用户名: 密码: 验证码:
高性能浇注型聚氨酯弹性体性能与结构形态相关关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,汽车轮胎的三大行驶性能---------低的滚动阻力、高的抗湿滑性能和耐磨性能这三者之间存在着相互制约、难以兼顾的矛盾,尤其是滚动阻力和抗湿滑性能之间的几乎不可调和的矛盾是长期困扰轮胎工业的老大难问题。
     而浇注性聚氨酯弹性体(CPUE)由于具有高弹性、耐磨、耐油、耐撕裂、耐化学腐蚀、耐射线辐射、黏合性好、吸震能力强等优良性能,在许多工业领域得到了广泛应用。且随着聚氨酯技术进展、应用领域不断扩大,聚氨酯已经发展成为世界上六大合成材料之一。它是一类能依据某种交联方法(链增长或交联,或者兼有两种作用)用泵计量输送(温度在100℃时,粘度为1500泊以下)注入模具来制造弹性制品的聚合物。与橡胶材料相比,PUE具有硬度可调节范围宽(邵A10~邵D85)、耐腐蚀、耐磨、耐低温、耐油等特性;又因为它的液体橡胶特性,还具有生产工艺简单、能耗小、生产自动化程度高等优点。随着国民经济的飞速发展,性能优异的CPUE材料制品倍受青睐,并在逐步替代许多特种橡胶制品,尤其是一些使用性能要求苛刻的制品,如坦克履带推进装置中的履带衬胶、负重轮挂胶、以及各种轮胎、胶轮、胶辊、减震材料和医用心血管材料等。
     而为了能够将具有高耐磨性的液体橡胶聚氨酯弹性体用于轮胎胎面,实现CPUE胎面三大行驶性能的优化平衡,本论文以聚己内酯(PCL)—甲苯二异氰酸酯(TDI)配方体系为模型,在研究体系中引入耐热和动态力学性能的影响因素以观察各种有关的相关关系,并综合分析和研究这些相关性,建立聚氨酯弹性体的分子组成——超分子结构——聚氨酯弹性体的性能和特性之间的相关关系。主要包括:在两种基本扩链剂体系中采用不同分子量、不同硬段含量时的力学性能、内部结构、超分子微区结构、耐热性能和动态性能的研究。然后针对聚氨酯弹性体在高温、高承载及交变应力等苛刻使用条件下的性能要求,对组成聚氨酯弹性体的三个主要成分软段多元醇、二异氰酸酯及扩链剂与材料各项性能的关系进行了系统研究,此外探索了纳米材料对聚氨酯弹性体性能的改进及其机理,在聚氨酯弹性体分子组成和内部结构与材料耐热性能和动态力学性能之间的相关关系基础上,基于胎面用高分子材料设计的思路提出“集成聚氨酯弹性体”概念。开展了集成聚氨酯弹性体的分子设计和结构设计的研究,使集成聚氨酯弹性体的动态力学性能具有良好的滚动阻力、抗湿滑性、耐磨损性和内生热性四个性能之间的综合平衡。因此“集成聚氨酯弹性体”概念的提出以及相关合成探索实验的结果验证,为高速轮胎胎面用高性能浇注型聚氨酯弹性体的分子设计和结构设计提供了应用理论基础。
     本论文的研究内容:
     ①系统地研究了软段种类及分子量、异氰酸酯品种及含量、醇/胺扩链剂品种及复配比例分别对CPUE的力学性能、高温强度、动态力学性能及材料结晶性的影响作用,建立了其分子结构与应用性能之间的关系,并综合分析了其分子组成、微观结构与材料耐热性能和动态力学性能之间的相互制约机制;
     ②通过HTPB/IPDI体系聚氨酯弹性体微相形貌和固化流变性关系的研究,提出了“聚氨酯软段和硬段的热力学不相容性、反应流变性和软硬链段的运动能力是决定嵌段聚氨酯微观结构的三个因素,而且需要结合实际情况分析其中哪一个会成为主导因素”的观点;
     ③对纳米填料改进聚氨酯弹性体材料的性能进行了实验研究,发现其改善程度与纳米填料的表面性质及软段多元醇的种类有关联。亲水性的AEROSIL 200和疏水性的AEROSIL R972两种纳米SiO2在不同体系的CPUE中分散性和稳定性存在差异,AEROSIL 200在聚己内酯(PCL)体系中具有较好的分散性、稳定性和补强效果,而在PTMG中的分散性和稳定性均较差,甚至有超过μm级的团聚体的存在;AEROSIL R972在PCL和PTMG两种体系的CPUE中均有较好的分散性、稳定性。其中PCL体系的CPUE材料中两种纳米SiO2均有显著的增强、增韧和提高材料高温使用性能的作用,其中含AEROSIL 200的PCL体系CPUE的100℃拉伸强度和撕裂强度分别比纯PCL体系CPUE对比样提高1.84和1.13倍;而含AEROSIL R972的PCL体系CPUE的100℃拉伸强度和撕裂强度分别比纯PCL体系CPUE对比样提高1.78和2.13倍。
     ④研究了传统硫化橡胶与CPUE液体橡胶在分子结构上的不同,同时探寻了导致传统硫化橡胶与CPUE液体橡胶在力学性能及动态性能上差异的内在因素,提出了“集成聚氨酯弹性体”的研究思路,并根据理论指导合成了多元配方体系CPU,其力学性能基本上可以满足本研究预定的设计指标要求,三元和四元多元配方体系在性能上兼备了各单元体系的优点,克服了各单元体系的缺点,使力学性能各指标之间有一个最佳的综合平衡,实现了力学性能的优化。
     ⑤通过集成CPUE的初步探索,在材料的三大性能上取得突破,即⑴CPUE的初始模量可大幅度降低至通用硫化橡胶的水平;⑵CPUE的Tg可降低到通用硫化橡胶水平;⑶在50~100℃温度段CPUE的tanδ可低于通用橡胶,使CPUE具有低的内生热和低的滚动阻力。
As it is well known that there are some unbalanced contradictions among three driving performance of tire---low roll resistance, high wet skidding resistance and abrasion resisting property. Especially, the irreconcilable conflict between rolling resistance and wet traction is the key problem in tire industry.
     Because of their excellent tensile strength, tear strength, load bearing ability, abrasion resistance, solvent resistance, and other physical characteristics, CPUEs have been successfully employed in a growing variety of applications and became one of the six polymeric materials. This kind of material can be delivered by metering pump and casted into mould, then formed via cross-linking reaction. Compared with rubber material, polyurethane elastomer possessed wide range of variable hardness (Shore A 10 ~ Shore D 85)、anticorrosion、tear resistance、excellent low temperature performance and oil resistance. Because of fluidity of prepolymer, the processing of polyurethane elastomer is simple, low energy consumption and highly autonomous. With the development of national economy, many CPUE materials with outstanding properties have replaced many special rubber products, especially some articles within tough requirements, such as rubber pads for tank track, road wheel, tire, rubber roller, damping materials and medical cardiovascular materials.
     In order to make it possible for CPUE used as tire tread, the castable polyurethane elastomers based on poly(ε-caprolactone)-toluene diisocyanate systems were carefully investigated as the model polymer materials. In order to establish the relationship between the formulas and the properties, the influence factors of thermal properties and dynamic mechanical properties were introduced and analysis. Based on the experimental research, the correlationships among the molecular architecture, supermolecular structure and the properties of castable polyurethane elastomers were constructed. The main research contents are listed below: the research on the mechanical properties, inner molecular structure, supermolecular micro domain structure, thermal properties and dynamic properties of two basic systems with two kinds of chain extenders, which were prepared with different molecular weights soft segments and various hard segment contents. And aimed at the requirement of the castable polyurethane elastomer used in the elevated temperature, high loading and harsh alternating stress application, we investigated the relationship of material properties and three main compositions of this polymer, what has been well known as the soft glycol, diisocyanate and chain extender. In addition, the improvement of nano size filler on the properties of castable polyurethane elastomer and its mechanism was studied and discussed systematically. A new concept, intergral polyurethane elastomer, was created based on the relationship between the molecular architecture & inner structure of polyurethane elastomers and thermal properties & dynamic mechanical properties of materials, also this concept stemmed from the thought of the design of polymer materials. Therefore, the study of molecular architecture and structure design of intergral polyurethane elastomer was carried out to obtain an overall balance of excellent roll resistance, wet skidding performance, wear resistance and heat build up (hysteresis). At the same time, the thermal properties of intergral polyurethane elastomer should be improved significantly. The experimental research and the theory innovation should be the theoretical basis for the molecular architecture and structure design of high performance castable polyurethane elastomer for dynamic loading application.
     Specific as follows:
     1 In order to establish the relationship between the formulas and the properties, the influence factors of thermal properties and dynamic mechanical properties, such as variety and molecular weight of glycols, content and type of isocyanates and chain-extenders, were introduced and analysis.
     2 Based on the study of reacting rheology and microstructure of HTPB/IPDI polyurethanes, a viewpoint was proposed like that: thermodynamics incompatibility of soft segments/hard segments of castable polyurethane elastomers, reaction rheology and mobility of soft/hard chain segment are the main factors for micro structure of the segmented polyurethane. And which one is the major should be judged from the experimental results.
     3 Nano size filler can be used to modify the properties of castable polyurethane elastomer and the improvement of the properties. The modification related to the surface nature of nano size filler and the type of soft polyol. The two nano size SiO2 with different properties had different dispersion and stability in different kinds of CPUE. The hydrophilic AEROSIL 200 could be dispersed in the PCL based system and the final product performed excellent. This filler was not fit for the PTMG based system, there were agglomerating phenomenon, and even some nano-agglomerates with more than 1μm diameter. The hydrophobic AEROSIL R972 could be dispersed homogeneously in both the PCL based system and the PTMG based system. Moreover, both the two types of nano size filler reinforced the PCL based system. The tensile strength and tear strength at 100℃of PCL based CPUE with 5% AEROSIL 200 were 1.84 and 1.13 times than those of the pure PCL CPUE, respectively. And the tensile strength and tear strength at 100℃of PCL based CPUE with 5% AEROSIL R972 were 1.78 and 2.13 times than those of the pure PCL CPUE, respectively.
     4 The molecular structure difference between traditional vulcanized rubber and CPUE liquid rubber was investigated systematically, and the inner factors resulted in the different mechanical properties & dynamic properties between traditional rubber and CPUE were analyzed. Based on these work, a new concept, integral polyurethane elastomer, was put forward. The multi-component system CPU was prepared based on theoretical and experimental analysis. The mechanical properties of tri-component/tetra-component systems meet the requirement of the designed index. The optimized properties were achieved by acquiring the integrated balance of every index of properties.
     5 Through the preliminary exploration in integrated CPUE, the breakthrough of polyurethane materials was obtained. That is:
     (1) Initial modulus of CPUE can be reduced greatly, and the value was comparable to the traditional vulcanized rubber;
     (2) Glass transition temperature of CPUE can be reduced to the level of the traditional vulcanized rubber;
     (3) The tanδin 50-100 degrees Celsius temperature range of integral CPUE is lower than that of the traditional vulcanized rubber, that mean the integral CPUE possessed lower heat build up and lower rolling resistance.
引文
[1] Hepburn, C. Polyurethane elastomers [M]. 1982, New York: Applied Science Publishers.
    [2] Oertel, G. Polyurethane Handbook: Chemistry - Raw Materials - Processing - Application - Properties [M], ed. 2. 1985, New York Hanser Publishers 371-402.
    [3] Wirpsza, Z. Polyurethanes : chemistry, technology, and applications [M], ed. 1. 1993, London: Ellis Horwood. 139-152.
    [4] Shunsuke Ito, K.M., Masahiro Tajima,Yasuhiko Yoshida. Generation of microcellular polyurethane with supercritical carbon dioxide[J]. Journal of Applied Polymer Science, 2007. 106(6): 3581-3586.
    [5] Jacob John, M.B., Robert B. Turner. Characterization of polyurethane foams from soybean oil[J]. Journal of Applied Polymer Science, 2002. 86(12): 3097-3107.
    [6]赵哲;张鹏;夏祖西;苏正良.阻燃聚氨酯软泡的研究进展[J].应用化工, 2008. 37(05): 565-567,572.
    [7]刘越.全水基软发泡聚氨酯的性能特点[J].建筑创作, 2007,(09): 174-174.
    [8]张静;袁国渊;刘鸿慈.高阻燃性聚氨酯软泡的研究[J].河南化工, 2001,(10): 9-10.
    [9] Maya Paabo and B.C. Levin. A review of the literature on the gaseous products and toxicity generated from the pyrolysis and combustion of rigid polyurethane foams[J]. Fire and Materials, 1987. 11(1): 1-29.
    [10] Boguslaw Czupryski, J.P.-S., Joanna Liszkowska. Modifications of the rigid polyurethane-polyisocyanurate foams[J]. Journal of Applied Polymer Science, 2006. 100(3): 2020-2029.
    [11] Xiao-Bin Li, H.-B.C., Yi Zhang. Thermal degradation kinetics of rigid polyurethane foams blown with water[J]. Journal of Applied Polymer Science, 2006. 102(5): 4149-4156.
    [12] Yuan-Chan Tu, P.K., Galen Suppes, Fu-Hung Hsieh. Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols[J]. Journal of Applied Polymer Science, 2007. 105(2): 453-459.
    [13] Arnold A. Lubguban, Y.-C.T., Zuleica R. Lozada, Fu-Hung Hsieh, Galen J. Suppes. Noncatalytic polymerization of ethylene glycol and epoxy molecules for rigid polyurethane foam applications[J]. Journal of Applied Polymer Science, 2009. 112(4): 2185-2194.
    [14]高效良.建筑高效节能材料植物多元醇聚氨酯硬泡[J].建设科技, 2009(,01): 28-29.
    [15]胡志鹏.聚氨酯硬泡:未来前景广阔的保温节能材料[J].聚氨酯, 2008,(09): 32-35.
    [16]赵霄龙;李军;曹力强;郭向勇;艾明星.聚氨酯硬泡外墙外保温应用技术[J].建设科技, 2008,(1): 151-153.
    [17]赵春蕾;赵国景;曹金凤;王红艳;宋佳.聚氨酯硬泡在超低温下的应用研究[J].化工新型材料, 2006,(01).
    [18] Takeshi Sanjo, T.S., Kohichi Katamura Polyurethane elastomer for cleaning blade of electronic copying machine, USP, Editor. 2008: USP.
    [19] Król,, P. and B. Pilch-Pitera. Mechanical properties of crosslinked polyurethane elastomers based on well-defined prepolymers[J]. Journal of Applied Polymer Science, 2008. 107(3): 1439-1448.
    [20] Huibo Zhang, et al. Synthesis and Characterization of Polyurethane Elastomers[J]. Journal of Elastomers and Plastics, 2008. 40(2): 161-177.
    [21] Barbara Pilch-Pitera, Piotr Król, and S. Pikus. Supramolecular structure of crosslinked polyurethane elastomers based on well-defined prepolymers[J]. Journal of Applied Polymer Science, 2008. 110(5): 3292-3299.
    [22] Kloss., J., et al. Polyurethanes Elastomers Based on Poly(ε-caprolactone) Diol: Biodegradation Evaluation[J]. Macromolecular Symposia, 2006. 245-246(1): 651-656.
    [23] Tzong-Liu Wang, Jung-Shian Tsai, and C.-G. Tseng. Synthesis and characterization of side-chain liquid-crystalline polyurethane elastomers[J]. Journal of Applied Polymer Science, 2005. 96(2): 336-344.
    [24] Mark F. Sonnenschein, et al. Synthesis of transparent thermoplastic polyurethane elastomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(2): 271-278.
    [25] Pasa, R.C.S.A.V.M.D. Mechanical and thermal properties of polyurethane elastomers based on hydroxyl-terminated polybutadienes and biopitch[J]. Journal of Applied Polymer Science, 2003. 88(3): 759-766.
    [26] Fuest, R.W. Castable polyurethane elastomers - Serving demanding engineering applications[J]. Rubber World, 2002. 227(1): 39.
    [27] Tae-Jung Lee, Dong-Jin Lee, and H.-D. Kim. Synthesis and properties of liquid crystalline polyurethane elastomers[J]. Journal of Applied Polymer Science, 2000. 77(3): 577-585.
    [28] Plate, P. Polyurethane elastomers in practice[J]. Kunststoffe Plast Europe, 2000. 90(2):29-31.
    [29] M. Nigar, S. N. Chvalun, and J. Blackwell. Modeling the structure of the hard domains in HMDI-based polyurethane elastomers[J]. Acta Polymerica, 1998. 49(1): 27-34.
    [30] Kim, H.D., et al. Comparison of properties of thermoplastic polyurethane elastomers with two different soft segments[J]. Journal of Applied Polymer Science, 1998. 69(7): 1349-1355.
    [31] Jiang, Y., Y. Shao, and Q. Zhang. Preparation of tire chain of hot-plasticity type polyurethane elastomer[J]. Fine Chemicals, 1998. 15(4): 57-59
    [32]王树伦,翟文,唐志勇,陈强,冯永强.新型耐老化聚氨酯弹性体的制备和性能[J].聚氨酯工业, 2008. 23(04): 24-27.
    [33]叶青萱.新型聚氨酯弹性体[J].化学推进剂与高分子材料, 2006. 4(04): 1-6,11.
    [34]王瑶,赵志军,刘俊龙.聚氨酯弹性体的研究进展[J].橡塑技术与装备, 2006. 32(12): 24-28.
    [35]贾林才,赵雨花.聚ε-己内酯型热塑性聚氨酯弹性体的合成[J].弹性体, 2006. 16(02): 24-27.
    [36]费正新,邬润德.聚氨酯浇注弹性体的合成研究[J].聚氨酯工业, 2006. 21(04): 25-27.
    [37]蒋国昌,金关泰.聚丁二烯型聚氨酯弹性体的合成与性能研究[J].石油化工, 1992. 21(06): 363-368.
    [38]周雪鸿,郭学亮,朱凤珍,李德和.聚丁二烯型热塑性聚氨酯弹性体的结构与形态[J].合成橡胶工业, 1991. 14(01): 37-41.
    [39]刘楠楠;杨建军;张建安;吴庆云;吴明元;金志来.纳米改性聚氨酯涂料的功能性研究进展[J].化学建材, 2009. 25(01): 1-4.
    [40]李延军.双组分水性聚氨酯工业涂料的制备[J].上海涂料, 2009. 47(01): 4-7.
    [41]金志来;杨建军;张建安;吴庆云;吴明元.聚氨酯防腐涂料研究进展[J].涂料技术与文摘, 2008,(12): 8-11.
    [42]陈小卫;张良均;刘文跃;童身毅;胡飞.室温固化高性能聚氨酯防水涂料的制备[J].现代涂料与涂装, 2008. 11(10): 12-14,16.
    [43]康杰分;褚建军;沈春林.高铁专用聚氨酯防水涂料的研制[J].中国建筑防水, 2008,(08): 12-14.
    [44]刘连弟;姚铁权.浅色成品油贮罐内壁环氧聚氨酯导静电涂料的研制[J].上海涂料,2008. 46(04): 16-18.
    [45] J. Tian and Y.L. Huang. Antiwear and lubrication properties of polyurethane/polytetrafluoroethylene-bonded coating[J]. Journal of Applied Polymer Science, 2002. 86(13): 3454-3459.
    [46] Yong-Sil Kwak, S.-W.P., Young-Hee Lee, Han-Do Kim. Preparation and properties of waterborne polyurethanes for water-vapor-permeable coating materials[J]. Journal of Applied Polymer Science, 2003. 89(1): 123-129.
    [47] Xilei Chen, Y.H., Lei Song, Chao Jiao. Preparation and thermal properties of a novel UV-cured star polyurethane acrylate coating[J]. Polymers for Advanced Technologies, 2008. 19(4): 322-327.
    [48]徐文超;朱长春;宋文生;唐亚夫.新型鞋用不黄变热塑性聚氨酯胶粘剂的研究[J].弹性体, 2008. 18(03): 5-8.
    [49]徐文超;张晓刚;唐亚夫;宋文生;朱长春.油墨用不黄变聚氨酯胶粘剂的研制[J].粘接, 2008. 29(08): 24-27.
    [50]刘厚钧;高翔.鞋用聚氨酯胶粘剂[J].聚氨酯工业, 2008. 23(03): 1-4.
    [51]张昭;粟平阳;张旭琴;白子文.聚氨酯丙烯酸酯齐聚物制备紫外光固化胶粘剂[J].聚氨酯工业, 2007. 22(01): 17-20.
    [52]侯振龙;张玉清;朱长春.木材用湿固型聚氨酯胶粘剂的研制[J].粘接, 2007. 28(01): 29-30.
    [53]陈晓东,阮家声,付桂华,蔡彦,陈兰荪.干式复合用聚氨酯胶粘剂的研制[J].粘接, 2001. 22(01): 9-10.
    [54] Hornaman, E.C. Adhesive bonding of castable and rim polyurethanes[J]. Rubber World, 1983. 188(2): 28-32.
    [55] Ulkem, I. and H.P. Schreiber. Aspects of surface characterization of polyurethane adhesives[J]. Journal of Applied Polymer Science, 1994. 52(13): 1857-1865.
    [56] B. O. Gercel , D.O.ü., F. Pekel , S. ?zkar Improved adhesive properties and bonding performance of HTPB-based polyurethane elastomer by using aziridine-type bond promoter[J]. Journal of Applied Polymer Science, 2001. 80(5): 806-814.
    [57] K. Richter, A.P., A. Despres. Thermal stability of structural one-component polyurethane adhesives for wood - structure-property relationship[J]. Journal of Applied Polymer Science, 2006. 102(6): 5698-5707.
    [58] Yukihiro Nomura, A.S., Shinichi Sato, Hideharu Mori, Takeshi Endo. Synthesis of novel moisture-curable polyurethanes end-capped with trialkoxysilane and their application to one-component adhesives[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(13): 2689-2704.
    [59] Hui Du, Y.Z., Qifeng Li, Junwei Wang, Maoqing Kang, Xinkui Wang, Hongwei Xiang. Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI[J]. Journal of Applied Polymer Science, 2008. 110(3): 1396-1402.
    [60] Jin Su Jung, J.H.K., Min Seok Kim, Han Mo Jeong, Yong Sung Kim, Tae Kyoon Kim, Jeong Mi Hwang, Sang Yun Lee, Yang Lae Cho. Properties of reactive hot melt polyurethane adhesives with acrylic polymer or macromonomer modifications[J]. Journal of Applied Polymer Science, 2008. 109(3): 1757-1763.
    [61] Krebs, M. ChemInform Abstract: Recent Advances and Trends in Reactive Polyurethane Adhesives[J]. ChemInform, 2008. 39(32).
    [62] Yukihiro Nomura, A.S., Shinichi Sato, Hideharu Mori, Takeshi Endo. Synthesis of novel moisture-curable polyurethanes end-capped with alkoxysilane and use as solvent-free elastic adhesives[J]. Journal of Applied Polymer Science, 2008. 108(1): 236-244.
    [63]葛瑾.氨纶及其产品开发[J].上海纺织科技, 2008. 36(09): 40-42.
    [64]韩秀山.熔融氨纶的优势和生产发展现状[J].精细化工原料及中间体, 2008,(06): 39-40.
    [65]张娟;赵耀明;郭熙桃.聚氨酯弹性纤维纺丝及改性技术进展[J].化纤与纺织技术, 2008,(01): 31-35.
    [66]张明霞;张玉清.氨纶弹力复合纱及其加工与性能[J].现代纺织技术, 2008. 16(03): 53-57.
    [67]王红;斯坚;叶世富.氨纶纤维的生产、性能及应用[J].非织造布, 2008,(01): 22-24.
    [68]刘丹;王静刚;李俊贤;于文杰;张玉清.聚氨酯弹性纤维发展概况[J].化学推进剂与高分子材料, 2007. 5(01): 20-26,32.
    [69]钱伯章.氨纶生产现状和市场分析[J].合成纤维工业, 2006. 29(06): 36-39.
    [70] Alok R. Ray, A.B. Synthesis and characterization of aliphatic polyurethane fiber: A potential suture material[J]. Journal of Biomedical Materials Research, 1991. 25(10): 1249-1257.
    [71] Sunil K. N. Kutty, G.B.N. Short kevlar fiber-thermoplastic polyurethane composite[J]. Journal of Applied Polymer Science, 1991. 43(10): 1913-1923.
    [72] Yong Zhu, J.H., Jing Lu, Lap Yan Yeung, Kwok-wing Yeung. Shape memory fiber spun with segmented polyurethane ionomer[J]. Polymers for Advanced Technologies, 2008. 19(12): 1745-1753.
    [73]顾津,孙.应力变色聚氨酯合成革的研制[J].聚氨酯工业, 2001. 16(02): 17-19.
    [74]王元有.湿式聚氨酯(PU)合成革的研究[J].重庆工业高等专科学校学报, 2004. 19(06): 6-7,22.
    [75]徐旭凡,李.聚氨酯PU转移涂层防水透湿合成革的研制[J].中国皮革, 2005. 34(09): 10-11,18.
    [76]石欢欢;周虎;范浩军;袁继新;刘若望.水性聚氨酯在合成革后整理中的应用[J].中国皮革, 2008. 37(21): 46-49,58.
    [77]张兴智;谢镇铭.合成革用水性聚氨酯及其技术应用现状和未来发展[J].聚氨酯, 2008,(09): 78-81.
    [78] Min Chen, D.-L.Z., Yong Chen, Pu-Xin Zhu. Analyses of structures for a synthetic leather made of polyurethane and microfiber[J]. Journal of Applied Polymer Science, 2007. 103(2): 903-908.
    [79]唐春华.聚氨酯磁漆涂装农用运输车[J].电镀与涂饰, 1995. 14(01): 16-18.
    [80]陈平.聚氨酯涂料在高级交通运输工具等领域上的应用[J].上海涂料, 1998,(01): 38-41.
    [81]沈春晖,吕锡元,丁彩凤,刑政,李德和.丁羟聚氨酯电器灌封胶的研制[J].中国胶粘剂, 1998. 7(05): 4-7.
    [82]丁彩凤,吕锡元,李再峰,赵菲,孙学红.端羟基聚丁二烯聚氨酯电器灌封胶的研制[J].青岛化工学院学报, 2000. 21(01): 48-50.
    [83]吴自强.丁羟聚氨酯电器灌封胶[J].粘接, 2000. 21(2): 46.
    [84]吴洪霄. MDI系聚氨酯电子灌封胶原液的研制[J].聚氨酯工业, 1991. 6(02): 23-25.
    [85]赵飞明,王帮武.电子工业用聚氨酯浇注胶研制[J].粘接, 2004. 25(06): 7-9.
    [86]曹军,陈利,姜长春.聚氨酯弹性体在矿山机械中的应用和前景[J].聚氨酯工业, 1995. 10(04): 14-17.
    [87]赵廷午.包装机械用聚氨酯胶辊的研制[J].塑料科技, 1999,(06): 33-34.
    [88]张英奎;张超;贾天钰.聚氨酯材料技术推动建筑节能发展[J].中国建材, 2007(,06): 36-37.
    [89]隋斌.聚氨酯保温系统在寒冷地区欧式建筑中的应用[J].建设科技, 2008,(15):76-77.
    [90]赵金义;姜法治;毕雪玲.聚氨酯密封胶在建筑中的应用[J].特种橡胶制品, 2008. 29(05): 54-57.
    [91]白玉文,张旭琴,刘福州.纺织用聚氨酯牵伸辊的研究[J].太原理工大学学报, 1999. 30(05): 500-501,510.
    [92]曾跃民,严灏景,胡金莲.形状记忆聚氨酯(PUs)及其在纺织上的应用[J].东华大学学报(自然科学版), 2000. 26(06): 127-130.
    [93]曹风采;王炜.纺织整理剂用封端型脂肪族水性聚氨酯的合成与性能研究[J].聚氨酯工业, 2008. 23(05): 12-15.
    [94]唐邓;张彪;李智华;许戈文.水性聚氨酯纺织涂层剂的研制[J].印染助剂, 2008. 25(12): 8-10,13.
    [95]夏伟如.新一代聚氨酯鞋底[J].世界橡胶工业, 2004. 31(03): 24-24,49.
    [96]王锦成,郭燕.鞋用聚氨酯材料的应用现状[J].中国皮革, 2006. 35(08): 140-143.
    [97]徐志磊;李春兰;刘海蓉;姚克俭.聚醚型微孔聚氨酯鞋底材料研究[J].化学推进剂与高分子材料, 2008. 6(06): 43-46.
    [98]路华飞.聚氨酯塑胶跑道技术的进展[J].聚氨酯工业, 2004. 19(04): 34-36.
    [99]王庆安,高果桃.环保型水固化聚氨酯跑道材料[J].聚氨酯工业, 2005. 20(05): 35-36,44.
    [100]姚碧霞.新型无土栽培基材:吸水性聚氨酯泡沫[J].适用技术之窗, 1999,(04): 9-10.
    [101]朱开金;萧忠良.推进剂包覆层用聚氨酯弹性体的合成及应用[J].火炸药学报, 2005. 28(04): 55-57.
    [102]何吉宇;谭惠民.热塑性聚氨酯复合固体推进剂[J].宇航学报, 2008. 29(01): 252-254.
    [103]刘园宝,唐德林.功能高分子材料——聚氨酯在导弹上的应用[J].宇航材料工艺, 1993. 23(04): 80-81.
    [104]贺伟,张冬梅,于烨平.浅谈硬质聚氨酯泡沫塑料在军事伪装中的应用[J].聚氨酯工业, 2003. 18(03): 25-28.
    [105]石少卿,张湘冀,刘颖芳,尹平.硬质聚氨酯泡沫塑料在军事工程中的应用[J].工程塑料应用, 2004. 32(08): 36-39.
    [106]山西化工研究所.聚氨酯弹性体手册[M], ed. 1. 2001,北京:化学工业出版社.
    [107] Cassidy, E.F., et al. Two-component interpenetrating polymer networks (IPNs) from polyurethanes and epoxies. I. Studies on full IPN, pseudo-IPN, and graft polymer alloys of polyurethanes and epoxies[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1984. 22(8): 1839-1850.
    [108]吕冬,杜中杰,张晨,励杭泉.聚氨酯/聚(甲基丙烯酸甲酯-甲基丙烯酸丁酯)互穿聚合物网络聚合物的阻尼性能[J].石油化工, 2006. 35(10): 994-997.
    [109] T. Ranganathan, E.B.G.C.R.A.K. Main chain thermotropic liquid crystalline polyurethanes containing biphenyl mesogens based on novel AB-type self-polycondensation route: FT-IR and XRD studies[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(9): 1903-1912.
    [110] Xiao-Dong Chen, Nan-Qiao Zhou, and Hai Zhang. Synthesis and properties of liquid crystalline polyurethanes from 4,4 -bis ( 6-hydroxyhexoxy ) biphenyl and 3,3'-dimethyl-4, 4’-biphenylene diisocyanate[J]. Key Engineering Materials 2010. 428-429(January): 144-149.
    [111] J. Dyana Merline, et al. Polyether polyurethanes: Synthesis, characterization, and thermoresponsive shape memory properties[J]. Journal of Applied Polymer Science, 2008. 107(6): 4082-4092.
    [112]宋斐,朱光明,邓登.形状记忆聚氨酯及其应用[J].化学工业与工程, 2007. 24(05): 453-456.
    [113]王璐璐,佘希林,李志国,周迪.形状记忆聚氨酯材料研究进展[J].聚氨酯工业, 2008. 23(06): 6-9.
    [114] Vera L. Covolan, et al. Polyurethane Based Materials for the Production of Biomedical Materials[J]. Macromolecular Symposia, 2004. 218(1): 273-282.
    [115]罗兰,窦宏仪.抗凝血生物医用聚氨酯材料研究进展[J].热固性树脂, 2005. 20(03): 42-45.
    [116] Austin, A., Global overview of the PU industry prospects and possibilities, in Utech Europe 2006 Conference. 2006, UTECH Europe exhibition: Masstrieht Netherland.
    [117]郝立新,刘锦春,刘保成.聚氨酯浇注轮胎的开发和研究进展[J].轮胎工业, 1996. 16(11): 643-649.
    [118] Marchiando, R. Lim Molded Tire Technology Strategic Considerations[J]. Journal of Elastomers and Plastics, 1984. 16(2): 93-102.
    [119] Stuart, M. Giving The PU Tyre Its Due[J]. European Rubber Journal, 1983. 164(10): 14-16.
    [120]邓海燕.美研发Pu汽车轮胎[J].弹性体, 2002. 12(02): 38.
    [121] Reed, D. PU retreads come back to life[J]. European Rubber Journal, 1997. 179(1): 25-27.
    [122]吴秀兰. Monarch公司推出新型蓝色聚氨酯轮胎[J].橡胶工业, 1994. 41(02): 123.
    [123]以然.米其林研发新型聚氨酯轮胎[J].现代橡胶技术, 2005. 31(01): 38.
    [124] Richard A. Steinke and E.N. Taylor, The Revolutionary Use of Polyurethane and Reinforcement Materials in the Manufacturing of Car Tires, in ITEC2004. 2004: Akron, Ohio.
    [125]姚莹,郁为民.我国聚氨酯弹性体的发展近况及应用前景[J].中国橡胶, 2003. 19(16): 7-9.
    [126]宫涛.第五讲聚氨酯弹性体最新发展动态[J].聚氨酯, 2007,(07): 98-102.
    [127] Schollenberger C S, Scott H, and M.G. R. Polyurethan VC, a virtually cross- linked elastomer[J]. Rubber World 1958. 137(4): 549–555.
    [128] R.Bonart. X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers[J]. Journal of Macromolecular Science, Part B Physics 1968. 2(1): 115-138.
    [129] Stuart L. Cooper and A.V. Tobolsky. Properties of linear elastomeric polyurethanes[J]. Journal of Applied Polymer Science, 1966. 10(12): 1837-1844.
    [130] Darren J. Martin, et al. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. I. Characterization of the series[J]. Journal of Applied Polymer Science, 1996. 62(9): 1377-1386.
    [131] R.E. Camargo, et al. Phase Separation Studies in RIM Polyurethanes Catalyst and Hard Segment Crystallinity Effects[J]. Polymer, 1985. 26(8): 1145-1154
    [132] Meier, D.J. Theory of block copolymers. I. Domain formation in A-B block copolymers[J]. Journal of Polymer Science Part C: Polymer Symposia, 1969. 26(1): 81-98.
    [133] Krause, S. Microphase separation in block copolymers: Zeroth approximation[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1969. 7(1): 249-252.
    [134] Helfand, E. and Z.R. Wasserman. Statistical thermodynamics of microdomain structures in block copolymer systems[J]. Polymer Engineering and Science, 1977. 17(8):582-586.
    [135] Benoit, H. and G. Hadziioannou. Scattering theory and properties of block copolymers with various architectures in the homogeneous bulk state[J]. Macromolecules, 1988. 21(5): 1449-1464.
    [136] Pierre, P.J. and C. Yves. Quantitative DSC Evaluation of Phase Segregation Rate in Linear Segmented Polyurethanes and Polyurethaneureas[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1983. 21: 415-423.
    [137]何蓉,蒲远远,刘艳林.现代仪器分析在聚氨酯中的应用(连载一)热分析技术在聚氨酯弹性体中的应用[J].聚氨酯工业, 1998. 13(01): 49-52.
    [138]陈大俊,周涵新,孙桐.含叔胺基聚氨酯的微相分离结构[J].聚氨酯工业, 1989. 4(04): 2-10.
    [139]宋名实,沈一丁,任志勇.聚氨酯弹性体相分离程度的研究[J].应用化学, 1989. 6(05): 47-50.
    [140]蒋国昌,金关泰.聚丁二烯型聚氨酯弹性体微相分离结构研究[J].高分子材料科学与工程, 1992. 8(04): 58-63.
    [141]马敏生,王庚超,张志平,应圣康.丁羟聚氨酯的结构、形态与性能关系的研究[J].高分子材料科学与工程, 1993. 9(04): 65-70.
    [142]罗宁,王得宁,应圣康,钱义祥,朱支蔷. RIM聚氨酯脲的微相分离的DSC研究──硬段结构和含量对微相分离的影响[J].高等学校化学学报, 1994. 15(7): 1076-1080.
    [143]方治齐.聚氨酯弹性体微相分离促进剂研究[J].弹性体, 1996. 6(2): 22-25.
    [144]朱金华,姚树人.聚氨酯弹性体结构与动态力学性能研究[J].高分子材料科学与工程, 2000. 16(05): 106-108.
    [145]陈福泰,多英全,周贵忠,罗运军,谭惠民.异佛尔酮二异氰酸酯基聚醚聚氨酯弹性体的热行为[J].高分子材料科学与工程, 2002. 18(04): 177-180.
    [146]刘振,郭敏杰,肖长发.聚醚氨酯结构与微相分离的研究[J].聚氨酯工业, 2003. 18(03): 15-18.
    [147]张晓华,曹亚.软段对IPDI基透明聚氨酯弹性体微相结构与性能的影响[J].中国塑料, 2005. 19(08): 27-31.
    [148] Katsuhiko Nakamae, T.N., Seiji Asaoka, Sudaryanto. Microphase separation and surface properties of segmented polyurethane—Effect of hard segment content [J]. InternationalJournal of Adhesion and Adhesives, 1996. 16(4): 233-239
    [149]王庚超,马敏生,张志平.聚醚型聚氨酯的氢键、微相分离及性能[J].合成橡胶工业, 1991. 14(06): 409-412.
    [150]宋晓艳,张玉清,张杰,李俊贤.聚氨酯弹性体/蒙脱土纳米复合材料的合成与性能[J].高分子学报, 2004,(05): 640-644.
    [151] Sung, C.S.P. and N.S. Schneider. Infrared Studies of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes[J]. Macromolecules, 1975. 8(1): 68-73.
    [152] Yeong-Jen Peter Chang and G.L. Wilkes. Superstructure in segmented polyether-urethanes[J]. Journal of Polymer Science: Polymer Physics Edition, 1975. 13(3): 455-476.
    [153] Zohar Ophir and G.L. Wilkes. SAXS analysis of a linear polyester and a linear polyether urethane - interfacial thickness determination[J]. Journal of Polymer Science: Polymer Physics Edition, 1980. 18(6): 1469-1480.
    [154] Jeffrey T. Koberstein and R.S. Stein. Small-angle x-ray scattering measurements of diffuse phase-boundary thicknesses in segmented polyurethane elastomers[J]. Journal of Polymer Science: Polymer Physics Edition, 1983. 21(10): 2181-2200.
    [155] Jeffrey T. Koberstein and R.S. Stein. Small-angle X-ray scattering studies of microdomain structure in segmented polyurethane elastomers[J]. Journal of Polymer Science: Polymer Physics Edition, 1983. 21(8): 1439-1472.
    [156]周成飞,刘汉兴.小角X射线散射在多嵌段聚氨酯形态结构研究中的应用[J].分析测试通报, 1987. 6(4): 46-50.
    [157]边栋材,穆详祺,李淳华,孙桐. SAXS研究聚氨酯的相分离[J].聚氨酯工业, 1996. 11(03): 19-23.
    [158] H. Nishimura, et al. Phase structure of polyetherpolyol-4,4-diphenylmethane diisocyanate-based reaction injection molded (RIM) polyurethanes[J]. Polymer Engineering and Science, 1986. 26(9): 585-592.
    [159] Zheng, J., R. Ozisik, and R.W. Siegel. Phase separation and mechanical responses of polyurethane nanocomposites[J]. Polymer, 2006. 47: 1-9.
    [160] J. A. Koutsky, N.V.H., S. L. Cooper. Some results on electron microscope investigations of polyether-urethane and polyester-urethane block copolymers[J]. Journal of Polymer Science Part B: Polymer Letters, 1970. 8(5): 353-359.
    [161] Sigurd Schrader, X.L., Fanxiu Guo, Yong Liu, Jijiang Luo, Duanfu Xu. Electron microscopy investigations of polyester-polyurethane elastomers stained with ruthenium tetroxide[J]. Die Makromolekulare Chemie, Rapid Communications, 1988. 9(9): 597-601.
    [162]刘昉,王德永,李洁华,谢兴益,何成生,樊翠蓉,钟银屏.介入用聚氨酯材料的结构性能研究[J].高分子材料科学与工程, 2002. 18(01): 140-144.
    [163]鲍俊杰,高明志,周海峰,饶喜梅,瞿启云,许戈文.原子力显微镜在聚氨酯材料性能分析中的应用[J].弹性体, 2006. 16(3): 53-57.
    [164] Helena Janik, Barbara Pa?ys, and Z.S. Petrovic. Multiphase-Separated Polyurethanes Studied by Micro-Raman Spectroscopy[J]. Macromolecular Rapid Communications, 2003. 24(3): 265-268.
    [165]陈大俊,庄梦华,周涵新,孙桐.一种评价聚氨酯纤维相分离程度的新方法[J].合成纤维, 1985,(04): 16-19.
    [166] Robert F. Harris, et al. Polyurethane elastomers based on molecular weight advanced poly(ethylene ether carbonate) diols. II. Effects of variations in hard segment concentration[J]. Journal of Applied Polymer Science, 1990. 41(3-4): 509-525.
    [167]朱平平,杨海洋,何平笙.高分子间相互作用的特点及意义[J].高分子通报, 2002,(05): 73-78.
    [168] W. Michael Brown, S.M., Mark D. Rintoul, Jean-Loup Faulon. Designing Novel Polymers with Targeted Properties Using the Signature Molecular Descriptor[J]. Journal of Chemical Information and Modeling, 2006. 46(2): 826-835.
    [169]王迪,张宝,李亚鹏,孙景辉.酶促开环聚合和原子转移自由基聚合制备新型H型嵌段共聚物[J].高等学校化学学报, 2008,(07).
    [170]刘晓玲,高风,孙争光,黄世强.微波辅助开环聚合反应[J].胶体与聚合物, 2008,(01).
    [171]王建明,陈伟,祝桂香.开环聚合制备聚己内酯[J].石化技术与应用, 2006,(06).
    [172]胡芸,谢凯,陈一民,安立华.ε-己内酯聚合反应的研究[J].高分子材料科学与工程, 2002,(06).
    [173]鲁国明,白续铎,汪成,张凤莲,张莉.ε-己内酯本体聚合的研究[J].化学工程师, 1999,(04).
    [174]陈建海,宣为民,姜彩玉.钛酸丁酯催化ε—己内酯聚合的研究[J].高分子学报,1993,(03): 356-360.
    [175]山西省化工研究所.聚ε-己内酯型聚氨酯浇注橡胶的研制[J].合成橡胶工业, 1979. 2(05): 409-414.
    [176]刘凉冰,刘红梅,贾林才. PCL/MDI体系聚氨酯弹性体力学性能的研究[J].特种橡胶制品, 2007. 28(01): 10-13.
    [177]赵雨花,贾林才,亢茂青,王心葵.高性能浇注型聚氨酯弹性体的耐热性能[J].合成橡胶工业, 2008. 31(03): 187-190.
    [178]孙开金.聚ε—己内酯浇注型聚氨酯橡胶的合成及讨论[J].特种橡胶制品, 1985,(05).
    [179]李公峰.聚己内酯合成聚氨酯胶粘剂工艺[J].聚氨酯工业, 1994. 9(02).
    [180] Adolf Balas, et al. Properties of cast urethane elastomers prepared from poly(ε-caprolactone)s[J]. Journal of Applied Polymer Science, 1984. 29(7): 2261-2270.
    [181] Rui Xie, Gerhard Mueller, and T.A. Upshaw. Properties of Elastomers Based on Caprolactone Prepolymers[J]. Urethanes Technology International.
    [182]郁亮,李汾.聚氨酯弹性体耐热性能的研究进展[J].特种橡胶制品, 2008. 29(06): 52-57.
    [183] Piotr Król and B. Pilch-Pitera. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers[J]. Journal of Applied Polymer Science, 2007. 104(3): 1464-1474.
    [184] Mehdi Barikani and C. Hepburn. The Relative Thermal Stability of Polyurethane Elastomers: 2. Influence of Polyol - diisocyanate Molar Block Ratio with a Single and Mixed diisocyanate System[J]. Cellular Polymers, 1967. 6(1): 27-36.
    [185]甄建军,翟文,冯永强,梁惠君,唐志勇. NDI型聚氨酯弹性体动态生热性能研究[J].聚氨酯工业, 2007. 22(02): 25-27.
    [186]李汾.高性能CHDI型聚醚聚氨酯弹性体[J].聚氨酯工业, 2001. 16(3): 37-40.
    [187]黄志雄,彭永利.耐热聚氨酯弹性体的研究[J].武汉化工学院学报, 2002. 24(2): 40-42.
    [188]赵雨花,贾林才,亢茂青,王心葵.高性能浇注型聚氨酯弹性体的动态性能研究[J].聚氨酯, 2006,(02): 74-76.
    [189]刘凉冰.聚氨酯弹性体的耐热性能[J].弹性体, 1999. 9(03): 41-47.
    [190] Louis, M.L. and T.K. Jeffrey. Small-angle scattering analysis of hard-microdomainstructure and microphase mixing in polyurethane elastomers[J]. Journal of Polymer Science: Polymer Physics Edition, 1985. 23(9): 1883-1913.
    [191] C. G. Seefried Jr, J.V. Koleske,, and F.E. Critchfield. Thermoplastic urethane elastomers. III. Effects of variations in isocyanate structure[J]. Journal of Applied Polymer Science, 1975. 19(12): 3185-3191.
    [192] Nathan S. Schneider and C.F.M.R.G.A.P. Angelopoulos. Incremental vapor sorption in a phase-segregated polyurethane elastomer[J]. Journal of Polymer Science Part B: Polymer Physics, 1989. 27(4): 939-956.
    [193]李再峰,元伟,李金艳,徐涛,王民轩.耐高温聚氨酯弹性体[J].高分子通报, 2007,(09): 45-51.
    [194] Takeichi, T., K. Suefuji, and K. Inoue. Preparation of high-temperature polyurethane by alloying with reactive polyamide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(20): 3497-3503.
    [195] Aurelian Stanciu, V.B., Mioara Lungu, Stelian Vlad, Sorin Balint, Stefan Oprea. Mechanical behaviour of crosslinked poly(ester-siloxane) urethanes [J]. European Polymer Journal, 1999. 35(11): 2039-2044
    [196]文胜,龚春丽,郑根稳,管蓉.含硅氧烷的聚氨酯弹性体的热稳定性与热降解动力学[J].高分子材料科学与工程, 2008. 24(1): 59-62.
    [197]刘晓华,亢茂青,王心葵.聚氨酯弹性体耐热性的影响因素[J].合成橡胶工业, 1997. 20(06): 377-379.
    [198] Tien, Y.I. and K.H. Wei. The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane[J]. Journal of Applied Polymer Science, 2002. 86(7): 1741-1748.
    [199] Zilg, C., et al. Polyurethane Nanocomposites Containing Laminated Anisotropic Nanoparticles Derived from Organophilic Layered Silicates[J]. Advanced Materials, 1999. 11(1): 49-52.
    [200] Han, B., et al. Effect of organophilic montmorillonite on polyurethane/montmorillonite nanocomposites[J]. Journal of Applied Polymer Science, 2004. 91(4): 2536-2542.
    [201] Xia, H., S.J. Shaw, and M. Song. Relationship between mechanical properties and exfoliation degree of clay in polyurethane nanocomposites[J]. Polymer International, 2005. 54(10): 1392-1400.
    [202] Park, N.-H., J.-W. Lee, and K.-D. Suh. In situ polyurethane/silica composite formation via a sol-gel process[J]. Journal of Applied Polymer Science, 2002. 84(12): 2327-2334.
    [203] Widmaier, J.-M. and G. Bonilla. In situ synthesis of optically transparent interpenetrating organic/inorganic networks[J]. Polymers for Advanced Technologies, 2006. 17(9-10): 634-640.
    [204] Sung-Il Lee, Y.B.H.K.S.N.Y.-S.L. Synthesis of polyether-based polyurethane-silica nanocomposites with high elongation property[J]. Polymers for Advanced Technologies, 2005. 16(4): 328-331.
    [205]甄建军,翟文.微相分离对聚氨酯弹性体耐热性能的影响研究[J].弹性体, 2009. 19(1): 23-25.
    [206] Stelzer; Gary J., H., III; Calvin Composite rubber-urethane tank track pads to improve service life. 1985, The Goodyear Tire & Rubber Company United States Patent.
    [207]张英,胡春怡,郑慕侨.聚氨酯-橡胶组合挂胶负重轮有限元分析[J].北京理工大学学报, 2004. 24(02): 101-103.
    [208]钱保功,许观藩,余赋生.高聚物的转变与松弛[M]. 1986,北京:科学出版社. 269-288.
    [209] S. G. Musselman, et al. Domain structure and interphase dimensions in poly(urethaneurea) elastomers using DSC and SAXS[J]. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(18): 2586-2600.
    [210]刘红梅,刘凉冰,洛桂娥,贾林才. E-300与MOCA扩链聚氨酯弹性体的力学性能比较[J].化学推进剂与高分子材料, 2005. 3(5): 32-34.
    [211]田春蓉,梁书恩,王建华.以小分子二醇为扩链剂的聚氨酯弹性体的制备及性能[J].化学推进剂与高分子材料, 2009. 7(6): 42-47.
    [212]田春蓉,梁书恩,王建华.以聚酯多元醇为基的聚氨酯弹性体的动态力学性能研究[J].化学推进剂与高分子材料, 2008. 6(6): 39-42,46.
    [213] Gity Mir Mohamad Sadeghi, Jalil Morshedian, and M. Barikani. The effect of initiator-to-monomer ratio on the properties of the polybutadiene-ol synthesized by free radical solution polymerization of 1,3-butadiene[J]. Polymer International, 2003. 52(7): 1083-1087.
    [214]张艺林,王新德,牟应洪,张泉.端羟基聚丁二烯(HTPB)的13C—NMR研究[J].高分子学报, 1993,(05): 600-604.
    [215] V. Sekkar, et al. Studies on urethane-allophanate networks based on hydroxyl-terminated polybutadiene: Modeling of network parameters and correlation to mechanical properties[J]. Journal of Applied Polymer Science, 2006. 101(5): 2986-2994.
    [216]赵菲,毛永康,赵金义,吴明生.羟丁型聚氨酯的应用概述[J].聚氨酯工业, 2003. 18(02): 8-10.
    [217] R. M. Muthiah, et al. Effect of temperature on the rheological behavior of hydroxyl terminated polybutadiene propellant slurry[J]. Polymer Engineering & Science, 1991. 31(2): 61-66.
    [218]何耀东,孙翔宇.丁羟推进剂粘合剂网络结构调控方法探讨[J].固体火箭技术, 2004. 27(04): 294-297.
    [219]赵长才,鲁国林,王北海.扩链剂对HTPB/IPDI推进剂力学性能的影响[J].固体火箭技术, 2000. 23(02): 52-55.
    [220]刘瑾,马德柱,陈晓明.不同软段结构聚氨酯-酰亚胺嵌段共聚物的合成及热性能研究[J].高分子学报, 2002,(02): 221-226.
    [221]莫明.羟丁胶产品介绍[J].粘接, 2003. 24(1): 45.
    [222] B. O. Gercel, et al. Improved adhesive properties and bonding performance of HTPB-based polyurethane elastomer by using aziridine-type bond promoter[J]. Journal of Applied Polymer Science, 2001. 80(5): 806-814.
    [223]刘锦春,赵菲.聚氨酯浇注充气轮胎的研制[J].轮胎工业, 2004. 24(01): 3-7.
    [224] Doyle Earl N. , Trevino Rene, and H.R. S, Safety tires, methods and equipment therefor 1981: United States Patent.
    [225] Vera L. Pereira Soares, et al. Hydroxy-terminated polybutadiene toughened epoxy resin: Chemical modification, microstructure, and impact strength[J]. Advances in Polymer Technology, 2002. 21(1): 25-32.
    [226] B. G. Soares, et al. Morphology and dielectric properties of an epoxy network modified by end-functionalized liquid polybutadiene[J]. Journal of Polymer Science Part B: Polymer Physics, 2004. 42(22): 4053-4062.
    [227]尹华丽,,李东峰,, and张纲要. IPDI型HTPB推进剂界面软化因素研究[J].固体火箭技术, 2005. 28(01): 44-48.
    [228]李赵宁,王琪,樊瑛,袁嵩,苏昌银.丁羟衬层固化度工艺研究[J].固体火箭技术,2005. 28(03): 205-207.
    [229] Serkan Burak Haska, et al. Adhesion of an HTPB-IPDI-based liner elastomer to composite matrix and metal case[J]. Journal of Applied Polymer Science, 1997. 64(12): 2355-2362.
    [230]庞爱民,王北海.丁羟聚氨酯弹性体结构与力学性能的关系综述[J].推进技术, 1993. 14(05): 53-58.
    [231] Serkan Burak Haska, et al. Mechanical properties of HTPB-IPDI-based elastomers[J]. Journal of Applied Polymer Science, 1997. 64(12): 2347-2354.
    [232]王贵一.用由平板流变仪得出的线形粘弹曲线评价橡胶的硫化时间[J].世界橡胶工业, 2005. 32(11): 31-35.
    [233]郑华,张勇,彭宗林,张隐西,林鸿福.三元乙丙橡胶/蒙脱土纳米复合材料制备中硫化体系的比较[J].高分子学报, 2004,(02): 160-164.
    [234]方红霞,周树学,武利民. PDMS-MDI-PEG多嵌段共聚物涂层表面微相分离行为研究[J].高分子学报, 2007,(02): 178-182.
    [235] Lagasse, R.R. Domain structure and time-dependent properties of a crosslinked urethane elastomer[J]. Journal of Applied Polymer Science, 1977. 21(9): 2489-2503.
    [236]陈大俊,周涵新,孙桐.一种表征微相分离的新方法——含叔胺基聚氨酯的微相分离结构[J].聚氨酯工业, 1991. 6(1): 19-23.
    [237] Nicole E. Botterhuis, et al. Self-assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(12): 3877-3885.
    [238]刘华,张禹负.生物聚合物驱油体系流变性研究[J].石油大学学报:自然科学版, 1995. 19(4): 41-44.
    [239] Nordsiek, K.H. The ?integral rubber? concept― an approach to an ideal tire tread rubber[J]. Kautschuk Gummi Kunstsoffe, 1985. 38(3): 178-185
    [240]陈晓东,周南桥,张海.国内外聚氨酯轮胎的研究进展[J].轮胎工业, 2007. 27(02): 67-71.
    [241]何军.废旧轮胎污染防治对策探讨[J].辽宁化工, 2004. 33(3): 175-176.
    [242] Hooks, C. PU tyre runs cool, smooth[J]. Urethanes Technology, 2005. 22(5): 27.
    [243]宫涛,李汾,岳献云,聚氨酯弹性体发展动态及趋势in中国聚氨酯工业协会第十四次年会论文集. 2008:中国:上海.
    [244] Hong, S.W. and吴秀兰.用动态粘弹性能预测轮胎使用性能[J].轮胎工业, 1996. 16(01): 17-22.
    [245]陈晓东,周南桥,张海.浇注聚氨酯弹性体与橡胶的拉伸应力-应变性能对比分析[J].材料导报, 2008. 22(1): 137-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700