用户名: 密码: 验证码:
ZTM陶瓷/纤维编织体微波连接及其弹性行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高温密封材料在现代工业和航天前沿领域的重要需求,利用ZTM(氧化锆增韧莫来石)致密陶瓷的气密与承载作用和铝硅纤维编织体的压缩-回弹特性,设计ZTM陶瓷/铝硅纤维编织体组合方式,获得了具有气密-热密综合功能的耐高温弹性密封组件。在基础材料制备和特性分析基础上,选择微波连接实现了耐温属性差异较大材料的可靠连接,进一步研究了连接组件在不同载荷和温度条件下的压缩-回弹规律,并对相关机理进行了分析。
     采用粉体压制、常规烧结,制备了ZTM陶瓷基体,该材料具有随温度升高强度不降低的特性。选用体积分数为45%、编织角为45o的铝硅三维四向纤维编织体呈现压缩-回弹特性,该材料在980℃即开始析晶,在1000℃以下可以安全使用,超过1100℃,纤维将发生析晶、变形、收缩、熔融等结构和性能的改变。
     利用微波选择性加热的特点,进行了耐温属性差异较大的ZTM陶瓷/纤维体的微波连接研究。通过对微米级粒径的Al-Si合金粉体微波的升温特性、氧化特性、物相分析的研究,设计了Al-Si合金、Al_2O_3、SiO_2和ZrO_2作为中间层组分的微波连接相材料,在2kW/60min微波处理条件下实现了ZTM陶瓷/铝硅纤维编织体的连接。
     研究表明,Al-Si粉吸波能力强、熔融温度低,在微波处理条件下,迅速升温并且发生熔融,同时自身发生氧化反应,并与其它组分结合形成莫来石。微波反应过程中,中间层材料与ZTM发生传热、粘结、质点扩散,在较高温度下实现有效连接;而疏松结构铝硅纤维体,吸波能力相对较差,在950℃左右,熔融的Al-Si合金与纤维体界面的玻璃质纤维发生化学反应,实现了纤维体与中间层的低温连接。
     研究了不同温度、载荷条件下组件的压缩回弹规律。结果表明:在0.1MPa压力下,组件在室温至600℃表现为弹性性能,可实现100%回弹;随压力增大,组件的高温回弹能力逐渐降低。在1MPa载荷、400℃以下组件仍可实现完全回弹,而1000℃时组件回弹率仅为30%。材料的压缩回弹机理表现为弹性回弹、滞弹性回弹和弹塑性回弹。获得了组件在不同温度条件下的极限载荷、不同压强条件的回弹特点和材料弹性失效机理,为组件在高温密封中的可靠应用提供了理论依据。
In order to meet the urgent requirements of high-temperature sealing materials inmodern industries and aerospace frontier field, an elastic sealing component withexcellent gas and thermal sealing functions at elevated temperatures was prepared bymicrowave joining the ZTM ceramics and alumina silica fiber braids, considering thegas sealing and bearing capacity of ZTM (zirconia toughened mullite) ceramics andcompressive and resilient properties of alumina silica fiber braids. Based on basicmaterials preparation and performance analysis, a high quality joining was realizedbetween ZTM and fiber braids in spite of their different temperature resistanceproperties. The compressive and resilient properties of joining components underdifferent loadings and temperatures were investigated, and the relative mechanismswere analyzed.
     The ZTM ceramics prepared by pressing process and conventional sinteringrevealed an excellent high-temperature strength which did not decrease withtemperature increasing. The fiber braids with three dimensions, four directions,45%volume fraction and45oweaving angle used in this experiment presented excellentcompressive and resilient properties. It was showed that the crystallizationtemperature of the fiber braids was about980oC and the crystallization, deformation,shrinkage or fusion would happen over1100oC. Therefore, the components could beused safely below1000oC.
     The process of microwave joining ZTM ceramics and fiber braids was studied.Through studying the temperature-rising characteristics, oxidization properties andphases analysis of micron level Al-Si alloy powders, an interface layer, includingpowders of Al-Si alloys、Al_2O_3、SiO_2and ZrO_2, was designed based on the microwaveselective heating characteristics. As a result, ZTM ceramics and fiber braids werejoined successfully with a microwave treating under2kW/60min.
     The results showed that the Al-Si alloy powders were heated rapidly, melt, oxidized,and finally formed mullite with other components due to their strong absorbingmicrowave ability. The interlayer and ZTM ceramics were joined effectively at hightemperature by heat-transmission, bonding and particles diffusion. However, fiberbraids had a relatively loose structure and weak microwave-absorbing ability. They were joined to the interlayer at low temperature about950oC owing to the chemicalreaction between molten Al-Si alloys and vitreous fiber at fiber braids interface.
     The compressive and resilient rules of component materials were studied underdifferent loads and temperatures. The results indicated that the materials were elasticunder0.1MPa between room temperature and600oC, and the resilient rates were100%. The resilience of materials at elevated temperature decreased with pressureincreasing. Under1MPa load, the materials were still full resilience below400oC,but the resilience-rate only retained30%at1000oC. The compressive and resilientmechanisms of joining materials were elastic resilience, anelasticity resilience andelastic-plastic resilience. The ultimate load at different temperatures, resiliencecharacteristics under different pressures, and elastic failure mechanism of materialswere analyzed, which provided a theory basis for the reliable application ofcomponent materials at elevated temperature.
引文
[1] Schneider, H., J. SchreuerB. Hildmann, Structure and properties of mullite--areview. Journal of the European Ceramic Society,2008.28(2):329-344.
    [2] Song, F.S., Needle-Like Mullite Ceramic Prepared by Sol-Gel Process.Advanced Materials Research,2011.233:2640-2643.
    [3] Chotard, T., J. Soro, H. Lemercier, et al., High temperature characterisation ofcordierite-mullite refractory by ultrasonic means. Journal of the EuropeanCeramic Society,2008.28(11):2129-2135.
    [4] Brentari, A., M. Labanti, F. Mazzanti, et al., Alumina-Mullite Refractories:Prototypal Components Production for Thermal Shock Tests. Advances inScience and Technology,2011.70:53-58.
    [5] Mazzanti, F., A. Brentari, E. Burresi, et al., Exploitation of Ceramic Wastes byRecycling in Alumina-Mullite Refractories. Advances in Science andTechnology,2011.70:9-14.
    [6] Kessman, A.J., K. Ramji, N.J. Morris, et al., Zirconia sol-gel coatings onalumina-silica refractory material for improved corrosion resistance. Surface andCoatings Technology,2009.204(4):477-483.
    [7] Rendtorff, N., L. GarridoE. Aglietti, Mullite-zirconia-zircon composites:Properties and thermal shock resistance. Ceramics International,2009.35(2):779-786.
    [8] Carbajal, G., J. Galicia, J. Angeles, et al., Microstructure and mechanicalbehavior of alumina-zirconia-mullite refractory materials. CeramicsInternational,2011.
    [9]张富宽,罗发,朱冬梅等,莫来石陶瓷的制备,微波介电特性及其对材料吸波性能的影响,航空学报,2005,2(26):250-253.
    [10]朱新文,江东亮,谭寿洪,低温固相反应合成莫来石的研究,中国粉体技术,2000,6(10):118-121.
    [11]周华梅,乔秀臣,于建国,低品位高岭土制备莫来石的研究,武汉理工大学学报,2011,33(3):121-125.
    [12] She, J., T. Ohji, P. Mechnich, et al., Phase development of Y2O3-dopedreaction-bonded mullite ceramics. Journal of materials science letters,2001.20(23):2141-2143.
    [13]李颖华,黄剑锋,曹丽云,利用粉煤灰与铝矾土合成莫来石的研究,无机盐工业,2010,32(4):48-50.
    [14]刘艳春,曾令可,祝杰等,利用铝型材厂工业废渣制备莫来石质耐火材料,陶瓷学报,2010,31(003):484-489.
    [15]叶昌,张海峰,陈思思,利用粉煤灰富集氧化铝制备莫来石工艺研究,中国陶瓷,2010,(9):35-37.
    [16] Nath, S., B. Basu, M. Mohanty, et al., In vivo response of novel calciumphosphate-mullite composites: Results up to12weeks of implantation. Journalof Biomedical Materials Research Part B: Applied Biomaterials,2009.90(2):547-557.
    [17] Nath, S., A. Dey, A. Mukhopadhyay, et al., Nanoindentation response of novelhydroxyapatite-mullite composites. Materials Science and Engineering: A,2009.513:197-201.
    [18] Rendtorff, N., L. GarridoE. Aglietti, Mechanical and fracture properties of zirconMullite composites obtained by direct sintering. Ceramics International,2009.35(7):2907-2913.
    [19] Nath, S., K. Biswas, K. Wang, et al., Sintering, Phase Stability, and Properties ofCalcium Phosphate Mullite Composites. Journal of the American CeramicSociety,2010.93(6):1639-1649.
    [20] Lee, J., T. Yang, S. Yoon, et al., Recycling of Coal Fly Ash for Fabrication ofPorous Mullite Composite. Advanced Materials Research,2011.156:1649-1652.
    [21]韩亚苓,张巍,于祥鹤等,氧化铝-钛酸铝-莫来石复相陶瓷抗热震性研究,沈阳工业大学学报,2007,29(5):501-506.
    [22]何家敏,李楠,黏土的杂质含量对堇青石-莫来石复合材料相组成及性能的影响,耐火材料,2010,44(2):140-143.
    [23]张巍,戴文勇,氮化硅-莫来石复合材料的制备,中国陶瓷,2010,(6):46-49.
    [24]董伟霞,包启富,顾幸勇等,工艺制备对钙长石/莫来石复合材料力学性能的影响,陶瓷学报,2011,32(2):216-220.
    [25] Kanka, B.H. Schneider, Aluminosilicate fiber/mullite matrix composites withfavorable high-temperature properties. Journal of the European Ceramic Society,2000.20(5):619-623.
    [26] Chawla, K., Interface engineering in mullite fiber/mullite matrix composites.Journal of the European Ceramic Society,2008.28(2):447-453.
    [27] Wang, Z., G.P. Shi, X. Sun, et al., Mullite Fiber Reinforced Alumina CeramicMatrix Composites. Key Engineering Materials,2008.368:710-712.
    [28]高淑雅,郭晓琛,郭宏伟等,莫来石纤维增强多孔玻璃基复合材料的结构与性能,功能材料,2010,41(8):1465-1468.
    [29] Yang, T., H. Ji, S. Yoon, et al., Porous mullite composite with controlled porestructure processed using a freeze casting of TBA-based coal fly ash slurries.Resources, Conservation and Recycling,2010.54(11):816-820.
    [30] Ruggles-Wrenn, M.C. Genelin, Creep of Nextel (TM)720/alumina-mulliteceramic composite at1200oC in air, argon, and steam. Composites Science andTechnology,2009.69(5):663-669.
    [31] Li, B., J.Y. HwangW. Bell, Phase Transformation of Andalusite-Mullite and ItsFiber Reinforcement to Refractory Ceramics.2010, Minerals, Metals andMaterials Society/AIME,420Commonwealth Dr., P. O. Box430Warrendale PA15086USA.
    [32]张亚彬,李瑞,高积强,莫来石连续纤维制备工艺,稀有金属材料与工程,2008,37(1):721-724.
    [33]赵东亮,莫来石晶须工业化制备技术及应用的研究:[硕士学位论文],山东;山东大学,2008.
    [34] Kim, B., Y. Cho, S. Yoon, et al., Mullite whiskers derived from kaolin. CeramicsInternational,2009.35(2):579-583.
    [35]朱伯铨,郝瑞,李雪冬,温度对硫酸钠熔盐中合成莫来石晶须的影响,稀有金属材料与工程,2009,38(A02):1-4.
    [36] Zhang, Y., C. Xiao, S. An, et al., Characterization of defects of mullite fibersprepared by polyvinyl butyral as spinning aid. Science of Sintering,2010.42(2):203-210.
    [37] Tan, H., C. GuoX. Ma, Preparation of Mullite Fibers by Sol-Gel Process andStudy of Their Morphology. Materials and Manufacturing Processes,2011.26(11):1374-1377.
    [38] Zhang, Y., C. Xiao, S. An, et al., A morphological study of mullite long fiberprepared using polyvinyl butyral as spinning aids. Journal of Sol-Gel Scienceand Technology,2011:1-7.
    [39]吉晓莉,徐飞,力国民等,原位合成莫来石晶须增强碳化硅泡沫陶瓷,中国粉体技术,2011,17(3):33-36.
    [40] Lee, J., W. Kim, T. Yang, et al., Fabrication of porous ceramic composites withimproved compressive strength from coal fly ash. Advances in AppliedCeramics,2011.110(4):244-250.
    [41] Li, S., H. Du, A. Guo, et al., Preparation of Self-reinforcement of porous mulliteceramics through in-situ synthesis of mullite whisker in flyash body. CeramicsInternational,2011.
    [42] Shuquan, L., Z. Jie, Z. Guowei, et al., Nano‐Zirconia/Mullite CompositeCeramics Prepared by In‐Situ Controlled Crystallization from the Si‐Al‐Zr‐O Amorphous Bulk. Ceramic Materials and Components for Energy andEnvironmental Applications,2010:99-108.
    [43] Xie, X., J. Sun, Y. Liu, et al., Use of silica sol as a transient phase for fabricationof aluminium titanate-mullite ceramic composite. Scripta Materialia,2010.63(6):641-644.
    [44] Li, F.F., J. Du, M.X. Zhang, et al., Preparation of Cordierite-Mullite CompositeCrucibles and Structure Characterization. Advanced Materials Research,2012.430:521-524.
    [45]李秀华,杨正方,谈家琪等,SiC晶须(Al2O3纤维)对氧化锆增韧莫来石陶瓷力学行为的影响,无机材料学报,1990,5(1):55-60
    [46]梁波,靳喜海,MgO, Y2O3添加剂对原位反应制备ZTM/Al2O3材料性能的影响,中国陶瓷,2000,36(1):11-14.
    [47] Kong, Y., Z. Yang, G. Zhang, et al., Friction and wear characteristics of mullite,ZTM and TZP ceramics. Wear,1998.218(2):159-166.
    [48]谭业发,王耀华,于爱兵等,氧化锆增韧莫来石复相陶瓷的摩擦磨损行为与磨损机制,摩擦学学报,2000,20(2):94-97.
    [49] Tan, Y.F., Y. Wang, A.B. Yu, et al., Effects of grinding on the wear resistance ofZTM composites. Key Engineering Materials,2003.259:366-369.
    [50]刘家臣,杜海燕,姜海等,Al2O3在莫来石中固溶对ZTM/Al2O3陶瓷结构与性能的影响,硅酸盐学报,2000,28(002):139-141.
    [51] Liang, S.J. Zhong, Mechanical properties and structure of zirconia-mulliteceramics prepared by in-situ controlled crystallization of Si-Al-Zr-O amorphousbulk. Transactions of Nonferrous Metals Society of China,2008.18(4):799-803.
    [52]蔡舒,袁启明,孟佳宏等,氧化锆(氧化钇)增韧莫来石陶瓷的组成与强韧化机理的研究,硅酸盐通报,2000,19(006):11-15.
    [53]刘维跃,李红岩,刘美华,莫来石氧化锆-钛酸铝复相陶瓷的抗热震性,兵器材料科学与工程,1996,19:22-25.
    [54]杜春生,杨正方,袁启明,反应烧结制备氧化锆增韧莫来石陶瓷,硅酸盐通报,1999,(6):63-67.
    [55]梁波,靳喜海,反应烧结法制备ZTM/Al2O3陶瓷材料的研究,陶瓷,1999,(4):12-14.
    [56]赵世柯,黄校先,郭景坤,ZrSiO4/Al2O3制备氧化锆-莫来石复相陶瓷的反应烧结机制,无机材料学报,2000,15(12):1102-1106.
    [57]葛海桥,耐火陶瓷纤维发展综述,上海调味品,2002(002):7-9.
    [58]李湘洲,陶瓷纤维发展的现状与趋势,佛山陶瓷,2005,15(007):1-4.
    [59]朱俊,陶瓷纤维展望,化学工业,2010,29(4):30-34.
    [60]楚增勇,王军,宋永才等,连续陶瓷纤维制备技术的研究进展,高科技纤维与应用,2004,29(002):39-45.
    [61]李泉,宋慎泰,氧化铝基连续陶瓷纤维的发展现状,耐火材料,2006,40(1):50-52.
    [62]李呈顺,张玉军,张景德,溶胶凝胶法制备多晶莫来石纤维,无机材料学报,2009,24(4):848-852.
    [63]张亚彬,丁亚平,高积强等,溶胶凝胶法制备连续莫来石纤维的工艺研究,人工晶体学报,2009,38(1):203-206.
    [64]谭宏斌,杨建锋,溶胶凝胶法制备莫来石纤维及莫来石晶化的动力学研究,西安交通大学学报,2009,43(011):43-46.
    [65]吕九权,杨梦初,用溶胶—凝胶法制备耐高温石英纤维,特种玻璃,1990,(3):59-62.
    [66]姜勇刚,张长瑞,曹峰等,三维石英纤维增强氮化物基复合材料的烧蚀性能及显微结构,国防科技大学学报,2007,(4):27-31.
    [67]陈梦怡,嵇培军,蔡良元等,石英纤维织物增强复合材料性能研究,玻璃钢/复合材料,2004.001:12-13.
    [68]陈梦怡,蔡良元,钟翔屿等,石英纤维增强氰酸酯树脂基复合材料性能研究,高科技纤维与应用,2009,(3):24-26,30.
    [69]刘阳林,石英纤维桩及螺纹钉修复年轻恒牙冠折的临床观察,中国民族民间医药杂志,2009,(14):77-77.
    [70]马晓丽,石英纤维桩树脂核修复残根残冠的临床观察,天津医药,2007,(9):663-663.
    [71]王爱军,何小明,刘莉霞等,石英纤维桩树脂核全冠修复效果的短期观察,北京口腔医学,2007(3):147-149.
    [72] Deng, S., C. Wang, Y. Zhou, et al., Preparation and Characterization ofFiber-Reinforced Aluminum Phosphate/Silica Composites with InterpenetratingPhase Structures. International Journal of Applied Ceramic Technology.8(2):360-365.
    [73] Evans, A.F. Zok, The physics and mechanics of fibre-reinforced brittle matrixcomposites. Journal of Materials Science,1994.29(15):3857-3896.
    [74] Eswara Prasad, N., S. Kumari, S. Kamat, et al., Fracture behaviour of2D-weaved,silica-silica continuous fibre-reinforced, ceramic-matrix composites (CFCCs).Engineering fracture mechanics,2004.71(18):2589-2605.
    [75]邹世钦,张长瑞,周新贵等,连续纤维增强陶瓷基复合材料在航空发动机上的应用,航空发动机,2005,31(003):55-58.
    [76]仵亚红,纤维增强陶瓷基复合材料的强化,韧化机制,北京石油化工学院学报,2003,11(003):34-37.
    [77]王军刚,张玉军,张兰等,氧化物纤维/氧化物陶瓷基复合材料研究概述,陶瓷(咸阳),2006(004):6-10.
    [78]史国普,纤维增强陶瓷基复合材料概述,陶瓷(咸阳),2009(001):16-20.
    [79]杨红娜,李嘉禄,黄航,三维编织复合材料压缩性能研究,中国复合材料学会,复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集,北京,[A].2002:224-227
    [80]徐煜,许希武,三维编织复合材料渐进损伤的非线性数值分析,力学学报,2007,39(3):398-406.
    [81]李典森,刘子仙,卢子兴等,三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制,复合材料学报,2008,25(1):133-139.
    [82]殷晓光,马天,李正操等,3D-C f/SiC复合材料的弯曲强度及热膨胀性能分析,原子能科学技术,2010,S1:363-366.
    [83] Liu, J.H. Jiang, Bending property of glass-fiber composite reinforced by8-shape3D woven fabric pretreated with hypo-atmospheric-pressure plasma. Journal ofIndustrial Textiles,2011.41(2):174-182.
    [84]杨振宇,卢子兴,刘振国等,三维四向编织复合材料力学性能的有限元分析,复合材料学报,2005,22(5):155-161.
    [85]李典森,卢子兴,蔺晓明等,三维四向编织复合材料弹性性能的有限元预报,北京航空航天大学学报,2006,32(7):828-832.
    [86]张美忠,李贺军,李克智,三维编织复合材料矩形预制件仿真,航空学报,2006,27(5):985-988.
    [87]周新贵,游宇,张长瑞等,编织结构三维仿真及其对C/SiC复合材料性能的影响,中南大学学报,自然科学版,2007,38(2):245-248.
    [88]高朋召,王献忠,王红洁等,SiO2涂层/三维碳纤维编织体材料的氧化动力学和机理研究,硅酸盐通报,2006(3):20-24
    [89] Peled, A., D. Zhu, B. Mobasher, et al., Impact Behavior of3D Fabric ReinforcedCementitious Composites High Performance Fiber Reinforced CementComposites6.2012, Springer Netherlands.543-550.
    [90]卢子兴,刘振国,麦汉超等,三维编织复合材料强度的数值预报,北京航空航天大学学报,2002,28(5):563-565.
    [91] Ma, C.L., J.M. YangT.W. Chou, Elastic stiffness of three-dimensional braidedtextile structural composites. ASTM special technical publication,1986(893):404-421.
    [92]甄强,张大海,王全明等,石英纤维热损伤机制,复合材料学报,2008,25(1):105-111.
    [93]李荣缇,潘伟,非晶态莫来石纤维析晶动力学的研究,材料导报,2001,15(009):68-71.
    [94]何顺爱,李懋强,高温处理莫来石纤维微观观察,稀有金属材料与工程,2007,36(supppl.1):298-301.
    [95] Deléglise, F., M.H. BergerA.R. Bunsell, Microstructural evolution under load andhigh temperature deformation mechanisms of a mullite/alumina fibre. Journal ofthe European Ceramic Society,2002.22(9-10):1501-1512.
    [96] Poulon-Quintin, A., M.H. BergerA.R. Bunsell, Mechanical and microstructuralcharacterisation of Nextel650alumina-Zirconia fibres. Journal of the EuropeanCeramic Society,2004.24(9):2769-2783.
    [97]张克铭,陶瓷纤维衰变及损坏机理,工业炉,2006,28(002):44-46.
    [98] Kondo, N., H. HYUGA, H. KITA, et al., Joining of silicon nitride by microwavelocal heating. Journal of the Ceramic Society of Japan,2010.118(1382):959-962.
    [99] Henager Jr, C., Y. Shin, Y. Blum, et al., Coatings and joining for SiC andSiC-composites for nuclear energy systems. Journal of Nuclear Materials,2007.367:1139-1143.
    [100] Dahms, S., F. Gemse, U. Basler, et al., Diffusion joining of silicon nitrideceramics. Estonian J. Eng,2009.15:301–308.
    [101] Lin, Y.J.S.H. Tu, Joining of mullite ceramics with yttrium aluminosilicate glassinterlayers. Ceramics International,2009.35(3):1311-1315.
    [102] Shirzadi, A., Y. ZhuH. Bhadeshia, Joining ceramics to metals using metallicfoam. Materials Science and Engineering: A,2008.496(1-2):501-506.
    [103]刘杰,Ni-Cr合金与陶瓷连接技术基础研究:[硕士学位论文],吉林;吉林大学,2009
    [104]柯晴青,成来飞,童巧英等,连续纤维增韧陶瓷基复合材料的连接方法,材料工程,2005(011):58-63.
    [105] Loehman, R., Recent progress in ceramic joining. Key Engineering Materials,1998.161:657-662.
    [106] Fernie, J., R. DrewK. Knowles, Joining of engineering ceramics. InternationalMaterials Reviews,2009.54(5):283-331.
    [107]蓝新艳,王浩,李效东,SiC基复合材料连接技术的研究进展,中国空间科学学会空间材料专业委员会,2009学术交流会论文集,2009.
    [108] Shen, X., L. Yajiang, W. Juan, et al., Diffusion bonding of Al2O3-TiCcomposite ceramic and W18Cr4V high speed steel in vacuum. Vacuum,2009.84(3):378-381.
    [109] Singh, D., M. de la Cinta Lorenzo-Martin, F. Guti rrez-Mora, et al., Self-joiningof zirconia/hydroxyapatite composites using plastic deformation process. ActaBiomaterialia,2006.2(6):669-675.
    [110] Smeacetto, F., M. Salvo, M. Ferraris, et al., Glass and composite seals for thejoining of YSZ to metallic interconnect in solid oxide fuel cells. Journal of theEuropean Ceramic Society,2008.28(3):611-616.
    [111] Knori, K., B. Murphy, M. Hurley, et al., Novel Materials for Transient LiquidPhase Ceramics and Metal Joining. patent,2011.
    [112] PALAITH, D.R. SILBERGLIT, Microwave joining of ceramics. AmericanCeramic Society Bulletin,1989.68:1601-1606.
    [113] Fukushima, H., T. YamanakaM. Matsui, Microwave heating of ceramics and itsapplication to joining. Journal of Materials Research,1990.5(2):397-405.
    [114] Siores, E.D. Do Rego, Microwave applications in materials joining. Journal ofMaterials Processing Technology,1995.48(1-4):619-625.
    [115] Das, S., A. Mukhopadhyay, S. Datta, et al., Prospects of microwave processing:An overview. Bulletin of materials science,2009.32(1):1-13.
    [116] Esposito, L.A. Bellosi, Joining of ceramic oxides by liquid wetting andcapillarity. Scripta Materialia,2001.45(7):759-766.
    [117] Chang, L.S.C.F. Huang, Transient liquid phase bonding of alumina to aluminavia boron oxide interlayer. Ceramics International,2004.30(8):2121-2127.
    [118] Mun, J., B. DerbyA. Sutton, Texture change in Ni and Cu foils on diffusionbonding to zirconia. Scripta Materialia,1997.36(1):123-127
    [119] Zhou, Y.C., J.X. ChenJ.Y. Wang, Strengthening of Ti3AlC2by incorporation ofSi to form Ti3Al1-xSixC2solid solutions. Acta Materialia,2006.54(5):1317-1322.
    [120] Yin, X., M. Li, T. Li, et al., Diffusion bonding of Ti3AlC2ceramic via a Siinterlayer. Journal of materials science,2007.42(17):7081-7085.
    [121] Cook, G.O.C.D. Sorensen, Overview of transient liquid phase and partialtransient liquid phase bonding. Journal of materials science,2011:1-19.
    [122] Li, B.F., W.T. Xin, F.W. Liu, et al., The Effect of the Element of Ni on the Crackof Manual SHS Welding Joint. Advanced Materials Research,2011.214:513-516.
    [123] T, S., T. NS. K., Microwave joining of ceramics,silicon nitride and siliconcarbide. Journal of the Ceramic Society of Japan,1993.101(4):411-416.
    [124]张洋,超声波作用下SiC与Zn-Al连接界面行为及焊缝强化机理:[博士学位论文],哈尔滨;哈尔滨工业大学,2009.
    [125] B rner, F.D., W. LippmannA. Hurtado, Laser-joined Al2O3and ZrO2ceramicsfor high-temperature applications. Journal of Nuclear Materials,2010.405(1):1-8.
    [126] Ahmed, A.E. Siores, Microwave joining of48%alumina-32%zirconia-20%silica ceramics. Journal of Materials Processing Technology,2001.118(1-3):88-94.
    [127] Wang, W., J.C. Liu, Z.Q. Li, et al., Microwave Joining of95Al2O3UsingInterlayer Containing SiC. Key Engineering Materials,2008.368:1612-1613.
    [128]何欣,ZrO2陶瓷的微波连接:[硕士学位论文],天津;天津大学,2008.
    [129]王维,氧化铝微波连接:[硕士学位论文],天津;天津大学,2009.
    [130]李莎,范巍,杜海燕等,ZrO2增韧陶瓷微波连接界面研究,真空电子技术,2009(004):85-87.
    [131]李顺,氧化铝陶瓷的微波连接及其界面研究:[博士学位论文],天津;天津大学,2009.
    [132]范巍,ZrO2-Al2O3-SiO2陶瓷微波烧结及连接:[硕士学位论文],天津;天津大学,2009.
    [133]白向钰,鹿安理,吴苏,异种陶瓷材料微波连接的研究,中国机械工程,1999,10(4):463-465.
    [134] Szela, E.R.J.A. Leogrande, Method of joining a microwave transparentcomponent to a host component.2009, Google Patents.
    [135] Cheng, J., D. Agrawal, Y. Zhang, et al., Development of translucent AluminumNitride (AIN) using microwave sintering process. Journal of electroceramics,2002.9(1):67-71.
    [136]田岛键一,高强度压电陶瓷的制造方法,日本公开特许公报(A),特开平10-29350,1998.10-20.
    [137] Cozzi, A.D., D.E. ClarkM.K. Ferber, Microwave Joining of High-PurityAlumina, in Proceedings of the20th Annual Conference on Composites,Advanced Ceramics, Materials, and Structures—A: Ceramic Engineering andScience Proceedings.2008, John Wiley&Sons, Inc.155-162.
    [138] SATO, T., M. SEKIIK. SHIMAKAGE, Microwave joining of magnesia. Nipponseramikkusu kyokai gakujutsu ronbunshi,1996.104(2):155-157.
    [139] Sato, T., N. TakahashiK. Shimakage, Microwave joining of alumina to magnesia.Nippon seramikkusu kyokai gakujutsu ronbunshi,1996.104(10):905-907.
    [140] Zhou, J., Q. Zhang, B. Mei, et al., Microwave joining of alumina ceramic andhydroxylapatite bioceramic. Journal Wuhan University of Technology,Materials Science Edition,1999.14(2):46-49.
    [141]彭旭东,王玉明,黄兴等,密封技术的现状与发展趋势,液压气动与密封,2009(004):4-11.
    [142]顾伯勤,时黎霞,不锈钢柔性石墨缠绕垫片的高温性能研究,石油机械,2000,28(2):13-16.
    [143]叶凡,毛宗强,王诚等,固体氧化物燃料电池密封材料的研究进展,电池,2010(004):229-231.
    [144]张薇,蔡铜祥,王玲等,固体氧化物燃料电池密封稳定性的研究进展,材料导报,2010,24(013):26-30.
    [145]魏国俭,黄乃宁,乔桂玉等,航天阀门中零泄漏金属波纹管动密封技术及其应用,阀门,2010(001):27-32.
    [146] Dunlap, P.H., B.M. Steinetz, D.M. Curry, et al., Investigations of a controlsurface seal for reentry vehicles. Journal of spacecraft and rockets,2003.40(4):570-583.
    [147] Dunlap, P., B.M. SteinetzJ.J. DeMange, Further Investigations of HypersonicEngine Seals. NASA TM,2004.213188:1-14.
    [148]彭祖军,高温动密封结构设计与分析:[硕士学位论文],哈尔滨工业大学,哈尔滨,2011.
    [149] Rendtorff, N., L. GarridoE. Aglietti, Zirconia toughening ofmullite-zirconia-zircon composites obtained by direct sintering. CeramicsInternational,2010.36(2):781-788.
    [150] Rendtorff, N.M., M.S. Conconi, E.F. Aglietti, et al., A short and long rangestudy of mullite–zirconia–zircon composites. Hyperfine Interactions,2010.1:45.
    [151]李素平,包华,氧化锆增韧莫来石陶瓷的研究,磨料磨具与磨削,1994(004):33-36.
    [152]陈帮,张长瑞,王思青等,石英纤维的表面处理,硅酸盐通报,2006(6):187-190.
    [153]崔之开,陶瓷纤维,北京,化学工业出版社,2004,1:70-77.
    [154]温广武,雷廷权,周玉,不同形态石英玻璃的析晶动力学研究,材料科学与工艺,2001,9(1):1-5.
    [155]邢建申,王树彬,,石英纤维析晶行为,复合材料学报,2006(6),75-79.
    [156] Schmücker, M., H. Schneider, T. Mauer, et al., Temperature-dependentevolution of grain growth in mullite fibres. Journal of the European CeramicSociety,2005.25(14):3249-3256.
    [157] Agrawal, D.K., Microwave processing of ceramics. Current Opinion in SolidState and Materials Science,1998.3(5):480-485.
    [158]夏傲,氧化锆增韧陶瓷材料的结构性能和应用,陶瓷科学与艺术,2005:4-9.
    [159] Halwax, E. The Full-Pattern Reference Intensity Ratio Method in QuantitativePhase Analysis. in Materials Science Forum.1998: Trans Tech Publ.
    [160] Roy, R., D. Agrawal, J. Cheng, et al., Full sintering of powdered-metal bodies ina microwave field. Nature,1999.399(6737):668-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700