用户名: 密码: 验证码:
浆膜动态性能研究及其在蒙脱土掺杂浆料改性效果评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织造工艺研究中,提高经纱上浆质量一直是作为核心课题受到纺织业界的广泛关注。近年,新型浆料和浆纱助剂研发、上浆工艺优化,特别是纳米、微纳米掺杂浆料的开发和利用,为提高浆纱质量开辟了全新的广阔前景。但是,在浆料研发、上浆工艺优化进程中,如何进行过程质量控制,并对最终结果作出科学、准确的预测和质量评价,长期以来围绕这一命题的研究甚少。
     本文全面归纳分析了传统的上浆工程质量体系,认为传统的过程质量控制及评估方法虽然在实际生产和研究工作中已经起到了很大的作用,但是其测试方法和手段仍属于表观、与事物本质有所偏离的实验方法范畴,基本上游离于现代材料科学的成就之外。特别是传统的浆膜性能测试通常采用静态的、形式单一的外力作用方式,因此测试结果和浆膜实际的工作状况具有很大差异。
     本文认为,浆纱表面以及内部部分纤维之间黏附的浆膜对浆纱的可织性起着最为重要的作用。浆纱和浆膜随着织机的运行始终处于动态的变化过程中,这些动态变化不仅包括自身的结构性能渐变,而且包含各种外部条件的变化。为此,应当从动态的角度,从材料科学角度对浆膜进行测试、审视,并以此建立起各种因素间的相互关联,客观而综合地表征浆膜的特点与性能。本文在研究中摈弃了传统的从宏观到宏观的研究路线,按照高分子材料性能的特征,遵循从微观、细观再到宏观的现代材料科学的研究路线及方法,根据织机上浆纱、浆膜的实际工况,建立起相应的、科学的浆膜性能表征和测试新方法。进而,在动态变化条件下,从浆膜拉伸力学性能、耐磨性能、耐疲劳性能、浆膜与浆纱的拉伸模量适配性能、浆膜和浆纱的受热软化性能和再粘性能、浆膜和纤维的亲和性能、浆纱强伸性能等方面客观地描写浆膜乃至浆纱上浆质量的优劣。上浆工程质量体系是一项内涵十分丰富的系统工程,需要一个长期探索,逐步完善的过程,本文仅围绕合理、科学的浆膜性能评价、表征作一些初步的开拓性研究。
     基于近年来纳米科技取得的成果,以本文所提出的浆膜性能的测试新方法为过程质量控制手段,开展了新型微纳米蒙脱土粉体掺杂PVA/磷酸酯淀粉混合浆料的研发和多方位的性能表征。同时,通过这些研发工作来验证所提出的测试新方法的必要性及科学性。本论文主要进行了下列研究。
     参考传统的浆膜性能测试方法,嫁接现代材料科学与工程的理论和研究成果,本文选择了几种具有代表性的主浆料:变性淀粉、PVA和聚丙烯酸酯类浆料,从浆膜动态拉伸力学性能、动态的耐疲劳性能、动态耐磨性能、动态过程中浆膜软化和再粘现象等五个方面,提出相应的比较完整的浆膜性能评判方法和测试手段。
     1.使用动态力学热分析法(DMA)进行浆膜和浆纱的动态拉伸力学性能测试,反映浆膜的动态应力与应变的关系和动态模量变化。通过静态和动态应力作用两种模式,对浆膜和其浆纱进行拉伸力学性能测试、比较,凸显了动态拉伸力学性能分析的重要性和写实性。
     研究发现,在动态应力条件下,浆膜的动态模量值要远大于静态拉伸测试的浆膜小变形弹性模量值,因此,在实际生产中,必须考虑浆膜与浆纱动态模量的适配问题。
     2.采用DMA仪进行浆膜拉伸蠕变-回复性能测试和动态拉伸应力测试,两种测试方法均可评价浆膜的动态耐疲劳性能。浆膜拉伸蠕变-回复性能的测试,衡量材料在反复拉伸加载、卸载下的应变回复能力和蠕变特性。本文对传统的浆膜回弹率尺的计算公式加以改进,提出了动态蠕变-回复评估指标。
     拉伸动态应力测试则是在动态交变载荷作用下,测定材料的时间-动态应力-应变曲线,交变频率及测试温度参考织机运行的转速和织造车间温度选定。测试中,以一定次数交变外力作用之后材料累积的应变量,来表述材料耐疲劳性能。
     对浆膜及其相应浆纱进行拉伸蠕变-回复性能测试和动态拉伸应力测试,测试结果表明了浆膜与浆纱耐疲劳性能的一致性,可以用浆膜预测它所对应浆纱的耐疲劳性能,与传统的测试方法相比,更贴近浆膜与浆纱的实际工作情况。
     3.自制了动态拉伸条件下纺织浆膜磨损试验装置,该装置可根据测试的需要设置不同的浆膜变形量、磨损载荷以及浆膜变形速度等参数,能够比较真实地模拟织机上浆膜的实际工作条件。测试得到样品磨断次数,以此评判浆膜在动态拉伸变形状态下的耐磨性能。
     通过对动态条件下的磨损浆膜的表面形貌观察分析和差示扫描量热分析法DSC对磨损浆膜的热学性能测试,可以获知:浆膜在反复动态拉伸下经受摩擦比无拉伸状态下的摩擦产生更为严重的磨损,前者反映了实际的浆膜摩擦、磨损情况。
     4.浆膜玻璃化温度Tg,可以作为衡量浆膜受热软化的重要特性参数。采用动态热机械分析法DMA测试浆膜玻璃化温度值,以此来评估和推测在实际织造工况下浆膜软化发生的可能性和程度。在研发新型浆料时,可以控制其浆膜的玻璃化温度,保持织造条件下浆膜适当的强度和刚柔性,保证织造正常进行。
     5.在织造车间的高温湿度条件下,浆膜乃至浆纱会发生再粘现象。本文首先测量去离子水在浆膜表面的接触角,用以判断水分对于浆膜的浸润性能。接触角小浆膜浸润性能越好,则越容易吸收水分并引起再粘现象。
     通过差示扫描量热分析法(DSC)进行浆膜和水的混合物热学性能测试,可以定量地确定浆膜开始发生再粘现象的溶胀温度Tn,以及从溶胀温度Tn开始到此后ΔT温度变化范围内,浆膜溶胀所发生的焓变,从而综合地描写材料的形态结构变化和“再粘”现象的明显程度。因此,接触角、溶胀温度和ΔT温度范围内焓变被列为比较各种浆膜再粘性的指标。
     上述五方面浆膜动态性能的测试,比较完整、真实地刻画了浆膜直至浆纱的特点与性能,为各类浆料研发、上浆工程优化提供可靠的过程质量评估依据。
     二、本文针对涤棉浆纱上浆研制了微纳米蒙脱土粉体掺杂的PVA-1799/磷酸酯淀粉混合浆料,采用浆膜动态性能的五个方面测试方法,辅以浆膜和纤维亲和性能、浆纱强伸性能测试等,对浆料的微纳米蒙脱土掺杂改性工艺进行过程质量控制、优化以及改性效果评估。
     首先,采用低温等离子体方法对市购纳米蒙脱土粉体进行表面处理,借助超声粉碎方法调制微纳米蒙脱土分散液,确定了它们的优化工艺条件。经优化工艺所获得的微纳米蒙脱土分散液中,微粒的平均粒径为472nm。
     选择PVA-1799和磷酸酯淀粉作为主浆料。由于PVA-1799/磷酸酯淀粉混合浆液与配制的微纳米蒙脱土分散液Zeta电位均为负值,两者混合、掺杂后不会因电性相反而造成异质聚沉或微纳米粉体颗粒二次团聚。微纳米蒙脱土掺杂浆膜经过红外光谱的结构分析,证明微纳米材料的掺杂不会引起浆料化学性质的变化。通过微纳米蒙脱土掺杂浆膜XRD分析,说明磷酸酯淀粉和PVA-1799除了作为主粘着剂外,还可作为微纳米蒙脱土的插层剂,混合、掺杂的结果进一步改善了微纳米蒙脱土粉体的分散程度。
     文章以微纳米蒙脱土改性前后的浆膜动态拉伸力学性能、动态耐疲劳性能、动态耐磨性能、浆膜软化性能和再粘性能、浆膜和涤棉纤维亲和性能、涤棉浆纱强伸性能来优化掺杂工艺(微纳米蒙脱土掺杂比例),并且综合评判其浆料的改性效果。优化及评判结果表明:微纳米蒙脱土掺杂有利于提高PVA-1799/磷酸酯淀粉混合浆膜及其浆纱的性能,其中以微纳米蒙脱土掺杂比例3%的综合效果较好。
     论文基于浆膜动态拉伸力学性能、动态耐疲劳性能、动态耐磨性能、浆膜软化性能和再粘性能的测试方法,组合传统的浆膜和纤维亲和性能、浆纱强伸性能的测试方法,提出了一个比较完整的、隶属于上浆工程质量体系的子系统,用于浆料研发和浆纱工艺过程改进的过程质量控制、优化以及效果评估,具有较好的科学性和明显的可行性。同时,通过这一子系统的研究,也为今后上浆工程质量体系的逐步完善提供了新的思路和理论基础。
It has always been highly concerned by the textile industry to improve the quality of warp sizing in the weaving technology. In recent years, the researches of new size and sizing additives, the optimization of sizing technology, especially the development and utilization of sizing agent doped by micro-nano material, have highly broaden new prospects for the improvement of the sizing quality. However, there're rarely the researches about the topic for a long time that, in the process of size developing and the optimization, how to control the quality in the process and to dependently brings forward the scientific prediction and accurate quality evaluation.
     This paper comprehensively summarized and analyzed the traditional sizing engineering quality system, and considered that although the traditional process quality control and evaluation methods are very effective in the actual production and research, these methods are still parts of the apparent, within the scope of experimental methods that deviate things from the essence, basically separated from the achievements of modern materials science. Especially, the static and single external factors modes are widely used in the test of the traditional mechanical performance which have caused that the testing results have significant difference from the actual working conditions of the size film.
     The paper believed that the sizing surface and film adhered to the fibers play the most important role in the waving efficiency. Sized yarn and its film are always under the motional changes with the running loom. These motional changes include not only a gradual change of their own structural performance, but also variety changes of external conditions. Regarding this, the size film should be tested and analyzed from dynamic perspective according to material science, and thus the linkages between the various factors are established. Accordingly, dynamic characteristics of the film are objectively and comprehensively characterized. This paper, rejecting the idea of traditional research from the macro to the macro-line, undertook much research work according to the performance of polymer materials and on the methodology for contemporary material science from the microscopic to the macro. Thus, new appropriate and scientific methods to test the performance of film were presented. These presented testing methods cover a wide range of sized yarns performance including properties of dynamic mechanical, wear resistance, fatigue resistance, the suitability of tensile modulus of the film and yarn, soften and re-sticky due to heat during the dynamic process, supplemented by affinity between the film and fiber,strength and extension of sizing yarn. The quality of the film and sizing are described objectively. However, the sizing engineering quality system is a system containing rich content which needs a long-term exploration and a process to gradually achieve perfect. This paper only focused on rational and scientific evaluation method of film to made some preliminary exploration and research.
     Based on the achievement, in nanotechnology, the new type of size mixture of PVA/phosphate starch doped by micro nano-montmorillonite powder is developed. Their various properties were studied adopting the new measuring methods presented by this paper. Meanwhile, the necessity of the scientific testing methods is validated through these researches and developments.
     The main researches included in this thesis are as following.
     Ⅰ. Several typical main sizes:modified starch, PVA and polyacrylate sizing were studied referring to the traditional test methods of the properties of film, grafting of the theory and the research findings in the field of modern materials science and engineering. It presented a relatively complete corresponding evaluation methods and test means of sizes performance from five parts, including dynamic tensile mechanical properties, dynamic fatigue resistance, dynamic wear-resistance, soften and re-sticky Properties during the dynamic process.
     1. The dynamic mechanical thermal analysis (DMA) is used to test dynamic tensile mechanical properties of the film and sizing yarn to test the relationship between the dynamic stress and strain and the dynamic changes of modulus. By means of two testing modes of the static and dynamic, the dynamic tensile mechanical properties of the film and sizing yarn have been tested and compared, and the analysis showed that test of dynamic tensile mechanical properties is important and realistic.
     The study found out that under the dynamic stress conditions, the value of dynamic modulus of the film is much larger than the elastic modulus of small deformation at the static tensile. Therefore, in actual production, we must consider the adaptation between the dynamic modulus of the film and sizing yarn.
     2. DMA is applied to test tensile creep-recovery and dynamic tensile stress of the film, both of which can evaluate the dynamic fatigue resistance. The test of tensile creep-recovery is a way that tests the strain recovery ability and creep properties of the film in repeated tensile loading and unloading. The traditional equation of recovery rate R of the film was improved, and the evaluation index of dynamic creep-recovery has been presented.
     The test of dynamic tensile stress is a way that test time- dynamic stress-strain curve under external alternating loads, frequency and test temperature of which are respectively determined by the speed of looms and the ambient temperature in the weaving workshop. The accumulation of the strain after exposure to a certain number of alternating external force is adopted to indicate the fatigue resistance.
     The film and its sizing yarn were tested using the methods of the tests of tensile creep-recovery and dynamic tensile stress. The test results show the fatigue-resistance of the film and sizing yarn have consistency, so testing film can be used to predicate the dynamic fatigue resistance of the corresponding yarn. Compared with the traditional test method, the tests of tensile creep-recovery and dynamic tensile stress are closer to the actual working situation.
     3. The wear tester of the sizing film under the condition of dynamic tensile was self developed. The Instrument can set the different parameters, such as film deformation amount, load for wear and deformation velocity, to simulate the actual working condition of the film in the looms. The wear number of film by friction is used to judge the wear resistance of the film when stretching.
     With the help of scanning electron microscope (SEM) and differential scanning calorimeter (DSC), the surface morphology and thermal properties of the film by alternately stretching were investigated. The testing results express that the film under stretching causes more serious wear than when the film is not stretched alternately, so testing the film under stretching alternately reflects the actual wear resistance of the film.
     4. Glass transition temperature (Tg) is used as an important parameter to present softening characteristic of the film due to heat. Dynamic mechanical analyzer(DMA) was applied to measure the value of glass transition temperature to assess and speculate the possibility of happening and extent of softening in real working condition. In the development of new size, the glass transition temperature would be controlled to maintaining the appropriate strength and softness of the film for ensuring normal weaving.
     5. under the high temperature and high humidity conditions in the weaving workshop, the size film as well as sizing yarn would have re-sticky phenomenon. In this paper, The contact angle on the size film dropped by deionized water has first been tested to judge the wettability of water on the sizing film. The smaller the contact angle can be, the better the wettability has, which make easier to absorb water and cause the phenomenon of re-sticky.
     Testing the thermal properties of the mixture of sizing and water with differential scanning calorimeter (DSC) can determine quantitatively the swelling temperature Tn,which presents that the size film will begin to appear re-sticky, and the enthalpy in the range from swelling temperature Tn to subsequentΔT temperature due to the swelling of size film, therefore, the swelling temperature Tn and the enthalpy will comprehensively describe structural changes of material and the extent of the phenomenon of re-sticky. So, the contact angle, swelling temperature and the enthalpy during theΔT temperature are listed as parameters comparing the re-sticky performance of various size film.
     The above five kinds of testing of dynamic properties of size film comparatively and factually describe the properties and functions of size film as well as sizing yarn. And they provide the reliable evaluation reference of process quality for the development of different kinds of sizing and the optimization of sizing engineering.
     Ⅱ. This paper developed specifically the size mixture, which appropriate to the polyester cotton yarn, of PVA-1799 and phosphate starch doped by micro nano-montmorillonite powder. The five methods for testing dynamic properties of the film were adopted, supplemented by testing of affinity between the film and fiber and strength and extension of sizing yarn, to control and optimize the size mixture and modification technology of doping micro nano-montmorillonite powder. Based on this, the modification effect are evaluated
     First of all,low temperature plasma treatment has been used to deal with the surface modification for raw nano-montmorillonite powder. Then, the nano-montmorillonite disperse liquid were prepared by using the method of ultrasonic dispersion and their process conditions were determined. The average particle size in the disperse liquid by optimized process was 472 nm.
     PVA-1799 and phosphate starch were selected as the main sizing agent. As Zeta potential of both the size mixture of the PVA-1799/phosphate starch and the prepared disperse liquid of micro-nano-montmorillonite is negative or have the same phase-electricity, the two kinds of materials will not result in coagulation or agglomeration of the nano-powder when they are mixed. The structural analysis of infrared spectrum showed that micro-nano-montmorillonite is doped into sizing did not cause the change of chemical properties of the sizing agent. Through the XRD analysis of the film doped with nano-montmorillonite, it was indicated the phosphate starch and PVA-1799 act not only as the primary adhesive agent but also as a the assist intercalation agent for micro-nano-montmorillonite to further improve the dispersion extent of the powder.
     The film modified by micro nano-montmorillonite were studied through testing methods of the dynamic mechanical properties, dynamic fatigue performance, dynamic wear resistance, softening, re-sticky of the film, affinity between the film and polyester cotton fiber,strength and extension of sizing polyester cotton yarn. These studied results were used to optimize doping process and the proportion of the doping micro nano-montmorillonite. The testing and the comprehensive evaluation show that: doping with micro-nano-montmorillonite help to improve the dynamic properties of the film and sizing yarn of size mixture of PVA/phosphate starch. Of which, the proportion of micro nano-montmorillonite doped with 3% has the best effect.
     Based on the testing methods of the dynamic mechanical properties, dynamic wear resistance, dynamic fatigue performance, softening and re-sticky of the film, by combining the traditional affinity between the film and fiber, strength and extension of sizing yarn, this paper proposed a comparatively completed subsystem which belonged to sizing engineering quality system. This subsystem is more scientific and practical for size developing and it can be applied to the quality control in the process of sizing, the optimization of sizing technology and the evaluation of modification effect. At the same time, the study of this sub-system also provides new ideas and fundamental theories for sizing engineering quality system, which is being gradually improved.
引文
[1]周永元.纺织浆料学[M].北京:中国纺织出版社,2006:109,545.
    [2]朱苏康,高卫东.机织学[M].北京:中国纺织出版社,2004:78-80.
    [3]周永元.纺织经纱上浆的进展和建议[J].纺织导报,2001,5:110-116.
    [4]范雪荣,荣瑞萍,纪惠军.纺织浆料检测技术[M].北京:中国纺织出版社,2007:202-234.
    [5]高卫东,范雪荣,赵凌云.变性淀粉浆料的浆膜性能[J].棉纺织技术,1999,4:206-208.
    [6]王鸿博,葛为东.上浆质量指标和浆纱性能指标的总体评价[J].天津纺织科技,1998,2:1-3.
    [7]Marjory L. Textile science[M]. Saunders College Publishing,1986:293-294.
    [8]Harrison P. W. Yarn hairiness[M]. Textile Institute,1983:28-32.
    [9]时春瑞,田华.浆纱质量的评价指标及浆料上浆性能测试[J].四川纺织科技,2003,4:203-206.
    [10]ZHU ZF, ZHUO R X. Degree of substitution of the ionized starches and their adhesive capacity to polyester/cotton fibers[J]. China Text Unive(Eng Ed),1997, 14(1):43-48.
    [11]ZHU Z F, Y Y, ZHANG W G, et al. The adhesive capacity of starch graft copolymers to polyester/cotton fiber[J]. China Text Unive(Eng Ed),1995, 11(1):28-35.
    [12]荣瑞萍,范雪荣,曹旭勇.聚丙烯酸类浆料的浆液浆膜性能[J].棉纺织技术,2003,3(31):138-140.
    [13]高卫东,等.浆料上浆性能评价指标初探[J].棉纺织技术,1998,26(10):5--8.
    [14]陈敏,陈艳雄,杜宗良等.浆料溶液的成膜过程分析[J].纺织科技进展,2005,1:10-11.
    [15]柯扬船,(美)皮特·斯壮主编.聚合物—无机纳米复合材料[M].北京:化学工业出版社,2003:4-9.
    [16]Dwivedi M, Alam S, Verma GL. Effect of nano-barium titanate on the mechanical, electrical and solubility performance of ferrite-filled poly composites[J]. Polymer International,2005,54 (2):401-405.
    [17]张阳德.纳米生物材料学[M].北京:化学工业出版社,2005:20-21.
    [18]Rong MZ, Zhang MQ, Pan SL, Friedrich K. Crystallization performance of isotactic polypropylene filled with surface grafting modified nano-silica[J]. ACTA Polymerica Sinica,2004,2:184-190.
    [19]黄飙,陈云生.纳米材料技术及其在纺织品上的应用[J].四川纺织科技,2003,1:50-51.
    [20]Ding B, Kim H Y, Lee S C, et al. Preparation and characterization of a nanoscale poly(vinyl-alcohol) fiber aggregate produced by using electrospinning method[J]. Polymer Sci. Polymer Phys,2002,40(6):1261-1268.
    [21]Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers [J]. J Electrostat,1995,35(12):151-160.
    [22]Gibson P, Gibson H S, et al. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids and Surfaces A,2001,187-188(17):469-481.
    [23]莫克勤.一种高效、多功能、环保型纳米桨纱助剂.中国专利CN 03142084.2,2003-08-06.
    [24]李兰生.一种新型纺织浆料.中国专利CN 0110863.8,2000-01-25.
    [25]周仁勇,崔建伟,张慧萍,晏雄.改性聚丙烯酸类浆料的特点与应用[J].纺织科技进展,2007,1:65-67.
    [26]朱谱新,钮安建,陈敏.一种蒙脱土-丙烯酸系纳米纺织浆料及其制备方法.专利申请号,CN200510021353.0.
    [27]王蕾,刘馨,张晓东.纳米复合丙烯酸共聚浆料的制备与浆纱性能[J].青岛大学学报(工程技术版),2007,2:90-93.
    [28]吴敏,王萌,葛明桥.纳米材料改善淀粉浆液浆膜性能分析[J].棉纺织技术,2006,12:733-735.
    [29]纪惠军,范雪荣,等.纳米级浆料添加剂在经纱上浆中的作用机制[J].纺织学报,2007,3:54-56.
    [30]刘启凯,祝志峰.纳米SiO2/淀粉浆料共混物上浆性能的研究[J].安徽工程科 技学院学报,2007,3:71-74.
    [31]陈敏,朱谱新.丙烯酸系聚合物/层状硅酸盐纳米浆料研发的可行性.纺织科技进展,2005,6:8-10
    [32]张玉龙主编.纳米复合材料手册[M].北京:中国石化出版社,2005:7-8,19,50,174-175,365.
    [33]Bhushan B. Principles and application of tribology[M].New York:John Wiley & Sons Inc.,2001:25-30.
    [34]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998:124.
    [35]万明.丙烯酸类浆料质量与性能的评价指标的浆液浆膜性[J].纺织学报,2003,24(3):276-277.
    [36]高卫东,范雪荣,赵凌云.变性淀粉浆料的浆膜性能[J].棉纺织技术,1999,4:206-208.
    [37]王晓广,等.在经纱上浆中如何实现浆液组分的等效转换,武汉科技大学学报[J].2006,19(2):13-15.
    [38]高卫东,等,纺织浆料浆膜制备方法[J].棉纺织技术,1999,27(4),199-202.
    [39]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:65-89.
    [40]Jinan C, Ahmen Y B. Structural Characterization of Wool by Thermal Mechanical Analysis of Yarns[J]. Textile Res.,2001,1:63-66.
    [41]Gnatowski A, Koszkul J. Investigation on PA/PP mixture properties by means of DMTA method [J]. Journal of Materials Processing Technology,2006,175 (1-3): 212-217.
    [42]丁远蓉,肖长发,等.聚丙烯酸/聚乙烯醇共混物结构研究[J].天津工业大学学报,2004,(23)4:51-53.
    [43]张美珍,等.聚合物研究方法[M].北京:中国轻工业出版社,2000:107-122.
    [44]Li D, Brisson J. DMTA and FTIR Investigation of the Phase Behavior of Poly (methyl methacrylate)-Poly(4-vinylphenol) Blends [J]. Macromolecules,1996,29 (3): 868-874.
    [45]刘振海,等.聚合物量热测定[J].北京:化学工业出版社,2002:7-14.
    [46]Nikje MMA, Khanmohammad M, Garmarudi AB, Ghasemi K. Analysis of Variance (ANOVA) for Optimizing the Nano-SiO2 Content of High Performance Epoxy Nanocomposites[J]. Journal of Macromolecular Science Part A-pure and Applied,2009, 46 (1):116-120.
    [47]Wen JP, Yin P, Zhen MH. Friction and wear properties of UHMWPE/nano-MMT composites under oilfield sewage condition[J]. Materials Letters,2008,62(25): 4161-4163.
    [48]徐颖,陆振荣,唐人成.国产牛奶丝纤维的结构和热性能[J].针织工业,1995,2,22-24.
    [49]Qin H L, Zhang S M, et al. Thermal Stability and Flammability of Polypropylene /Montmorillonite posites[J], Polym, Degrade, Stab, 2004,85(2):807-813.
    [50]Tobing S D, Klein A. Molecular parameters and their relation to the adhesive performance of emulsion acrylic pressure-sensitive adhesives. Ⅱ:Efect of crosslinking[J]. J. Appl. Polym. Sci.,2001,79(14):2558-2564.
    [51]Bunker S, Willenbacher N, et al. Miniemusion polymerization of acrylated methyl oleate for pressure sensitive adhesives[J]. International Journal of Adhesion & Adhesive,2003,23(1):29-38.
    [52]Suh D J, Lim Y T. The Property and Formation Mechanism of Unsaturated Polyester_Layered Silicate Nano-composite Depending on the Fabrication Methods[J]. Polymer,2000,41:8557—8563.
    [53]Oya Y, Kurokawa Y, Yasuda H. Factors Controlling Mechanical Properties of Clay Mineral/Polypropylene Nanocomposites [J]. Journal of Materials Science,2000, 35:1045-1050.
    [54]Pan Y X, Yu z Z, et al. A New Process of Fabricating Electrically Conducting Nylon 6/Graphite Nanocompos-ites Via Intercalation Polymerization[J]. Journal of Polymer Science, Part B:Polymer Physics,2000,38(12):1626-1633.
    [55]Cao J, Ahmen Y B. Structural Characterization of Wool by Thermal Mechanical Analysis of Yarns[J].Textile Res.2001,1:63-66.
    [56]Ahumada M C. Uniaxial Tensile Properties of Yarns:Effects of Moisture Level on the Shape of Stress-Strain Curves[J].Textile Res.J.2004,11:1001-1006.
    [57]Antonietta G, Robert A. Shanks. Dynamic Mechanical Properties of Poly (propylene) Blends with Poly[ethylene-co-(methyl acrylate)] [J]. Macromol. Material Engineering,2004,289:20-29.
    [58]祝志峰,等.接枝变性淀粉浆料[J].武汉纺织学院学报,1995,8(1):21-25.
    [59]Yan L, Li YS,Xiang CB,Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultratiltration membrane performance Journal of Membrane Science [J]. 2006,276 (1-2):162-167.
    [60]美国Perkin Elmer公司"DMA/7e动态热机械分析议的操作原理及其应用“指南,1995.
    [61]Morton W E, Hearle J W S. Physical properies of textile fibres (Third edition) [M]. UK the textile Institue,266,612.
    [62]何曼君,等.高分子物理[M].上海:复旦大学出版社,1990:348-350.
    [63](美)S. Suresh著,王中光译.材料的疲劳[M].北京:国防工业出版社,1999,第2版:463-467.
    [64]Joel R F. Polymer Science and Technology [M]. 北京:化学工业出版社,2004: 196-197.
    [65]颜红侠,等.纳米材料在聚合物摩擦学中的研究进展[J].中国塑料,2003,12:9-13.
    [66]谷坤明,汤皎宁,李冀,吴深业.扫描探针显微镜应用于材料纳米摩擦学研究的若干技术问题[J].物理实验,2007,27(2):11-15.
    [67]李学锋,李维敏,吴文婷,胡海峰.原子力显微镜对材料表面微摩擦性能研究进展[J].合成材料老化与应用,2007,36(4):25-28.
    [68]唐敏锋,范晓东,唐中华.交联型聚丙烯酸酯压敏胶乳液的合成及其黏接性能的研究[J].中国胶粘剂,2005,14(9):1-5.
    [69]倘余晶,徐星,等.丙烯酸酯共聚物改性聚氨酯胶粘剂性能的研究[J].功能高分子学报,2005,17(4):620-623.
    [70]朱步瑶.界面化学基础[M].北京:化学工业出版社,1996:208.
    [71]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995:124.
    [72]朱谱新主编.经纱上浆材料[M].北京:中国纺织出版社,2005:7,344.
    [73]梁勇,张本山,高大雄,杨连生.淀粉的结晶性与非晶性研究进展[J].化学通报,2002,65(9):1-5.
    [74]张玉龙,等.纳米复合材料手册[M].北京:中国石化出版社,2005:56-58.
    [75]徐祖顺.聚合物纳米粒子[M].北京:化学工业出版社,2006:288-289.
    [76]Lu YH, Lin H, et al. Structure and performance of Bombyx mori silk modified with nano-TiO2 and chitosan[J].Fibers and Polymers,2007,8 (1):1-6.
    [77]Xian GJ, Walter R, Haupert F, A synergistic effect of nano-TiO2 and graphite on the tribological performance of epoxy matrix composites[J]. Journal of Applied Polymer Science,2006,102 (3):2391-2400.
    [78]Ruan WH, Huang XB, et al. Effect of drawing induced dispersion of nano-silica on performance improvement of poly(propylene)-based nanocomposites[J]. Macromolecular Rapid Communications,2006,27 (8):581-585.
    [79]Hussain M, Varley RJ, Mathys Z, Cheng YB, Simon GP.Effect of organo-phosphorus and nano-clay materials on the thermal and fire performance of epoxy resins[J]. Journal of Applied Polymer Science,2004,91(2):1233-1253.
    [80]吴敏,王萌.纳米SiO2的分散对淀粉浆膜力学性能的影响[J].纺织学报,2006,28(2):60-63.
    [81]余旺苗.纳米材料及其在纺织工业中的应用[J].东华大学学报(自然科学版),2001,27(6):123-127.
    [82]Vaia R A, Giannelis E P. Lattic Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates:Model Predictions and Experiments[J]. Macromolecules,1997,30(25):8000-8009.
    [83]Liu L M, Qi Z N, Zhu X G. Studies on Nylon 6/Clay Nanocomposites by Melt-Intercalation Process[J].Appl PolymSci,1999,71:1133-1138.
    [84]方启学.纳米颗粒水基悬浮体的研究[M].北京:矿治出版社,1999,12:26-28.
    [85]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003:144-193.
    [86]Heslot F, Cazabat A M. Experiments on spreading Droplets and Thin Films[J]. Advances in Colloid and Interface Science,1992,39:129.
    [87]马运柱,范景莲,黄伯云,等.超细/纳米颜粒在水介质中的分散行为[J].矿冶工程,2003,23(5):43-46.
    [88]王萌,吴敏,葛明桥.纳米SiO2对淀粉浆膜耐磨损性能的影响[J].纺织学报,2006,27(7):67-70.
    [89]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:345-348.
    [90]任中京.颗粒测试技术的进展与展望[J].过程工程学报,2004,4:3-5.
    [91]李翔,卢忠远.纳米CaCO3粒度测试中分散条件的探索[J].北京:现代科学仪器,2003,2:21-23.
    [92]马文有等.纳米颗粒技术研究进展[J].中国粉体技术,2002,8(3):28-31.
    [93]Peter P, Larry C. Wadsworth. Surface Modification of Fabrics Using a One-Atmosphere Glow Discharge Plasma to Improve Fabric Wettability[J]. Textile Res.J.,1997,67 (5):359-369.
    [94]Rashid A, et al. Effect of Low Temperature Plasma Treatment on surface modification of cotton and polyester fabrics[J]. Indian Journal of Fibre & Textile Research,2004,29 (1):74-78.
    [95]Pan YS, Xiong DS. Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage[J].Wear,2009,266 (7-8):699-703.
    [96]McTaggart F K. Plasma Chem Electrical Discharges[M]. Amsterdam:Elsevier, 1970.
    [97]Yasuda H. Plasma Polymerization[M]. Boston:Academic Press,1985.
    [98]D.Sun,.Stylios G K. Effect of Low Temperature Plasma Treatment on the Scouing and Dyeing of Natural Fabrics[J]. Textile Res.J.,2004,74(9):751-756.
    [99]Hegemann D, et al. Nanostructured plasma coatings to obtain multifunctional textile surfaces[J]. Progress in Organic Coatings,2007,58:237-240.
    [100]张建春,等.电晕辐照技术[M].北京:中国纺织出版社,2003,137-142.
    [101]任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展[J].材料导报,2007,21(1):56-58.
    [102]肖锋,叶建东,王迎军,等.超声技术在无机材料合成与制备中的应用[J].硅 酸盐学报,2002,30(5):615.
    [103]许颖琦,朱苏康.TiO2, ZnO纳米混合粉体的分散工艺研究[J].东华大学学报,2006,32(4):12-15.
    [104]天津大学物理化学教研室.物理化学(上册)[M].北京:高等教育出版社,1992,44-47.
    [105]王瑞刚,吴厚政,陈玉如,等.陶瓷料浆稳定分散进展[J].陶瓷学报,1999,1:35-36.
    [106]卢寿慈,等.工业悬浮液[M].北京:化学工业出版社,2003:492-493.
    [107]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2004:167.
    [108]李钟,李强.聚合物/层状硅酸盐纳米复合材料的制备原理[J].塑料工业,北京:2001,16(15):29-33.
    [109]焦剑主编.高聚物结构、性能与测试[M].北京:化学工业出版社,2003:263,342,675-679.
    [110]王国成,尚晓艳.甲基丙烯酸甲酯/蒙脱土纳米复合材料的研究[J].湖北大学学报(自然科学版),2006,28(3):277-281.
    [111]黄明福,等.蒙脱土增强热塑性淀粉性能的研究[J].石油化工,2004,33(7):662-665.
    [112]Manias E. Touny A. Wu L. et al.Polypropylene/Montmorillonite Nanocomposites[J]. Review of the Synthetic Routes and Materials Properties[J]. Chem. Mater.,2001.13(10):3516-3523.
    [113]金恩琪,祝志峰.TiO2纳米微粒对淀粉黏合性能的促进作用[J].高分子材料科学与工程,2007,23(1):157-160.
    [114]李本红,等.蒙脱土/淀粉基纳米复合材料研究[J].塑料工业,北京:2004,32(1):17-19.
    [115]李晓菁,乔冠军.等离子体修饰TiO2及其响应光谱红移[J].化学进展,2007(3):220-223.
    [116]丁超,贾德民,等.聚丙烯/蒙脱土纳米复合材料的热失重—红外光谱研究.绝缘材料[J].2006,39(6):31-34.
    [117]顾福铭,刘宏光.丙烯酸酯及其共聚物的红外光谱鉴定[J].皮革化工 1997,3:35-36.
    [118]Zhang ZZ, et al. Study on the friction arid wear properties of carbon fabric composites reinforced with micro-and nano-particles[J]. Materials Science and Engineeromg A-structual Materials Properties Microstructure and Processing,2005, 404(1-2):251-258.
    [119]熊明娜,武利民,周树学,游波.丙烯酸酯/纳米SiO2复合乳液的制备[J].涂料工业,2002,32(11):1-3
    [120]庄清平.纳米粒子链/聚合物基复合体的界面形态及力学行为[J].高分子材料科学与工程,2005,21(1):76-79.
    [121]张以河,付绍云等.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯,2004,5:99-105.
    [122]刘启凯,祝志峰.纳米助剂对淀粉上浆性能的促进作用[J].纺织学报,200710:67-73.
    [123]Liu YQ, Fan ZQ, Ma HY, Tan YG, Qiao JL. Application of nano powdered rubber in friction materials[J].Wear,2006,261(2):225-229.
    [124]陈奎,杨瑞成,成生伟.蒙脱土填充聚丙烯复合材料的摩擦磨损行为研究[J].摩擦学学报,2006,26(6):561-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700