-graphite hybrid composites for bipolar plates: effect of processing conditions on electrical properties, Journal of power sources, 2007, 163(2): 702-707
    [209]梁国正,顾媛娟,模压成型技术,北京:化学工业出版社, 2000, 175-215
    [210]吴成义,张丽英,粉体成型力学原理,北京:冶金工业出版社, 2003, 4-8
    [211]陈志刚,张勇,杨娟等,膨胀石墨的制备、结构和应用,江苏大学学报(自然科学版),2005,26(3):248-252
    [212]曹乃珍,沈万慈,温诗铸,等,膨胀石墨的吸附作用,新型碳材料,1995(4):51-53
    [213] A. Celzard, J. F. Marêché, G. Furdin, Surface area of compressed expanded graphite, Carbon, 2002, 40: 2713-3-2718
    [214]曹乃珍,温诗铸,沈万慈,等,膨胀石墨的微观结构及吸附性能,北京,清华大学机械系,1997
    [215] D. D. L. Chung, Review: exfoliation of graphite, Journal of materials science, 1987, 22(12): 4190-4198
    [216] S. Lu, C. Blanco, S. Appleyard, et al, Texture studies of carbon and graphite tapes by XRD texture goniometry, Journal of materials science, 2002, 37(24): 5283-5290
    [217]索大鹏,陈志刚,杨娟,聚合物层状硅酸盐纳米复合材料的制备和应用,江苏大学学报(自然科学版),2003,24(5):51-54
    [218] A. Celzard, J. F. Marêché, G. Furdin, et al, Electrical conductivity of anisotropic expanded graphite-based monoliths, Journal of physics D: applied physics, 2000, 33(23): 3094-3101
    [219]周伟,董建,沈万慈,等,膨胀石墨结构的研究,炭素技术,2000(4):26-30
    [220] F. Sua?ezáy-Garcia, A. Martyńez-Alonso, J. M. D. Tascońa, et al, Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfuryl alcohol, Fuel processing technology, 2002, 77-78: 401-407
    [221]刑玉梅,田军,杨生荣,膨胀石墨和柔性石墨的应用前景及发展趋势,润滑与密封,2001,3:58-60
    [222] R.S.戴夫, A.C.卢斯,高分子复合材料加工工程,化学工业出版社,北京: 2004, 72-73
    [223]殷荣中,山永年,毛乾年,方燮奎,酚醛树脂及其应用,北京:化学工业出版社, 1990, 21-41
    [224]黄发荣,焦杨声,酚醛树脂及其应用,北京:化学工业出版社, 2003, 85-86
    [225]刘宗浩,许莉,王宇新,石墨/酚醛树脂复合板与碳纸间接触电阻,化工学报,2006,57(2):403-408
    [226]任茂宾,PEM燃料电池及电池堆流体流动分布的研究,天津大学,2002-12-01
    [227] R. Holm, Electrical Contacts, 4th ed. Springer, New York, 1967, 9-16
    [228] A. Mikrajuddin, F. G. Shi, H. K. Kim, et al, Size-dependent electrical constriction resistance for contact of arbitrary size: from Sharvin to Holm limits, Materials science in Semiconductor processing, 1991, 2(4): 321-327
    [229] L. Kogut, K. Komvopoulos, Electrical contact resistance theory for conductive rough surfaces, Journal of applied physics, 2003, 94(5): 153-3162
    [230]顾家林,曹文权,沈万慈,等,柔性石墨的结构对其压缩回弹性能的影响,炭素,1996,3:1-6
    [231] S. Lu, C. Blanco, S. Appleyard, et al, Texture studies of carbon and graphite tapes by XRD texture goniometry, Journal of materials science, 2002, 37(24): 5283-5290
    [232]刘宗浩,用于PEMFC的石墨/聚合物复合材料双极板研究,天津大学,2005-12-01
    [233] R. J. Beckett, R. C. Croft, The structure of graphite oxide, The journal of physical chemistry, 1952, 56(8):929-935
    [234] D. W. Boukhvalov, M. I. Katsnelson, Modeling of graphite oxide, Journal of American chemistry society, 2008, 130:10697-10701
    [235] G. I. Titelmana, V. Gelmana, S. Bron, Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide, Carbon, 2005, 43: 641-649
    [236] T. Szabo, O. Berkesi, DRIFT study of deuterium-exchanged graphite oxide, Carbon, 2005, 43(1): 3186-3189
    [237] F. Cataldo, Structure analogies and differences between graphite oxide and C60 and C70 polymeric oxides (fullerence ozopolymers), Fullerene nanotubes and carbon nanostructures, 2003, 11(1): 1-13
    [238] Y. C. Xing, L. Li, C. C. Chusuei, Sonochemical oxidation of multiwalled carbon nanotubes, Langmuir, 2005, 21: 4185-4190
    [239] C. Hontoria-Lucas, A. J. López-Peinado, J. D. López-González, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization, Carbon, 1995, 33: 1585-1592
    [240] M. Kacperski, Polymer nanocomposites. Part I. General characteristics, fillers and nanocomposites based on thermosetting polymers, Polimery, 2002, 47: 801-807
    [241]周贵恩,聚合物X射线衍射,合肥:中国科学技术大学出版社,1989:234
    [242] Y. Matsuo, K. Hatase, Y. Sugie, Preparation and characterization of poly(vinyl alcohol) and Cu(OH)2– poly (vinyl alcohol)- intercalated graphite oxide, Chemistry of materials, 1998, 10: 2266-2269
    [243] J. Y. Xu, Y. Hu, L. Song, et al, Thermal analysis of poly (viny alcohol)/ graphite oxide intercalated composites, Polymer degradation and stability, 2001, 73: 29-31
    [244]于华荣,成荣明,徐学诚,等,聚乙烯醇对碳纳米管负载氧化铁影响的研究,高等化学学报,2006,27(6):1003-1006
    [245]王成国,丁洪太,侯绪荣,材料分析测试方法,上海:上海交通大学出版社,1994
    [246]杨明山,聚苯硫醚的固相成型工艺研究,塑料工业,1996,2:77-79
    [247]任俊,卢寿兹,亲水性及疏水性颗粒在水中的分散行为研究,中国粉体技术,1999,5(2):6-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700